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Abstract

Domain experts regularly teach novice students how to perform a task. This often requires them to

adjust their behavior to the less knowledgeable audience and, hence, to behave in a more didactic

manner. Eye movement modeling examples (EMMEs) are a contemporary educational tool for dis-

playing experts’ (natural or didactic) problem-solving behavior as well as their eye movements to

learners. While research on expert-novice communication mainly focused on experts’ changes in

explicit, verbal communication behavior, it is as yet unclear whether and how exactly experts adjust

their nonverbal behavior. This study first investigated whether and how experts change their eye

movements and mouse clicks (that are displayed in EMMEs) when they perform a task naturally ver-

sus teach a task didactically. Programming experts and novices initially debugged short computer

codes in a natural manner. We first characterized experts’ natural problem-solving behavior by con-

trasting it with that of novices. Then, we explored the changes in experts’ behavior when being subse-

quently instructed to model their task solution didactically. Experts became more similar to novices

on measures associated with experts’ automatized processes (i.e., shorter fixation durations, fewer

transitions between code and output per click on the run button when behaving didactically). This

adaptation might make it easier for novices to follow or imitate the expert behavior. In contrast,

experts became less similar to novices for measures associated with more strategic behavior (i.e.,

code reading linearity, clicks on run button) when behaving didactically.
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1. Introduction

Imagine you just wrote your very first, small computer program, but something just

does not work. After unsuccessfully trying to find and correct the error (the “bug”) for a

while, you consult your programming teacher—an expert in the field. After figuring out

the solution, the expert wants to demonstrate to you how to solve the problem. In all like-

lihood, he would adjust his problem-solving behavior when explaining the solution to you

in a didactic manner.

However, when trying to communicate to novices how to perform a task, experts’ ver-

bal communication has its limitations. For instance, it may be difficult if not impossible

for experts to verbalize automated processes (Ericsson & Simon, 1980). Moreover, they

may have difficulties in correctly assessing novices’ prior knowledge (Hinds, 1999). This

might make it difficult for experts to adequately adjust their explanations to a novice

audience (e.g., the expert might be referring to a part of the task with a term that is unfa-

miliar to the novice, who, consequently, will have difficulty to follow and learn from the

expert’s explanation).

Recent technological advances offer a strategy for overcoming such limitations. It is

possible nowadays to create videos of task demonstrations by not only recording an

expert’s problem-solving behavior and verbal explanations but also recording and visual-

izing their eye movements overlaid on the information the expert was looking at (Van

Gog, Jarodzka, Scheiter, Gerjets, & Paas, 2009). Especially for tasks that rely strongly on

processing visuospatial information, visualizations of experts’ eye movements (e.g., super-

imposed dots, circles, or spotlights onto a screen recording, Jarodzka et al., 2012) can

make cognitive processes that are hard to verbalize, visible to learners. This can guide

the learners’ attention to the information the expert is referring to at the right moment,

which would foster their understanding. Video examples with task demonstrations by

experts, with the expert’s eye movements superimposed on the task, are known as “eye

movement modeling examples” (EMMEs; Jarodkza et al., 2013). When EMMEs are com-

bined with screen-recording videos (e.g., for programming education), learners can follow

the model’s nonverbal behavior by observing the model’s eye movements and mouse

clicks during task performance.

In some studies, EMMEs display experts’ behavior as it naturally occurs (e.g., Litch-

field, Ball, Donovan, Manning, & Crawford, 2010; Nalanagula, Greenstein, & Gramopad-

hye, 2006; Seppänen & Gegenfurtner, 2012; Stein & Brennan, 2004). In most studies,

however, the experts were instructed to behave didactically, displaying successful strate-

gies and modeling familiar process as explicitly as possible (Litchfield & Ball, 2011;

Mason, Pluchino, & Tornatora, 2015a,b; Mason, Scheiter, & Tornatora, 2017; Scheiter,

Schubert, & Schüler, 2018, Van Gog et al., 2009; Van Marlen, Van Wermeskerken, Jaro-

dzka, & Van Gog, 2016, 2018). Jarodzka et al. (2012) and Jarodzka, Van Gog, Dorr,
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Scheiter, and Gerjets (2013) presented the expert models with prompts that were designed

to evoke a didactic recipient focus and, hence, keep the novice audience in mind. Such

prompts have been found previously to alter explicit verbal communication patterns

(Jucks, Schulte-Löbbert, & Bromme, 2007). However, it is unclear whether and how

experts’ less explicit, nonverbal behavior, which is visible, for instance, in EMMEs,

would change when explaining a task didactically.

The question addressed in the present study is how experts’ nonverbal behavior (i.e.,

mouse clicks and eye movements during code debugging) changes when moving from their

natural problem-solving mode to a didactic teaching mode. To draw conclusions about the

direction of this change (i.e., becoming more or less similar to novices), we also investi-

gated characteristics of novices’ natural nonverbal behavior. This study aims to broaden

our understanding of experts’ behavior during expert–novice communication, by extending

it to experts’ nonverbal behavior. This is not only relevant for understanding expertise and

expert–novice communication but also for educational research on example-based learning.

1.1. Fostering expert–novice communication with EMMEs

The audience design theory (Clark & Murphy, 1982) states that speakers create utter-

ances with the intention to be understood by specific recipients. During expert–novice
communication, experts should adjust their utterances to novices’ needs. Hence, their ver-

bal communication patterns change to appeal to the common ground of the communica-

tion partners—their mutual knowledge, beliefs, suppositions, and assumptions (Clark,

Schreuder, & Buttrick, 1983). Isaacs and Clark (1987) found that experts used more

words and more understandable object descriptions when talking to novices than when

talking to other experts. Similarly, experts also adapt written explanations according to

the knowledge of the recipient: When giving an explanation to a layperson, experts tend

to use fewer specialist terms, explain issues in more detail, and use more illustrative

examples than when addressing an expert (Bromme, Jucks, & Runde, 2005). In the study

of Jucks et al. (2007), medical experts expanded their texts and made more meaningful

revisions when being instructed to focus on the knowledge of the recipient, for instance

by asking whether the used terms were familiar to the reader or explained in enough

detail.

