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Summary
Polygenic scores (PGS) are commonly evaluated in terms of their predictive accuracy at the population level by the proportion of pheno-

typic variance they explain. To be useful for precisionmedicine applications, they also need to be evaluated at the individual level when

phenotypes are not necessarily already known. We investigated the stability of PGS in European American (EUR) and African American

(AFR)-ancestry individuals from the Philadelphia Neurodevelopmental Cohort and the Adolescent Brain Cognitive Development study

using different discovery genome-wide association study (GWAS) results for post-traumatic stress disorder (PTSD), type 2 diabetes (T2D),

and height. We found that pairs of EUR-ancestry GWAS for the same trait had genetic correlations >0.92. However, PGS calculated from

pairs of same-ancestry and different-ancestry GWAS had correlations that ranged from<0.01 to 0.74. PGS stability was greater for height

than for PTSD or T2D. A series of height GWAS in the UK Biobank suggested that correlation between PGS is strongly dependent on the

extent of sample overlap between the discovery GWAS. Focusing on the upper end of the PGS distribution, different discovery GWAS do

not consistently identify the same individuals in the upper quantiles, with the best case being 60% of individuals above the 80th percen-

tile of PGS overlapping from one height GWAS to another. The degree of overlap decreases sharply as higher quantiles, less heritable

traits, and different-ancestry GWAS are considered. PGS computed from different discovery GWAS have only modest correlation at

the individual level, underscoring the need to proceed cautiously with integrating PGS into precision medicine applications.
Introduction

Polygenic scores (PGS) are increasingly being used to draw

inferences regarding genetic contributions to a variety of

complex anthropometric and disease-related traits.

Numerous methods1 have been developed for computing

PGS for a target population using summary statistics

from a discovery genome-wide association study (GWAS)

run for an independent population, with newer

Bayesian-based techniques such as LDpred,2 SBayesR,3

and PRS-CS4 generally yielding more predictive PGS than

those produced using older methodologies that rely on a

combination of linkage disequilibrium (LD) clumping

and p-value thresholding.5

One goal is to utilize PGS in clinical settings to facilitate

the diagnosis and treatment of a wide range of

heritable diseases,6 such as inflammatory bowel disease,7

diabetes,8 cardiovascular disease,9,10 cancer,11 Alzheimer

disease,12 attention-deficit/hyperactivity disorder,13 major

depressive disorder,14 bipolar disorder,15 and schizo-

phrenia.16 While progress has been made toward reach-

ing this goal,17–20 numerous challenges remain to be

solved.6,21–24 Given that the GWAS required for computing

PGS have been disproportionately run for European-
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ancestry populations,25–29 a fundamental challenge will be

ensuring that diverse populations have equitable access to

medically beneficial PGS,30 as it has been demonstrated

that that PGS are less predictive when the target and discov-

ery populations have differing genetic ancestry or varying

degrees of admixture.31–35

To leverage the power of larger sample sizes, consortia,

such as the Psychiatric Genetics Consortium (PGC), the

Diabetes Genetics Replication and Meta-Analysis (DIA-

GRAM) consortium, and the Genetic Investigation of

Anthropometric Traits (GIANT) consortium, routinely pro-

duce updated meta-GWAS incorporating new cohorts and

samples. Hence, there is a growing pool of discovery GWAS

that could be used for computing PGS, and this year’s

largest, best-powered meta-GWAS may soon be eclipsed

by next year’s newer, larger meta-GWAS. In general, these

larger, more powerful GWAS explain greater proportions

of the trait variance and improve the predictive power of

the PGS on an aggregate level. However, there has been lit-

tle examination of the performance of successive genera-

tions of PGS at the individual level. Given the potential

usefulness of PGS for stratifying individuals based on their

genetic risk for developing a given disorder,20,36 the ques-

tion arises as to whether the same individuals would be
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classified as having high genetic risk by PGS produced from

subsequent generations of meta-GWAS. From a clinical

perspective, identifying substantially different sets of indi-

viduals as ‘‘high risk’’ from one generation of meta-GWAS

to the next would be problematic.

