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Obesity is defined as overaccumulation of white adipose tissue in the body, mainly under
the skin (subcutaneous adiposity) or in the abdominal cavity (visceral adiposity). It could be
the origin of various metabolic disorders including hypertension, hyperlipidemia, type 2
diabetes, cardiovascular diseases etc. Active adipose tissue was discovered in humans
through 18F-fluorodeoxyglucose Positron Emission Tomography coupled with Computer
Tomography (18F FDG-PET/CT), which was initially performed for tumor scanning. Since
human active adipose tissue is probably composed of brown and beige adipose tissues
and they burn white adipose tissue to generate heat, targeting human brown/beige
adipose tissue to induce their thermogenic function is considered significant to combat
obesity. In this review, we describe the latest advancements on promising therapeutic
strategies to combat obesity by targeting human thermogenic adipose tissues to achieve
further metabolic balance in humans.
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1 INTRODUCTION

With the rapid development of the world economy, dietary structure of human beings has been
greatly changed worldwide. Moreover, sedentary work has increased progressively while manual
work has decreased. Obesity has become more common and the incidence of obesity-related
metabolic diseases (such as hypertension, type 2 diabetes etc.) is increasing, which turns into an
urgent health crisis. Effective fat burning is considered very necessary for certain obese populations.
Rather than energy storage, brown adipose tissue (BAT) has been investigated to consume energy
and produce heat when activated (1, 2). The process is known as non-shivering thermogenesis and
BAT is known as thermogenic adipose tissue. Beige adipose tissue, which appears in the white
adipose tissue (WAT) depot after cold or adrenergic stimulation, is a unique kind of thermogenic
adipose tissue because it develops differently from BAT but works similarly to BAT (3, 4). Thus,
targeting these two kinds of thermogenic adipose tissues could be a potential therapeutic strategy to
combat obesity. Not like the classic BAT in the interscapular region in rodents, human interscapular
BAT seems to exist only in infants according to an autopsy study (5). Functional BAT in humans
was found through 18F FDG-PET/CT over a decade ago, and it is mainly located in the cervical,
supra-clavicular, supra-adrenal, and para-vertebral regions in adults (1, 6–8). Increasing evidence
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shows that active human adipose tissues are heterogeneous.
Deeper cervical adipose tissue in humans shares many
similarities with classical rodent BAT on molecular and
histological levels, while the supra-clavicular region in humans
is composed of a mixture of brown and beige adipocytes (9–11).
Transplantation of human beige adipocytes, which are
differentiated from human adipose-derived stem/stromal cells,
into hindlimb muscles in mice results in an increase in whole-
body energy expenditure, oxygen consumption, and a decrease in
body weight (12). A retrospective cohort study involving 856
BAT positive and 846 BAT negative 18F FDG-PET scans showed
that human BAT is associated with a healthier body fat
distribution (lower amounts of visceral adipose tissue and
higher amounts of subcutaneous adipose tissue) and metabolic
benefits such as lower blood glucose and white blood cell count,
improved lipids, lower prevalence of type 2 diabetes mellitus, and
decreased liver fat accumulation, especially in individuals with
central obesity (13). Moreover, another retrospective cohort
study involving 5,070 BAT positive and 9,853 BAT negative
18F FDG-PET scans reported an association of human BAT with
better cardiometabolic health in terms of dyslipidemia, coronary
artery disease, cerebro-vascular disease, congestive heart failure,
and hypertension, especially in individuals who were overweight
or obese (14). However, due to the particularity of human BAT
and ethical reasons, progress on combating obesity by targeting
human BAT tends to be relatively slow. For a supplement to the
results in our previously published review (15), we will
summarize findings of some recent discoveries in this field.
2 RECENT PROGRESS IN TARGETING
HUMAN BROWN/BEIGE ADIPOSE
TISSUES TO COMBAT OBESITY