Still, experts’ verbal explanations might often not be sufficient to successfully guide

the novices’ attention. First, experts might have difficulty verbalizing their processes due

to the nature of the task (e.g., tasks with a large visual component) or their highly autom-

atized task processing (Ericsson & Simon, 1980; Persky & Robinson, 2017; Samuels &

Flor, 1997). Second, experts might not always be able to correctly assess novices’ prior

knowledge (“the curse of expertise”: Hinds, 1999). Consequently, experts’ verbal expla-

nations might sometimes be too abstract (Hinds, Patterson, & Pfeffer, 2001) or ambiguous

to be understood by novice learners (Van Marlen, Van Wermeskerken, Jarodzka, & Van

Gog, 2018). For instance, programming experts might refer to “commenting lines” when

talking about the symbol of “#” during programming, which might not be a familiar term

for a real novice audience.
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The rationale behind EMME is that displaying a model’s eye movements may help to over-

come these limitations through different mechanisms (Krebs, Schüler, & Scheiter, 2019).

First, EMME can support learning by synchronizing the learners’ visual attention with that of

the model and, hence, guide attention to the relevant information at the right point in time

(Jarodzka et al., 2013).When verbal explanations are present in an EMME, the eye movement

displays have the potential to disambiguate the model’s verbal references (Van Marlen et al.,

2018), which should help the learner to follow the expert’s process.

Second, EMME can reveal a model’s unverbalized, and thus usually covert cognitive

processes to the learner. Eye movements contain information about a performer’s or mod-

el’s attentional and cognitive processes (Just & Carpenter, 1980; Rayner, 1978). For

instance, fixations occur when the eyes rest relatively still on an object and indicate what

is at the center of visual attention. This usually indicates which information a performer

is currently processing. Shifts in the center of attention to another location (i.e., saccades)

may sometimes be indicative of search behavior or comparing behavior. Analyzing

experts’ and novices’ eye movements can therefore give us valuable insights about their

underlying cognitive and attentional processes and the literature in this field is growing in

the last years (for a recent, systematic overview on eye-tracking studies in programming

research, see Obaidellah, Al Haek, & Cheng, 2018). As Busjahn et al. (2014) stated:

“The observation of eye movements adds an objective source of information about pro-

grammer behavior [. . .] which can be used to facilitate the teaching and learning of pro-

gramming” (p. 1).

1.2. Differences in experts’ and novices’ natural problem-solving behavior

There is an extensive body of literature on differences between experts’ and novices’

problem-solving skills and behavior (e.g., Ericsson, Hoffman, Kozbelt, & Williams,

2018). Typically, domain experts systematically outperform novices in terms of task-solv-

ing speed and correctness (during programming, see e.g., Soh et al., 2012). In the follow-

ing sections, we briefly introduce how expertise-related differences in knowledge

representation (i.e., script-based, automatized knowledge) and strategies (i.e., chunking

and forward reasoning) might be reflected in experts’ and novices’ nonverbal behavior

during problem-solving tasks in general and debugging tasks in particular.

Boshuizen and Schmidt (2008) designed a model for the development of expert knowl-

edge structures, which focuses on medical expertise and problem-solving. According to

this model, novices first acquire general concepts and detailed knowledge that is used to

reason in chains of small steps. This reasoning process has to be actively monitored and

is cognitively demanding. With experience, the concepts cluster together and the knowl-

edge network becomes increasingly well structured—a process that is called knowledge

encapsulation. With more experience, scripts for solving specific tasks develop out of the

encapsulated networks. Using these scripts leads to a fast, automated, script-guided, the-

ory-driven, less effortful, and goal-oriented information processing. Nivala, Hauser, Mot-

tok, and Gruber (2016) argued that this theory could also be fruitful for programming and

debugging expertise, because, like medical diagnosis, debugging aims at finding errors in
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a malfunctioning system. Programming experts might acquire a knowledge repertoire of

stereotypical behavior sequences and “programming plans” (Soloway & Ehrlich, 1984).

Experts’ script-based task processing can account for experts’ faster and automatized

information processing with minimal conscious effort (Samuels & Flor, 1997). In light of

Just and Carpenter’s (1980) eye-mind and immediacy assumptions, which assert that what

is in the focus of attention is processed at that moment, a faster and less effortful infor-

mation processing should result in shorter fixation durations during programming (as

observed, e.g., in Bednarik, Myller, Sutinen, & Tukiainen, 2005; Bednarik & Tukiainen,

2005; Nivala et al., 2016; Sharif, Falcone, & Maletic, 2012). Furthermore, if experts

apply knowledge-based programming scripts, they should process code not simply lin-

early (e.g., linewise from top to the bottom of the code, similar to regular text reading),

but in a knowledge-driven and logical manner (e.g., Busjahn et al., 2015; Lin et al.,

2015; Nanja & Cook, 1987).

Another difference between experts and novices lies in their problem-solving strate-
gies. One strategy is to cluster or “chunk” task elements together to process them in lar-

ger units more effectively (Chase & Simon, 1973; Reingold, Charness, Pomplun, &

Stampe, 2001; Reingold & Sheridan, 2011; Van Meeuwen et al., 2014). For instance, pro-

gramming experts could process (chunk) frequently occurring code elements together

(e.g., perceiving an expression like “for i in list_name”: as one typical element to create

a loop). Via this more holistic processing, a task that originally required detection in sev-

eral parts can be accomplished by detecting a single unit. As a result, experts might not

fixate on each (code) element individually, which could increase their saccade amplitudes

(e.g., Busjahn et al., 2015). Additionally, chunking mechanisms allow experts to keep

more information present in visual working memory (Bauhoff, Huff, & Schwan, 2012). A

larger visual memory capacity might especially help to keep more relevant information

activated without the need to revisit already processed information, such as new output,

when running the code.