Previous studies have evaluated PGS performance in

terms of how well they predict phenotypes at the popula-

tion level. However, it is also necessary to examine how

well PGS perform at predicting the risk for individuals.37

To this end, we examined the stability of PGS computed

for individuals across discoveryGWAS. Specifically, we eval-

uated the correlations between the PGS computed for Euro-

pean American (EUR) and African American (AFR) individ-

uals from pairs of same- and different-ancestry discovery

GWAS for post-traumatic stress disorder (PTSD),38,39 type

2 diabetes (T2D),40–42 and height.43,44 These specific traits

were chosen because they had sufficiently powered, pub-

licly available AFR-ancestry GWAS. We also addressed the

question of whether the same individuals were consistently

identified as belonging to the top PGS quantiles. For this

work, we targeted EUR- and AFR-ancestry youth from the

Philadelphia Neurodevelopmental Cohort (PNC) and the

Adolescent Brain Cognitive Development (ABCD) study to

compare PGSon an individual level across discoveryGWAS.
Figure 1. First and second principal components of cohort ge-
notypes
Principal components (PCs) were computed and projected to a
1000 Genomes reference using KING (Manichaikul et al.52).
Colors indicate inferred genetic ancestry for the (A) 9,206 Philadel-
phia Neurodevelopmental Cohort (PNC) and (B) 10,318 Adoles-
cent Brain Cognitive Development (ABCD) genotyped samples.
Subjects and methods

This study, which uses publicly available de-identified data, was

approved by the Institutional Review Board of Boston Children’s

Hospital.

PNC
Genotype data for the PNC, a population-based sample of youth

who were aged 8–21 years at the time of study enrollment,45

were obtained from dbGaP (phs000607.v2.p2). Biological samples

from PNC subjects were genotyped in 15 batches (Table S1) using

10 different types of Affymetrix and Illumina arrays by the Center

for Applied Genomics at the Children’s Hospital of Philadelphia.46

Analysis was limited to the 5,239 EUR- and 3,260 AFR-ancestry in-

dividuals for whom genotype data were available after the quality

control (QC) process described below.

ABCD study
Results were replicated using post-QC genotype data for 5,815 EUR

and 1,741 AFR individuals in the independent ABCD cohort (NDA

no. 2573, fix release 2.0.1). This cohort is comprised of adolescents

who were aged 9–10 years at the time that their saliva samples

were collected for genotyping.47 The Rutgers University Cell and

DNA Repository stored and genotyped all samples using the Affy-

metrix NIDA SmokeScreen array.

QC and imputation
The PNC dataset was processed by array batch and merged after

imputation, whereas the ABCD dataset was processed as a single

batch. For each batch, PLINK 1.948 was used to remove single-

nucleotide polymorphisms (SNPs) with>5%missingness, samples

with more than 10% missingness, and samples with a genotyped

sex that did not match the reported sex phenotype. As a final step,
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each batch was checked with a pre-imputation perl script that

compared SNP frequencies against the 1000 Genomes ALL refer-

ence panel.49 This script fixed strand reversals and improper Ref/

Alt assignments and also removed palindromic A/T and C/G

SNPs with minor allele frequency (MAF) > 0.4, SNPs with alleles

that did not match the reference panel, SNPs with allele fre-

quencies differing by more than 0.2 from the reference, and

SNPs not present in the reference panel.

Genotypes were phased (Eagle v.2.4) and imputed by chromo-

some to the 1000 Genomes Other/Mixed GRCh37/hg19 reference

panel (Phase 3 v.5) using Minimac 4 via the Michigan Imputation

Server.50 All post-imputation QC was run using bcftools.51 The 15

imputation batches for the PNC dataset were merged by chromo-

some, and then post-imputation QC was run using the average

imputation quality and average MAF for the merged chromosome

files. Only polymorphic sites with (average) imputation quality R2

R 0.7 and (average) MAFR 0.01 were included in the final PLINK

1.9 hard-call PNC and ABCD post-imputation datasets.

Ancestry and kinship analysis
Multi-dimensional scaling (MDS) was conducted using KING

(v.2.2.4)52 to identify the top 10 ancestry components for each

sample. (Note that while these components are technically axes

in MDS space, we refer to them as principal components [PCs]

for the sake of simplicity.) The ancestry PCs were projected onto

the 1000 Genomes PC space, and genetic ancestry was inferred us-

ing the e107153 support vector machines package in R54 (Figure 1).

Based on these inferences, AFR- and EUR-ancestry cohorts were
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Table 1. Discovery GWAS used to compute polygenic scores with PRS-CS