Both brown and beige adipose tissues play an important role in
whole-body energy homeostasis. Regulatory mechanisms of
these thermogenic adipose tissue development and activation
are well described in rodents. Targeting thermogenic adipose
tissues in various ways to combat obesity has been demonstrated
to be potentially achievable according to massive rodent
experiments (16). Thermogenic adipose tissue mediated non
shivering thermogenesis is classically triggered by the binding
of norepinephrine (released from sympathetic nerve terminals)
to b3-adrenergic receptors (ARs) located on the adipocyte
membrane, followed by a lipolysis through the adenylyl
cyclase/cyclic adenosine monophosphate (cAMP)/protein
kinase A (PKA) signaling and an uncoupling protein 1
(UCP1)-mediated ATP consumption and heat generation from
mitochondria (17, 18). In recent years, due to the challenges on
pharmaceutical development, mechanisms bypassing ARs
signaling pathways or UCP1 are popularly investigated. Some
non-canonical mechanisms are described in our review, with
experiments mainly performed in rodents (15). Likely, the
findings in rodents reflect a potential contribution of human
BAT to metabolic balance in humans as well. Though the
findings in rodents are undeniable, there remains a knowledge
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chasm between rodents and humans. It is still unclear whether
targeting adult human BAT is adequate for heat generation
under certain circumstances and requires further investigation.
In this case, the most recent advancements in this field in
humans should be noticed.

2.1 Adrenergic Receptor Agonists
One of the most popular pharmaceuticals to potentially combat
obesity is adrenergic receptor agonist. A recent study from
Cypess group demonstrated the important role of b3-AR in
the regulation of human brown and beige adipocyte lipolysis and
thermogenesis (19). The experiments have been performed in
differentiated human brown/beige adipocytes, which are from
stromal vascular cells isolated from adipose tissues of young
women in the superficial neck and supraclavicular regions.
Silencing or functional reduction of b3-AR impacts lipolysis
and thermogenesis. Thus, b3-AR is important for maintaining
the lipolytic and thermogenic function of human brown/beige
adipocytes, and thus, potent selective b3-AR agonists, such as
mirabegron, could be used in humans for a metabolic benefit.

It is worth noting that the use of selective b3-AR agonists
comes with challenges as some of the b3-AR agonists have been
approved to treat overactive bladder and urinary incontinence
(20–22), but none of them have been approved to treat metabolic
diseases. Nevertheless, mirabegron has been shown to enhance
the supraclavicular skin temperature, induce BAT activity,
elevate protein expression of brown adipocyte markers in
subcutaneous WAT (scWAT) (browning potential), and
benefit energy metabolism in humans in many aspects
including increasing beneficial lipoprotein biomarkers (high-
density lipoprotein and ApoA1), free fatty acids, lipid
oxidation, glucose tolerance, decreasing BAT fat fraction, and
boosting resting energy expenditure (23–27). It (therapeutical
dose for overactive bladder treatment) may even activate human
BAT in the elderly, who normally show low or none BAT
activity, according to a case report of an 81-year-old woman
(28). However, direct evidence as to whether mirabegron causes
weight loss is still not indicated. In addition, its dose requirement
for an increased energy expenditure is high enough to cause side
effects such as cardiovascular dysfunction (29–33). Thus, future
investigations are required to estimate the potential of b3-AR
agonist for the treatment of metabolic disorders.

More recently, Denis P. Blondin et al. examined the specificity
of mirabegron, and confirmed that other than a therapeutical
dose (50mg), a high dose of mirabegron (200mg) can cause
cardiovascular response and increase whole-body lipolysis and
fatty acid oxidation, due to the off-targeting of mirabegron on
b2/b1-AR in the cardiovascular system and WAT (34, 35). They
estimate that this non-specific binding of mirabegron results in
an increase of about 84% in energy expenditure due to a futile
triglyceride-fatty acid cycle and increased heart rate (unrelated to
BAT activation), which is more than what is observed after cold
stimulation. Furthermore, it was found in their study that b-AR
mRNA from both human BAT (from deep neck region) and
WAT consists of highest ADRB2, followed by ADRB1, and
almost undetectable ADRB3. Importantly, ADRB2 is co-
expressed with UCP1 in active human BAT, mediating the
May 2022 | Volume 13 | Article 884944
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human brown adipocyte respiration and BAT thermogenesis.
Thus, this study concluded that human BAT thermogenesis is
mediated through b2-AR, but not b3-AR nor b1-AR, suggesting
a brand-new therapeutic potential of b2-AR agonist (such as
formoterol) in the treatment of metabolic disorders in humans,
which needs further estimation.