Another strategy that experts might apply is “forward reasoning” (Katz & Anderson,

1987; cf. Van Meeuwen et al., 2014). Programming experts seem to first spend time

building a mental representation of the problem statement (e.g., the code) and only later

direct their attention toward the outcome (e.g., erroneous output). In contrast, novices rea-

son “backwards” from the goal by first inspecting the erroneous output and try to reason

backward to the code in order to search the errors there. The effort-demanding means-

end problem-solving strategy consists of continuously orienting toward the goal (the

“end,” here the output) and applying operators (the “means,” here changes in the code) to

identify the next problem-solving step based on the outcome of the previous changes

(Simon, 1975). Novices’ backward reasoning behavior should lead to a more trial-and-er-

ror-based problem-solving approach. In the protocol study by Nanja and Cook (1987),

experts indeed first tried to understand the code and ran the code less frequently during

debugging and, thus, showed a less trial-and-error, backward-directed approach. In eye-

tracking studies, programming experts were found to spend more time initially scanning

and trying to understand code before concentrating on specific code parts (Sharif et al.,

S. N. Emhardt et al. / Cognitive Science 44 (2020) 5 of 26



2012). Longer scan times were furthermore linked to less overall time to find bugs

(Uwano, Nakamura, Monden, & Matsumoto, 2006).

Altogether, there is a large body of expertise literature and theories that can be used as

a basis for the comparison of experts’ and novices’ problem-solving behavior. However,

little is known about the changes in experts’ (nonverbal) problem-solving behavior when

communicating their knowledge to novices.

1.3. Exploring experts’ change in nonverbal problem-solving behavior when acting
didactically

Previous studies have shown that experts adjust their verbal explanations to communi-

cate their knowledge to a less knowledgeable audience (e.g., Bromme et al., 2005; Isaacs

& Clark, 1987; Jucks et al., 2007; Nückles, Winter, Wittwer, Herbert, & Hübner, 2006;

Persky & Robinson, 2017). However, it is yet unclear whether and how experts’ nonver-

bal behavior (such as eye movements and clicks on the run button during programming)

changes when modeling a task didactically. In this context, an important question is

whether task performers are aware of their eye movements and can deliberately adapt

their eye movements to task instructions or the social context, for instance to behave

didactically. Humans seem to possess only limited awareness about their own visual

behavior. For example, people experience difficulties distinguishing displays of their own

and other task performers’ eye movements (Foulsham & Kingstone, 2013; Van Wer-

meskerken, Litchfield, & Van Gog, 2018) and have difficulties recalling where they

looked during a previous task (Clarke, Mahon, Irvine, & Hunt, 2016; Kok, Aizenman,

Võ, & Wolfe, 2017; Võ, Aizenman, & Wolfe, 2016). Eye movements are difficult to

change at will, as Hooge and Erkelens (1998) showed, for example, for the case of fixa-

tion durations. This limited awareness could make it difficult for task performers to adapt

their eye movements at will.

While it is likely that the instruction to behave didactically will cause a change in experts’

eye movement behavior, it is difficult to predict what these changes are. On the one hand,

experts’ cognitive processes could, for instance, slow down when behaving didactically,

which might lead to a behavior that is more similar to novices’ behavior. On the other hand,

by exemplifying their substantially different problem-solving behavior to novices, experts’

nonverbal behavior could also become (even) less similar to that of novices.

An exploratory investigation of experts’ behavioral changes can contribute to the more

general understanding of expert behavior during expert–novice communication. More

specifically, we can fill the literature gap about experts’ didactic, nonverbal behavior

using eye-tracking technology. In the context of EMME research, this investigation might

raise researchers’ and practitioners’ awareness about the influence of how the model is

instructed on EMMEs.

1.4. Overview of the present study

Our first research question (Research Question 1) was how experts’ and novices’ natu-

ral, nonverbal behavior (i.e., mouse clicks and eye movements that are also displayed in
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screen-recording EMMEs) differs during debugging. This investigation was done in a

hypothesis-driven manner and was based on established expertise theories and findings

from prior empirical studies.

Based on the assumption that experts use more automatized and script-based knowl-

edge (cf. Boshuizen & Schmidt, 2008) than novices, we expected that experts would per-

form shorter average fixations in the code area (Hypothesis 1) and process code less

linearly (here approximately linewise, Hypothesis 2).

Based on the assumption that experts use more chunking strategies than novices (cf.

Charness, Reingold, Pomplun, & Stampe, 2001; Chase & Simon, 1973), we expected that

they should perform longer average saccade amplitudes in the code area, because not

every element needs to be processed (Hypothesis 3). The accompanying increase in work-

ing memory capacity (cf. Bauhoff et al., 2012) should cause experts to require fewer tran-

sitions between newly created output and the code (Hypothesis 4).

Based on the assumption that experts first build a mental representation of the problem

and reason (forward) from the code toward the output (cf. Katz & Anderson, 1987), we

expected that experts would take longer until first testing the code (Hypothesis 5). In

addition, experts should test the code less frequently than novices (indicating forward rea-

soning and at the same time less trial-and-error-based strategy Hypothesis 6).

Addressing Research Question 1 extends classic expertise research to the domain of

programming and is necessary to subsequently draw conclusions about Research Question

2, which was whether and how (i.e., in which direction) experts change their nonverbal

behavior (becoming more or less similar to novices) when modeling a task to novices

didactically. Due to a lack of existing literature on this topic, we did not specify hypothe-

ses, but analyze this question exploratorily, using the same measures as for Research

Question 1.

2. Methods

2.1. Participants

After excluding two experts (one indication of missing expertise and one case of weak

tracking ratio of 25.2%, Mtracking ratio = 87.81%, SDtracking ratio = 8.37), the remaining

sample consisted of 22 experts (2 female, 20 male; Mage = 29.82, SDage = 7.14) and 18

novices (7 female, 11 male; Mage = 23.59, SDage = 2.62). All experts were employed as

professional programmers and all novices were university students who had just partici-

pated in a programming introductory course. Experts reported on average 11.97 (SD =
7.36) years of programming experience, 4.16 (SD = 3.28) years of Python experience,

and 27.14 (SD = 11.54) hours of weekly programming activities. Novices reported on

average 0.99 (SD = 1.65) years of programming experience, 0.29 (SD = 0.51) years of

Python experience, and 4.91 (SD = 4.47) hours of weekly programming activities.

Six experts stated that they had at least some experience in teaching programming.

The other participants had no teaching experience. All except one participant were non-
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native English speakers, who worked with English code material. The compensation for

study participation was € 15 for the experts and € 10 for the novices.

2.2. Design

Research Question 1 concerned a between-subjects comparison of novices’ and

experts’ natural debugging behavior, whereas Research Question 2 concerned a within-

subject comparison of experts’ natural and didactic behavior. The study design is visual-

ized in Fig. 1.

2.3. Materials

2.3.1. Code material
All code snippets were in the programming language Python and were presented in

English, the standard language for computer code. The instruction as well as the erro-

neous codes and their solutions can be found in the Data S1 (Task 1, Task 2, and Task

3). Task 1, “printing rectangles,” was based on Fitzgerald et al. (2008) and consisted of

43 lines of code. Task 2, “printing S,”1 consisted of 38, and Task 3, “list manipulation,”

consisted of 39 lines. Each code snippet contained four nonsyntactic bugs, which means

that they prevent the program from running as intended but that compilers and inter-

preters are not able to detect them (Gould, 1975, p. 152). The bugs can be categorized as

misplaced, malformed, and missing statements (“bugs”). Misplaced statements are code

components that appear in the wrong place of the program. Malformed statements are

components that were formulated incorrectly but appear at the right place of the program.

Missing statements are statements in which a required component was omitted (Fitzgerald

et al., 2008; Johnson, Soloway, Cutler, & Draper, 1983).

Fig. 1. Schematic overview of the experimental design and the procedure.
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2.3.2. Integrated development environment (IDE)
The Python code snippets were presented in the standard Python programming IDE

Spyder 4.0, which was adjusted for the experiment (i.e., the participants could not scroll

and change the size of the main areas). The interface of the IDE consisted of four areas

of interest (AOIs): the code area (Editor, screen coverage: 38.7%), the output area (Con-

sole, coverage: 26.9%), the task instruction area (coverage = 19.3%), and the run button

(coverage = 0.2%). Fig. 2 shows the division of the screen into the AOIs.

2.4. Apparatus

The study was created in the SMI Experiment Center software (version 3.7; SensoMotoric

Instruments GmbH, Teltow, Germany) and was presented on a 15.6-inch monitor with a res-

olution of 1,920 × 1,080 pixels. Eye movements of both groups were recorded binocularly

at 250 Hz using an SMI 250 RED (also MI RED-m) infrared remote mobile eye tracker

(SensoMotoric Instruments GmbH) with a forehead rest. We used a velocity-based event

detection algorithm from SMI BeGaze with a threshold of 80 ms (cf. Bednarik et al., 2005).

2.5. Procedure

All participants sat in front of a screen with an approximate viewing distance of

60 cm. Novices were tested one by one in an empty classroom of their university.

Experts were tested in their offices. First, the participants answered demographic ques-

tions and read a short introduction to their task to debug short Python code snippets.

They were informed that the program codes included several bugs, but that each bug

could be fixed by changing at most one line of code. All participants then inspected a

Fig. 2. Screenshot of the programming environment with superimposed areas of interest (AOIs).
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screenshot of the IDE with short descriptions of the relevant IDE areas. Prior to the main

experiment, participants debugged one short exemplary code snippet in the IDE and prac-

tice thinking out loud in their native language while debugging.

Then, all participants debugged two out of the three code snippets in random order

while thinking out loud, each with a time limit of 20 min (based on pilot trials). During

this time, they could freely inspect, run, and manipulate the code. The output provided

feedback on whether the code still contained errors or not.

After debugging each code snippet, the group of experts saw an exemplary 15-second

dynamic display of another person’s eye movements while looking at code and were sub-

sequently instructed to create an instructional EMME for the previously solved task,

again with the instruction to think aloud. The experts were instructed to behave didacti-

cally using the following instructions and prompts that were adapted from Jarodzka et al.

(2012) (translated from German to English):

Imagine a student who has very little experience in programming and debugging asks

you: "What are the key ways to fix the bugs in this code?"

[For the creation of the instructional video,] you should consider the following criteria:

1. It is important that the student knows the meaning of all terms.

2. For this student, the debugging process is explained in an understandable way.

3. For this student, the debugging process is explained in detail.

4. All the information the student needs is included.

5. All mentioned information is important for the student.

The experts repeated this same procedure for two debugging tasks. Four experts indi-

cated that they had spare time and hence agreed to solve the third debugging task. These

data were included in the analysis.

2.6. Data analysis

The performance of one expert solving one item was excluded, because he indicated

confusion during the task. As for performance, a bug was categorized as fixed when the

changes in the code resulted in the correct functioning of the code. As for the eye move-

ment data, fixation durations (H1), linearity measures (H2), saccade amplitudes (H3), and

transitions between AOI (H4) were determined. For the mouse click data, the time to first

use of the run button (H5) and the total use of the run button (H6) were determined. For

the analysis of fixation durations in the code area, fixations within the code area that

deviated more than 3 SDs from each person’s mean duration were excluded (1.89% of all

data); we then calculated the average fixation duration per person per item. For measuring

code reading linearity, we used a simplified linearity measure. First, we selected all fixa-

tions and their px-based coordinates within the code area. If the subsequent fixation was

in the same line or moved one line down (between 0 and 33px on the y-axis), this change

was classified as linear downward fixation behavior (compare “vertical next text” measure

(%) of forward saccades that either stay on the same line or moved one line down; Bus-

jahn et al., 2015). Larger downward movements and all upward movements were catego-

rized as nonlinear fixation behavior (compare “vertical next text” and “regression rate”
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measure of Busjahn et al., 2015). The relative frequency of linear fixation behavior was

calculated per person per item. For the analysis of saccade amplitudes in the code area,

we included saccades that had a start and end point within the code, based on the pixel

coordinates of the AOIs. Saccade amplitudes in degrees of visual angle (°) were provided

by SMI BeGaze software. Erroneous recordings that indicated saccade amplitudes larger

than 30 (i.e., the AOI size) were excluded from the analysis. We then calculated the aver-

age saccade amplitude per person per item for further analysis, but one datapoint of one

person for one item was excluded as outlier from further analysis based on the visual

inspection. This outlier deviated 8.68 SDs from the mean of the natural (instruction

absent) condition. The average number of transitions between the code and the output

area per click on the run button was calculated based on the transition matrix provided

by SMI BeGaze per person per item. The time until the participants first ran the code

(first click on the run button) and the total code running frequency (sum of all clicks on

the run button) were retrieved from BeGaze per person per item.