2.2 Adenosine and A2A/A2B
Receptor Agonists
Adenosine, as an important component of ATP, regulates
metabolism throughout the human body. Its action is partly
dependent on binding to the G-protein-coupled receptors. There
are four subtypes of these receptors including A1, A2A, A2B, and
A3 (36). Interestingly, in 2014, Pfeifer group discovered an
autocrine function of adenosine in BAT, that adenosine could
be released from brown adipocytes and binds with A2A receptors
in adipocytes to increase BAT activation and induce browning in
rodents (37). Adenosine administration has been shown to
dramatically increase BAT activation and energy expenditure
in humans (38). Importantly, it is also found that the A2A

receptor density in the supraclavicular region decreased after
cold exposure in humans through PET/CT scanning (application
of a certain radioligand 11C-TMSX, which binds on A2A

receptors). It is probably due to more binding of released
adenosine and thus less binding of radioligands with A2A

receptors, which strengthened the previous idea of Pfeifer
group. Lately, Pfeifer group has further identified that A2B

receptors are the most highly expressed adenosine receptors
shared by BAT and skeletal muscle (39). Strikingly, adenosine-
A2B receptor signaling may be involved in anti-aging (age-related
muscle atrophy) and anti-obesity (involvement of BAT)
mechanisms according to their findings. In humans, higher
A2B expression in BAT is correlated to higher BAT activity.
Administration of A2B agonist or adenosine results in an
increased BA lipolysis on the cellular level and the latter acts
in an A2B-dependent manner. A2B receptor expression in human
WAT is also inversely correlated to BMI and adipocyte diameter,
which measures for lipid load and cell hypertrophy. Moreover,
the expression of UCP1 and certain thermogenic markers is also
correlated with A2B receptor expression in human WAT. In
human skeletal muscle, the expression of A2B receptor rather
than b2- or b3-AR declines with age and is positively correlated
with basal oxygen consumption and probably the oxidative
metabolism. Collectively, above findings indicate that
pharmacological stimulation of A2B receptor could be a
potential therapeutic strategy against obesity as well as muscle
aging. Further investigations on A2B receptor agonists will be of
great significance.

2.3 Other Prominent Mechanisms
2.3.1 Gut Hormone Secretin and Its Receptor
Secretin is a hormone which is originally found to be released from
the enteroendocrine S-cells in the duodenum in response to
intestinal acidification and participates in food digestion (40).
Some additional effects of secretin on distant organs have been
previously discovered, such as promoting lipolysis in WAT,
nourishing the nervous system, and regulating renal reabsorption
Frontiers in Endocrinology | www.frontiersin.org 3
(40–43). Inspiringly, it has been demonstrated to play a role in the
regulation of energy metabolism through the binding to its
receptors in brown adipocytes, which in turn rouses BAT
activation and stimulates lipolysis in mice (44). Furthermore, the
binding of secretin to its receptors could be sensed in the brain and
promotes satiation, which contributes to a feedback loop between
gut, BAT, and brain. Chronic infusion of secretin elevates the energy
expenditure in diet-induced obese mice, though transiently. In
humans, plasma secretin levels are positively correlated with
postprandial oxygen consumption rates and fatty acid uptake
rates in BAT. Moreover, secretin infusion has been shown to
induce glucose uptake in human BAT in the supraclavicular
region as observed by 18F FDG-PET/CT. More recently, the same
group has further investigated the effect of secretin on BAT and
satiation in vivo in humans bymeans of various imaging approaches
including PET/CT (18F-FDG and 15O-H2O) and MRI (45).
Intravenous secretin infusion increased BAT glucose uptake by
57% (BAT perfusion remained unchanged) and whole-body energy
expenditure by 2%. Also, blood-oxygen level-dependent activity in
brain was decreased after secretin infusion and the motivation to
refeed was delayed by 39 min, though the caloric intake was not
affected by secretin. Of note, intravenous secretin infusion did not
result in any adverse effect in human bodies. Collectively, secretin
infusion or any that induces plasma secretin could be a competent
therapeutic strategy to treat obesity and metabolic diseases.

2.3.2 Phytochemical Hyperforin-Dihydrolipoamide
S-Acetyltransferase Signaling
Phytochemical hyperforin has been found to be a promising
molecule, which could pharmacologically stimulate adipose
tissue thermogenesis and protect against obesity in rodents
(46). It directly targets dihydrolipoamide S-acetyltransferase
(Dlat) in adipose tissues via AMP-activated protein kinase
(AMPK)-Peroxisome proliferator-activated receptor gamma
coactivator-1a (PGC-1a) signaling in a UCP1-dependent
manner. Importantly, the Dlat gene is associated with waist-to-
hip ratio in humans. Obese individuals show lower expression of
Dlat than non-obese individuals in both subcutaneous and
visceral adipose tissues, suggesting that phytochemical
hyperforin may be a potential pharmacological agent to
stimulate thermogenesis to counter obesity in humans. Further
investigations in humans are needed.