All following analyses were conducted in R (R Core Team, 2015) with a significance

level of ɑ = 0.05. To answer both research questions, we compared different linear

mixed-effect regression models. Such models are flexible in processing datasets with

unbalanced designs, in which not all participants solve the same items and, thus, do not

require averaging the data for each person over all items (Baayen, Davidson, & Bates,

2008). All models included an intercept (β0) and effects of item and participant as ran-

dom intercepts, which take into account the nonindependence of the data on a person and

item level (Barr, 2008). In the final analysis, we compared this model with a model that

additionally included the fixed effect (β1) of expertise (naturally behaving experts vs.

novices, RQ1) or instruction (absent: naturally behaving experts vs. present: didactically

behaving experts, RQ2). This allowed for analyzing if and in what direction the factor

levels served as significant predictor for each outcome variable. Furthermore, the mar-

ginal R2
m describes the proportion of variance explained by the included fixed factor alone

and the conditional R2
c indicates the explained variance by the full model, including ran-

dom effects (Nakagawa & Schielzeth, 2012). The models were analyzed using the lme4

package (Bates, Mächler, Bolker, & Walker, 2015) for R (R Core Team, 2015). Model

assumptions were checked graphically prior to the analysis. The quantile–quantile (qq)

plots indicated possible violations for the assumption of normally distributed model resid-

uals for some of the models. We subsequently performed Shapiro–Wilk tests to further

test the normality of the model residuals. Table 2 in Data S1 provides the detailed results

of these tests. For those models that yielded significant test results, we visually confirmed

that a log transformation improved the qq plots. Table 3 in Data S1 shows the quantile–-
quantile plots of the model residuals before and after log transformations for the critical

models.

As additional analysis and to explore if the groups behaved more or less homoge-

neously in the different conditions, the variances of observations for each measure were

compared between the conditions (naturally behaving experts vs. novices or naturally

behaving vs. didactically behaving experts) using a Levene’s test. For this analysis, data

from one expert who only solved a task naturally had to be excluded.
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3. Results

We first analyzed the general performance of the participants in all conditions. Novices

took on average 19.06 (SD = 2.50) minutes to fix 1.03 (SD = 1.43) out of four bugs,

whereas naturally behaving experts took 7.60 (SD = 3.93) minutes to fix 3.95 (SD = 0.21)

per code. Didactically behaving experts took on average 5.47 (SD = 1.66) minutes to

explain the task.

Table 1 displays the regression confidents with standard errors for all subsequent models.

3.1. Comparison of naturally behaving experts and novices (Research Question 1)

The analyses in this section always consist of a comparison of the statistical models

with and without the (between-subjects) factor expertise (naturally behaving experts vs.

novices) as an independent variable on the outcome measures. Fig. 3 illustrates the

results.

3.1.1. Fixation durations in code area
For this variable, expertise was a predictor that significantly improved the model fit; χ2

(1) = 38.19, p < .001, R2
m = 0.61, R2

c = 0.972. Naturally behaving experts showed shorter

fixations in the code area than novices; Mexperts = 293.18 ms, SDexperts = 55.09 ms,

Mnovices = 483.93 ms, SDnovices = 92.89 ms. Experts had a significantly smaller variance

in average fixation durations than novices; F(1, 79) = 7.46, p = .008.

3.1.2. Code reading linearity
For this variable, expertise was a predictor that significantly improved the model fit; χ2

(1) = 22.79, p < .001, R2
m = 0.38, R2

c = 0.76. Naturally behaving experts showed a higher

reading linearity than novices; Mexperts = 33.91%, SDexperts = 3.21, Mnovices = 28.53,

SDnovices = 3.77. The variance of average code reading linearity did not differ between

the two conditions; F(1, 79) = 1.93, p = .169.

3.1.3. Saccade amplitudes in code area
For this variable, expertise was not a predictor that significantly improved the model

fit; χ2(1) = 1.00, p = .318, R2
m = 0.02, R2

c = 0.89, Mexperts = 0.87°, SDexperts = 0.36°,
Mnovices = 0.97°, SDnovices = 0.26°. The variance of the average saccade amplitude did

not differ between the two conditions; F(1, 78) = 0.81, p = .372.

3.1.4. Log-transformed amount of transitions per running the code
For this variable, expertise was a predictor that significantly improved the model;

χ2(1) = 4.35, p = .037, R2
m = 0.06, R2

c = 0.17. Naturally behaving experts performed

fewer transitions per code run than novices; Mexperts = 5.12, SDexperts = 2.87, Mnovices =
6.54, SDnovices = 3.66. The variance of average amount of transitions per running of the

code did not differ between the two conditions; F(1, 79) = 0.87, p = .355.
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3.1.5. Log-transformed time until first running of the code
For this variable, expertise was not a predictor that significantly improved the model

fit; χ2 (1) = 1.09, p = .297, R2
m = 0.02, R2

c = 0.47, Mexperts = 1.09 min, SDexperts =
1.15 min, Mnovices = 1.85 min, SDnovices = 2.19 min. The variance of average time until

first running of the code did not differ between the two conditions; F(1, 79) = 3.37,

p = .070.
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Fig. 3. Raincloud plots (Allen, Poggiali, Whitaker, Marshall, & Kievit, 2018) for each measure of Research

Question 1. Each dot shows the means for each person (distinguished by color) and item (distinguished by

shape) for novices (top) and experts (bottom). Additionally, the density distribution and boxplots for these

data points are displayed for both groups.
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3.1.6. Log-transformed code running frequency
For this variable, expertise was a predictor that significantly improved the model fit;

χ2(1) = 21.90, p < .001, R2
m = 0.30, R2

c = 0.50. Naturally behaving experts ran the code

less frequently than novices; Mexperts = 10.11, SDexperts = 6.96, Mnovices = 23.09,

SDnovices = 13.37. Experts had a significantly smaller variance in (untransformed) average

code running frequency than novices; F(1, 79) = 13.01, p < .001.

3.2. Experts’ natural and didactic modeling behavior (Research Question 2)

The analyses in this section always consist of a comparison of the statistical models

with and without the (within-subjects) factor instruction (absent: natural expert behavior

vs. present: didactical expert behavior) as an independent variable on the outcome mea-

sures. Fig. 4 illustrates the results.

For some measures, we found a significant difference between experts’ natural and

didactic behavior. When the direction of this difference showed that the experts’ behavior

became more similar to novices’ behavior on this variable, we additionally explored

whether there was (still) a significant difference between didactically behaving experts

and novices.

3.2.1. Average fixation durations in code area
For this variable, instruction was a predictor that significantly improved the model fit;

χ2(1) = 21.65, p < .001, R2
m = 0.03, R2

c = 0.89. When behaving didactically, experts

showed longer fixations in the code area than when behaving naturally; Mdidactic =
312.33 ms, SDdidactic = 69.34 ms, Mnatural = 293.18 ms, SDnatural = 55.09 ms. The vari-

ance of the average fixation durations did not differ between the two conditions; F(1,
90) = 1.28, p = .261. Since experts’ behavior became more similar to novices’ behavior

when being instructed to behave didactically, we explored whether novices and didacti-

cally behaving experts still differed significantly in their average fixation durations.

Indeed, didactically behaving experts still showed significantly shorter fixation durations

than novices; χ2(1) = 29.09, p < .001, R2
m = 0.52, R2

c = 0.97.

3.2.2. Code reading linearity
For this variable, instruction was a predictor that significantly improved the model fit;

χ2(1) = 5.46, p = .020, R2
m = 0.03, R2

c = 0.51. When behaving didactically, experts

showed even more linear reading behavior than when behaving naturally; Mdidactic =
35.34%, SDdidactic = 4.60%, Mnatural = 33.91%, SDnatural = 3.21%. The code reading lin-

earity did not differ between the two conditions; F(1, 90) = 3.73, p = .057.

3.2.3. Log-transformed saccade amplitudes in code area
For this variable, instruction was a predictor that significantly improved the model fit;

χ2(1) = 8.63, p = .003, R2
m = 0.02, R2

c = 0.83. When behaving didactically, experts showed

larger saccade amplitudes in the code area than when behaving naturally; Mdidactic = 1.01°,
SDdidactic = 0.52°, Mnatural = 0.87°, SDnatural = 0.36°. The variance of the (untransformed)
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average saccade amplitudes did not differ between the two conditions; F(1, 88) = 3.78,

p = .055. Since experts’ behavior became more similar to novices when they were instructed

to behave didactically, we explored whether novices and didactically behaving experts still

differed significantly for this measure. We found no effect of condition between didactically

behaving experts and novices could be found for (log-transformed) saccade amplitude in

code area; χ2(1) = 0.27, p = .603, R2
m = 0.01, R2

c = 0.85.
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Fig. 4. Raincloud plots (Allen, Poggiali, Whitaker, Marshall, & Kievit, 2019) for each measure of Research

Question 2. Each dot shows the means for each person (distinguished by color) and item (distinguished by

shape) for the experts behaving naturally (top) and didactically (bottom). Additionally, the density distribution

and boxplots for these data points are displayed for both groups.
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3.2.4. Log-transformed transitions per running the code
For this variable, instruction was a predictor that significantly improved the model fit;

χ2(1) = 11.76, p < .001, R2
m = 0.09, R2

c = 0.39. When behaving didactically, experts

showed more transitions between code and output area per running the code than when

behaving naturally; Mdidactic = 7.68, SDdidactic = 4.67, Mnatural = 5.12, SDnatural = 2.87.

Didactically behaving experts had a significantly larger variance in average transitions

per running the code than naturally behaving experts; F(1, 90) = 7.03, p = .009. Since

experts became more similar to novices when being instructed to behave didactically, we

explored whether novices and didactically behaving experts still differed significantly for

this measure. We could not find a significant effect of group between didactically behav-

ing experts and novices for (log-transformed) saccade amplitudes in code area;

χ2(1) = 0.32, p = .571, R2
m = 0.005, R2

c = 0.28.

3.2.5. Log-transformed time until first running the code
For this variable, instruction was not a predictor that significantly improved the model

fit; χ2(1) = 0.21, p = .655, R2
m = 0.002, R2

c = 0.27, Mdidactic = 1.01 min, SDdidactic =
1.01 min, Mnatural = 1.09 min, SDnatural = 1.15 min. The variance of average time until

first running the code did not differ between the two conditions; F(1, 90) = 0.40,

p = .529.

3.2.6. Log-transformed code running frequency
For this variable, instruction was a predictor that significantly improved the model fit;

χ2(1) = 22.88, p < .001, R2
m = 0.19, R2

c = 0.37. When behaving didactically, experts ran the

code less often than when behaving naturally; Mdidactic = 5.56, SDdidactic = 2.09, Mnatural =
10.11, SDnatural = 6.96. Didactically behaving experts had a significantly smaller variance in

average code running frequency than naturally behaving experts; F(1, 90) = 14.83, p < .001.