2.3.3 G Protein-Coupled Receptors
3-cAMP Signaling
Recently, the constitutively active receptor GPR3 has been
identified to mediate thermogenesis in mice through an
upregulation of cAMP, independent of sympathetic signaling
(47). Its transcription could be induced by a lipolytic signal,
which is generally caused by cold and is sufficient to drive energy
expenditure and thus protect mice from metabolic diseases.
Particularly, the N terminus of GPR3 itself confers intrinsic
signaling activity, which is independent on any exogenous ligand
binding. Importantly, GPR3 represents an essential regulator in
human thermogenic adipocytes. Depletion of GPR3 frommature
adipocytes, which is derived from preadipocytes in the supra-
clavicular region of human, leads to a decreased expression of
May 2022 | Volume 13 | Article 884944
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UCP1 and other thermogenic genes with or without
norepinephrine stimulation. Genes related to lipid metabolism,
mostly mevalonate and cholesterol signaling, are impacted by
GPR3 loss. In contrast, elevation of GPR3 drives a global
thermogenic gene signature. Moreover, they show a counter
regulation between GPR3 and b-ARs in humans that GPR3
was negatively correlated with ADRB1 in supraclavicular BAT
but with ADRB2 in scWAT, respectively. Obese individuals, who
are suggested to have diminished adipose lipolysis, display lower
GPR3 levels in scWAT, which are restored when their weight is
reduced. Thus, boosting GPR3 expression could be potentially
sufficient to induce browning in human scWAT as well. GPR3-
cAMP signaling represents new noncanonical pathways to
stimulate adipose thermogenesis and therefore could be
potentially targeted to counter obesity and metabolic diseases.

2.3.4 Lymphatic Endothelial Cell-Derived
Neurotensin as an Anti-Thermogenic Regulator
The lymphatic vasculature, as a major exogenous tissue residing
in the adipose tissue, has recently been identified to be involved
in the regulation of adipose tissue thermogenesis (48). In
particular, both murine and human lymphatic endothelial cells
express neurotensin, which could be downregulated by cold or
adrenergic stimulation in an a-adrenergic-dependent manner.
Moreover, neurotensin treatment in brown adipose tissue
explants result in a down regulation of thermogenic genes. In
vivo neurotensin overexpression or knockdown/knockout leads
to a reduced or enhanced cold tolerance in mice, respectively,
through neurotensin receptor 2 (NTSR2) and extracellular
signal-regulated kinase (ERK) signaling. Data from human
studies are lacking in this respect. Thus, further investigations
in humans are required to identify whether lymphatic
endothelial cell-derived neurotensin impacts thermogenesis in
humans and if the effects are mediated by NTSR2-ERK signaling
as well.

2.3.5 Fibroblast Growth Factors-UCP1 Signaling
Two fibroblast growth factors, FGF6 and FGF9, have been
identified to regulate UCP1 expression in adipocytes and
preadipocytes in mice independent of adipogenesis, but
through activating FGF receptor-3 (FGFR3), promoting
prostaglandin-E2 biosynthesis and the involvement of a
regulatory complex comprised of estrogen receptor-related
alpha (ERRa), flightless-1 (FLII) and leucine-rich-repeat-(in
FLII)- interacting-protein-1 (LRRFIP1) (49). Loss of FGF9
impairs BAT thermogenesis, while administration of FGF9
increases UCP1 expression and thermogenic capacity in mice.
Specifically, Fgf9 and Fgfr3 are expressed higher in the deep neck
fat than superficial neck fat in humans. Their expression in neck
fat is positively related to UCP1 expression, while Fgfr3
expression in scWAT is negatively correlated to BMI in
humans. Yet, investigations of the regulatory roles of FGF6
and FGF9 in humans are very limited and whether they boost
energy expenditure is not indicated. However, an earlier study
has reported an inhibitory effect of FGF9 on white adipocyte
browning (50) and they suggest that the mechanism may involve
the activation of hypoxia signaling. Obese human show lower
Frontiers in Endocrinology | www.frontiersin.org 4
expression of FGF9 in subcutaneous WAT. FGF9 show opposite
effects on BAT thermogenesis andWAT browning. Thus, further
investigations are required to better understand the roles of these
fibroblast growth factors in the regulation of human
thermogenesis as well as energy metabolism.