4. Discussion

This study investigated how experts adjust their nonverbal behavior (i.e., eye and

mouse movements during code debugging) to model a problem-solving task didactically

to novices. We first compared experts’ and novices’ naturally occurring nonverbal behav-

ior during code debugging in a hypothesis-driven manner (Research Question 1). Subse-

quently, we explored whether and how experts change their nonverbal behavior when

being instructed to model the tasks in a didactic manner (Research Question 2).

4.1. How did experts’ and novices’ nonverbal behavior differ?

The comparison of experts’ and novices’ natural debugging behavior was done in a

hypothesis-driven manner (H1–H6). The findings for H1, H4, and H6 were in line with

our expectations based on established expertise theories. First, experts performed shorter

fixations in the code area than novices (H1). We associated this measure with experts’
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use of encapsulated knowledge structures and problem-solving scripts (cf. Boshuizen &

Schmidt, 2008) that allow for automatized, faster information processing (cf. Ericsson,

Krampe, & Tesch-Römer, 1993). This is in line with the observation that experts took, on

average, less time to complete the debugging tasks, but it gives us additional, more fine-

grained insight into their problem-solving processes (i.e., shorter time on task might also

have occurred for other reasons). The finding that experts perform shorter fixations is, fur-

thermore, in line with previous empirical findings from expertise research (e.g., from pro-

gramming research, see Bednarik et al., 2005; Nivala et al., 2016; Orlov & Bednarik,

2017). Experts’ shorter fixation duration is often seen as an indication for their faster,

more efficient, and less effortful information processing (e.g., Nivala et al., 2016; Rayner,

2009).

Second, the hypothesis (H4) that experts would need fewer transitions between code

and output when updating the output information was confirmed, which might be an indi-

cation that experts have more working memory capacity available, due to chunking mech-

anisms (cf. Bauhoff et al., 2012; Chase & Simon, 1973). Third, the finding that experts

ran the code less frequently than novices (H6) was confirmed, which we connected to

experts’ forward-reasoning processes and, hence, their less trial-and-error-based problem-

solving approach (cf. Katz & Anderson, 1987).

In contrast, the analyses regarding H2, H3, and H5 yielded unexpected results. We

expected that experts would process code in a less “linear,” approximately linewise, man-

ner (H2), because they would use more top-down driven, script-based code processing

approaches (Soloway & Ehrlich, 1984). However, experts showed significantly more lin-

ear code processing than novices. A possible explanation might be that for the relatively

simple codes that we used, a linear debugging strategy might have been the most ade-

quate method. At the same time, experts’ more linear code processing might have also

impacted the saccade amplitudes, explaining the findings regarding H3. That is, more lin-

ear behavior should automatically cause shorter saccades, because the relative frequency

of short saccades from one line to the next is higher. This might have caused an effect

opposite to what we expected in H3 that experts would show longer saccade amplitudes

than novices in the code area because of their more holistic processing ability (e.g., Kun-

del, Nodine, Conant, & Weinstein, 2007). Finally, we could not confirm H5 that experts

would take longer until first running the code. However, this does not necessarily mean

that experts did not first engage in more forward reasoning by first building a mental rep-

resentation of the problem. Instead, experts’ overall faster processing ability (reflected in

shorter time on task and fixation durations, H1) might have allowed the experts to build a

mental representation of the code faster. In this case, the time until first running the code

would not necessarily differ between the two expertise groups anymore.

Aside from the hypothesis-driven investigation of novices’ and experts’ natural, non-di-

dactic problem-solving behavior, we explored variance differences for each measure

between the two groups. Naturally behaving experts showed less variance for the mea-

sures fixation duration and code running frequency than novices. For all other measures,

no variance differences were found. This observation is in line with previous observations

that found that professional programmers often show very similar eye movement patterns
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(Rodeghero & McMillan, 2015). In our study, experts’ slightly more homogeneous

debugging behavior could indicate experts’ use of more similar problem-solving schemas

that are stored in long-term memory. This finding might be an indication that it is worth

displaying expert problem-solving behavior to novices, because it is more univocal com-

pared to that of novices and could therefore be taught to them (cf. Van Meeuwen et al.,

2014).

Taken together, our analysis of eye movement measures and mouse clicks allowed us

to unravel the naturally occurring differences in experts’ and novices’ nonverbal behavior

during the complex problem-solving task of code debugging. Aside from applying and

extending previous expertise theories to our programming and code debugging, knowing

how experts’ and novices’ nonverbal behavior usually differs during debugging is neces-

sary to draw conclusions about the direction in which experts change their behavior when

acting didactically (Research Question 2). More specifically, this helps us to answer the

question whether experts’ nonverbal behavior becomes more similar to novices’ behavior

or not.

4.2. How do experts change their nonverbal behavior to didactically model a task?

When comparing experts’ natural and didactic nonverbal behavior, we found that

didactically behaving experts showed longer fixation durations, processed the code more

linearly, performed larger saccade amplitudes in the code area, performed more transi-

tions between code and output when running the code, and ran the code less often than

naturally behaving experts. No significant effect of instruction was found for the measure

“time until first running the code.”

Interestingly, concerning the direction of changes, experts became more similar to

novices when behaving didactically on the measures “average fixation durations” and

“amount of transitions per running the code,” and less similar on the measures “click on

the run button” and “linearity.” Even though experts’ saccade amplitudes became longer

when behaving didactically, they still did not differ significantly from those of novices.

The average fixation durations in the code areas were shorter for naturally behaving

experts than novices and although they became longer when experts behaved didactically, the

difference remained significant. The amount of transitions per running the code was lower

for naturally behaving experts than novices but increased for experts when they behaved

didactically, to the extent that the difference with novices was no longer significant.

We associated experts’ shorter fixation durations with a faster processing ability (Eric-

sson et al., 1993) and experts’ fewer transitions per mouse click on the run button with

an increased working memory capacity (Bauhoff et al., 2012). These two measures were

hence associated with experts’ superior processing abilities and capacities, which might

not be easy to imitate by novices. A first interpretation of these results is that experts

“slow down” their usual (natural) behavior when behaving didactically. However, the

finding that experts also performed fewer fixations (of longer durations) in the code area

when behaving didactically (at least numerically, as the difference in number of fixations

was not statistically significant) could also indicate a more directed effort to focus longer
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on fewer, presumably more relevant, parts of the code to guide novices’ attention. Future

research using qualitative analysis of the processes experts engage in could confirm which

of the two (slowing down or behaving in a more directed way) provides a more likely

explanation.

Other measures might not reflect superior processing abilities, but instead advanta-

geous, expert-specific strategies that could more easily be controlled and exemplified for

novices, such as a linear code processing, or a more trial-and-error-based behavior (a

higher code running frequency). For these measures, we found that experts’ nonverbal

behavior became more different from novices’ behavior (i.e., even more linear code pro-

cessing and even less clicks on the run button). In fact, experts seemed to exaggerate and

exemplify their natural, nonverbal behavior, hence increasing the already existing differ-

ence between themselves and novices’ behavior. It might be that these measures reflect

more teachable strategies that can be illustrated and exemplified to novices to teach them.

However, to what extent experts deliberately make these behavioral changes when behav-

ing didactically or if the observed changes are involuntary effects of the changes in

experts’ cognitive processes when behaving didactically requires future investigation.

4.3. Limitations

When interpreting the results regarding experts’ changes in nonverbal behavior when

modeling a task didactically, two limitations should be kept in mind. First, in contrast to

the condition in which the experts behaved naturally, experts also knew the code and its

solution when acting didactically. This means that the knowledge about the task might

have influenced results regarding experts’ didactic behavior. Second, experts always

behaved didactically after behaving naturally, which might cause order effects. However,

we argue that it is not uncommon that experts know the answer of a problem-solving task

when explaining it didactically to novices. Instead, the knowledge of the correct solution

could even be needed for experts to be able to create truly didactic videos. We therefore

think that our choice of conditions was necessary to evoke authentic natural and didactic

behavior. To investigate the impact of order effects, future studies could ask a control

group of experts to do the task twice, without acting didactically.

4.4. Educational relevance and future directions

In practice, experts often need to communicate their knowledge to novices. Until now,

studies about experts’ communication behavior with a less knowledgeable audience have

mainly focused on changes in written or spoken verbal communication (e.g., Bromme

et al., 2005; Isaacs & Clark, 1987; Jucks et al., 2007). We extend this research by investi-

gating how didactic instructions influence nonverbal expert behavior (here mouse clicks

and eye movements). We found that experts showed a substantial change in nonverbal

behavior when modeling a task didactically: They would slow down some processes

while at the same time exaggerating other strategies. One possible explanation for our

findings is that experts become more similar to novices for measures that are affected by

experts’ automatized, superior processing and less similar to novices for measures that
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indicate their strategic behavior. However, especially experts’ (numerically fewer and)

longer fixations in the code area could also indicate a more directed effort to guide

novices’ attention to relevant code information. Whether experts can control these

changes deliberately remains, however, an open question.

The finding that experts change their nonverbal behavior substantially when modeling

a task didactically was a first and promising step to understand experts’ behavior in a

social, educational context. Our results have implications for the research on EMMEs as

possible educational tool. De Koning and Jarodzka (2017) provide an overview of possi-

ble benefits of using EMMEs for attention guidance over regular screen recording videos.

Regular screen recordings, especially in the field of programming education, often make

use of the mouse cursor as a tool for attention guidance. In contrast to these videos,

EMMEs can provide observers with more fine-graded information about the task per-

former’s problem-solving behavior and can, consequently, support learning (see, e.g. in

the field of programming education, see Bednarik, Schulte, Budde, Heinemann, & Vrza-

kova, 2018). Only a few studies directly compared eye movement and mouse-cursor dis-

plays as deictic tools and these studies found comparable effects of the two methods

(Gallagher-Mitchell, Simms, & Litchfield, 2018; Velichkovsky, 1995). However, to the

best of our knowledge, there is no research that compares learning from tutorial videos

(e.g., modeling examples with voice-overs) with mouse and eye movement displays, and

an interesting question would be if experts would adapt “mouse pointing” in a similar

manner as they seem to adapt their eye movements when behaving didactically.

In the context of EMME research, our present results generally imply that EMMEs of nat-

urally and didactically behaving models will likely differ substantially with—until now—un-

known effects on learning. While both types of model instructions have been used to create

EMME (and shown to foster performance and learning), they have not yet been compared on

their effectiveness for performance and learning. Future studies should therefore investigate

effects of model instruction on how well students can follow and learn from EMME. On the

one hand, novices might benefit from expert didactic attention guidance in EMMEs, because

it is targeted toward the specific audience group and might be easier to understand and fol-

low. On the other hand, observing an expert’s natural viewing and problem-solving behavior

could provide useful insights into the standards their performance should ultimately meet and

stimulate more self-explanation behavior and deep processing. However, the effectiveness of

(EMME) videos with different kinds of model instructions might also be dependent on the

learners’ level of prior knowledge, because learners with less prior knowledge might need

more didactic guidance to follow the experts’ behavior.
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Notes

1. Based on a task from https://www.w3resource.com/python-exercises/.

2. Mean fixation count (with SD) in the code area for all experimental groups:

Novices: 1462.50 (329.71); naturally behaving experts: 882.96 (458.79); didacti-

cally behaving experts: 577.60 (227.86).
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Merriënboer, J. J. G. (2014). Identification of effective visual problem solving strategies in a complex

visual domain. Learning and Instruction, 32, 10–21. https://doi.org/10.1016/j.learninstruc.2014.01.004
Van Wermeskerken, M., Litchfield, D., & Van Gog, T. (2018). What am I looking at? Interpreting dynamic

and static gaze displays. Cognitive Science, 42(1), 220–252. https://doi.org/10.1111/cogs.12484
Velichkovsky, B. M. (1995). Communicating attention: Gaze position transfer in cooperative problem

solving. Pragmatics & Cognition, 3(2), 199–223. https://doi.org/10.1075/pc.3.2.02vel
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