2.3.6 Long Noncoding RNA LINC00473
LINC00473, as a primate-specific long noncoding RNA, has been
detected in progenitor cells, and potentially regulates human
adipocyte thermogenesis (51). LINC00473 levels increase upon
progenitor cell differentiation and in response to cAMP. The
expression of LINC00473 in human thermogenic cells is highly
corelated to UCP1. LINC00473 RNAs translocate from nucleus
to the lipid droplet-mitochondria interface in response to an
increased level of cAMP in thermogenic adipocytes. There, it
forms a complex with lipid droplet, mitochondria proteins as
well as Perilipin 1 (PLIN1), which is an adipocyte-specific lipid
droplet-associated protein and promotes the lipid droplet
growth, promoting lipolysis and mitochondrial respiration.
Thus, LINC00473 is a special LincRNA, which regulates
human thermogenic adipocyte function and therefore energy
metabolism via an inter-organelle communication.

2.3.7 12-Lipoxygenase and Omega-3 Oxylipin
12-Hydroxyeicosapentaenoic Acid
12-lipoxygenase, which is an enzyme responsible for oxylipin
biosynthesis, has been found to be elevated after cold exposure or
b3-adrenergic stimulation (200 mg mirabegron) in humans (52).
b3-adrenergic stimulation enhances the secretion of its
metabolites, 12-hydroxyeicosapentaenoic acid (12-HEPE) and
14-hydroxydocosahexaenoic acid (14-HDHA), from human
brown adipocytes but not from white adipocytes. Of note, 12-
lipoxygenase activity in BAT is required for adaptive
thermogenesis. However, 12-HEPE secretion has been found to
be repressed in obese individuals. According to animal
experiment, 12-HEPE promotes glucose uptake by triggering
the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein
kinase B/glucose transporter 1/4 (PI3K/Akt/Glut) pathway
through binding to Gs-protein-coupled receptors in brown
adipocytes. Thus, 12-lipoxygenase and 12-HEPE, the latter as a
batokine, regulate cold adaption and glucose metabolism, which
could potentially be another target for a better metabolic balance
in humans.

2.3.8 Nuclear Factor Erythroid 2-Like 1-Mediated
Proteasomal Activity
Several years ago, it was reported that an endoplasmic reticulum
(ER)-localized transcription factor nuclear factor erythroid 2-like
1 (Nrf1) is critical for the maintenance of proteasomal activity in
BAT ER, which is required for the ER adaptation under
thermogenic challenges in mice (53). ER-mediated proteasomal
activity is required for non-shivering thermogenesis, which could
be driven by Nrf1 and is however impaired in obese mice.
Enhancement of proteasomal activity by Nrf1 overexpression
in either leptin-deficient ob/ob mice or diet-induced obese mice
results in an improved insulin sensitivity. On the contrary,
brown-adipocyte-specific deletion of Nrf1 results in ER stress,
May 2022 | Volume 13 | Article 884944
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tissue inflammation, markedly diminished mitochondrial
function, and whitening of the BAT. Human primary
differentiated brown adipocytes express higher NRF1 than
other NRF family members. Furthermore, NRF1 expression is
positively correlated to UCP1 in human adipose tissues from
subcutaneous and deep-neck (carotid sheath area) depots.
However, whether NRF1-mediated proteasomal activity is also
required for human BAT non-shivering thermogenesis is unclear
and needs to be further studied.

2.3.9 Interleukin-27- Interleukin -27
Receptor a Signaling
One of the inflammation-associated factors, interleukin-27
(IL-27), has been found to be significantly reduced in obese
individuals and can be restored after bariatric surgery (54). IL-
27 signaling promotes thermogenesis and energy expenditure,
and protects mice from diet-induced obesity and insulin
resistance. It directly targets to adipocytes (probably more
beige adipocytes than brown adipocytes) through binding to
IL-27 Receptor a subunit (IL-27Ra), activating p38 mitogen-
activated protein kinase (MAPK)-PGC-1a signaling, and
stimulating the expression of UCP1. Thus, IL-27 could be a
promising target for the immunotherapy of obesity and
metabolic morbidities in the future.

2.3.10 Letm1 Domain Containing 1
A very recent study has identified Letm1 domain containing 1
(Letmd1) as a key regulator of brown fat formation and function
(55). Letmd1 knockout mice display a dramatically impaired cold
adaptation, abnormal BAT morphology with low mitochondrial
content, and reduced thermogenic gene expression. Moreover, these
mice are prone to diet-induced obesity and impaired glucose
Frontiers in Endocrinology | www.frontiersin.org 5
metabolism. Besides mitochondria, Letmd1 is also found to be
localized in the nucleus, regulating the transcription of various
thermogenic genes. However, as they conclude, further
investigations including the effects of tissue-specific interference of
Letmd1 on thermogenesis are required to exclude possible
contributions from other tissues to the above phenotypes.
Furthermore, the role of Letmd1 in beige adipose tissue
physiology and human thermogenesis is largely unknown, which
requires further investigations as well.
3 DISCUSSION AND PROSPECTIVES

Activation of brown/beige adipose tissues results in not only
thermogenesis but also lipolysis, which contributes to an
improvement of energy metabolism thereafter. Correlative
signaling pathways could be potentially targeted to combat
obesity and its related metabolic disorders. Among them, the
classic signaling pathway includes a binding of norepinephrine to
b3-AR in brown adipocytes, followed by the activation of cAMP/
PKA signaling, and a UCP1-dependent mitochondria-involved
thermogenesis. Non-classic mechanisms of adipocyte-mediated
non-shivering thermogenesis vary and were mainly summarized
in one of our previous reviews (15) and above. However,
investigations were largely performed in rodents. Data from
rodents does not fully represent the phenotype in humans due
to unfathomable species differences. Recently, it has been found
that unlike b3-AR in rodent adipocytes, b2-AR is the most
expressed AR receptor in human adipocytes. Moreover, after
norepinephrine stimulation, the expression of ADRB2 is
increased along with an increase in UCP1 expression in human
brown adipocytes, which drives thermogenesis in human BAT.
FIGURE 1 | Adrenergic receptor and adenosine receptor mediated non-shivering thermogenesis in human brown/beige adipocytes. AR, adrenergic receptor; A2A R,
adenosine A2A receptor; A2B R, adenosine A2B receptor; cAMP, cyclic adenosine monophosphate; NE, norepinephrine; UCP1, uncoupling protein 1.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Pan and Chen Human Thermo-Fat Against Obesity
(35), as shown in Figure 1. In this case, the b2-AR agonists could
be more potential than b3-AR agonists for obesity treatment in
humans, which is not yet demonstrated. Probably, both b2-AR
and b3-AR play prominent roles in the regulation of human
thermogenesis (Figure 1). One of the non-classic mechanisms,
which is adenosine receptor mediated signaling pathway, has been
shown in some new findings. It seems that both A2A and A2B

receptors contribute to adenosine-induced lipolysis and
thermogenesis in human adipocytes (37–39), as shown in
Figure 1. In addition, adenosine-A2B receptor-signaling may
have an anti-muscle aging effect in humans (39). Thus, A2B

agonists could be another potential pharmaceutical for obesity
treatment in the future. Another potent AR-independent pathway,
secretin-secretin receptor signaling, has been shown to be involved
in human adipocyte thermogenesis and lipolysis (44, 45). Besides,
it conduces to a feedback loop between the gut, BAT, and brain,
and promotes a satiation sensed by brain in humans (Figure 2).
Though latently, further progress, such as the development of
secretin receptor agonists, has not been reported. Other prominent
and competitive mechanisms involved in the regulation of human
adipocyte thermogenesis, which are also shown in Figure 2, are
mostly AR-independent as well. However, the study of those
mechanisms in humans is very limited, which requires further
Frontiers in Endocrinology | www.frontiersin.org 6
investigation. Yet, therapeutic strategies by targeting brown/beige
adipose tissues could be competitive and practical to treat obesity
and its related metabolic disorders. Due to the complexity and
diversity between human and rodent BAT, mechanisms involved
in human BAT activation are probably more complicated than
that in rodents. A better understanding of these mechanisms leads
to a more potent translation to clinical practice for a better human
metabolic health.
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