Trait Discovery GWAS
GWAS
ancestry

GWAS sample
sizea for PRS-CS

SNP countb for PNC
PGS calculations

SNP count for
ABCD PGS
calculations

PTSD Nievergelt et al.39

(Freeze 2 PGC)
AFR 11,321 1,162,502 1,064,574

EUR 70,237 1,087,435 1,016,161

Duncan et al.38

(Freeze 1 PGC)
AFR 9,691 1,157,302 1,059,197

EUR 9,954 1,086,644 1,015,369

T2D Chen et al.42 AFR 4,146 1,114,936 1,020,579

Scott et al.40

(DIAGRAM)
EUR 152,599 1,087,724 1,016,440

Mahajan et al.41

(DIAGRAM)
EUR 231,420 1,089,613 1,018,372

Height Marouli et al.44

(GIANT)
AFR 27,494 18,580 15,720

EUR 381,625 18,035 15,767

Wood et al.43

(GIANT)
EUR 252,048 987,760 920,889

PTSD, post-traumatic stress disorder; T2D, type 2 diabetes; PNC, Philadelphia Neurodevelopmental Cohort; PGS, polygenic score; ABCD, Adolescent Brain Cogni-
tive Development study; PGC, Psychiatric Genomics Consortium; DIAGRAM, Diabetes Genetics Replication andMeta-Analysis Consortium; GIANT, Genetic Inves-
tigation of Anthropometric Traits Consortium.
aPRS-CS requires a single GWAS sample size; see supplemental methods for how we derived this measure when the sample size varied by SNP.
bThe "SNP count" is the number of SNPs in common between the discovery GWAS, the PRS-CS LD panel, and the genomic dataset.
created for the PNC and ABCD datasets; all other ancestry groups

were excluded from further analysis. A second round of unpro-

jectedMDSwas then performed within the EUR- and AFR-ancestry

groups to produce ten PCs that were regressed out of the standard-

ized PGS to adjust for array batch effects and genetic ancestry (Fig-

ures S1–S5).

KING was also used to identify all pairwise relationships out to

third-degree relatives based on estimated kinship coefficients and

inferred IBD segments. Although the PNC was not recruited as a

family study, it does include some related individuals (i.e., siblings

and cousins). We ran a sensitivity analysis using a reduced PNC da-

taset that included only one individual from each family (chosen as

the lowest individual ID number for a given family ID number),

which reduced the size of the PNC EUR cohort from 5,239 to

4,928 and the AFR cohort from 3,260 to 2,954. After establishing

that the PNC PTSD PGS correlation results obtained using only un-

related individuals did not differ meaningfully from those obtained

using the full dataset (Tables S4 and S5), we performed all subse-

quent analyses using the complete EUR and AFR cohorts.
Polygenic score computation with PRS-CS
PRS-CS4 was used to infer posterior mean effects by chromosome

for the SNPs in a given dataset that overlapped with both the dis-

covery GWAS summary statistics and an external 1000 Genomes

LD panel that was matched to the ancestry group used for the dis-

covery GWAS. Posterior mean effects were only inferred for SNPs

located on the 22 autosomal chromosomes. PGS for the EUR

and AFR subsets of PNC and ABCD were computed using both

EUR and AFR discovery GWAS for PTSD,38,39 T2D,40–42 and

height43,44 (Table 1). To ensure convergence of the underlying

Gibbs sampler algorithm, we ran 25,000 Markov chain Monte

Carlo (MCMC) iterations and designated the first 10,000 MCMC

iterations as burn-in. The PRS-CS global shrinkage parameter was

set to 0.01 when the discovery GWAS had an SNP sample size

that was less than 200,000; otherwise, it was learned from the
Hum
data using a fully Bayesian approach. Default settings were used

for all other PRS-CS parameters. Given the stochastic nature of

the Bayesian algorithm used by PRS-CS, PGS replicability was

confirmed by completing multiple PRS-CS runs using the same

discovery GWAS. The PLINK 1.9 score function was used to pro-

duce raw PGS from the posterior means of the estimated SNP ef-

fects returned by PRS-CS for each chromosome, and then R54

was used to standardize the PGS for a given cohort to mean ¼
0 and SD ¼ 1. Standardized PGS were then adjusted by regressing

out the first ten within-ancestry PCs.

LD score regression
LD score regression (LDSC) was used to calculate the mean c2 for

each EUR-ancestry GWAS as a proxy for GWAS power (Table

S14).55,56 We also used LDSC to compute the genetic correlation

for eachpair of same-trait GWAS (Table S15). Standard error was esti-

mated by jackknifing over blocks of adjacent SNPs. Our LDSC calcu-

lations only included SNPs with MAF> 0.01. Given that LDSCmay

yield biased estimates for admixed populations,57 we did not

perform LD score regression for the AFR-ancestry discovery GWAS.

Quantile-based comparisons
We counted the number of samples in common at or above the

80th percentile, the 90th percentile, and the 95th percentile of

the PC-adjusted standardized PGS distributions. Specifically, we

counted how many individuals were jointly identified as being

at or above a given percentile of the PGS computed from a pair

of different discovery GWAS. As an example, consider the n ¼
3,260 individuals in the PNC AFR cohort. There are n ¼ 652 indi-

viduals with PGS at or above the 80th percentile, n¼ 326 with PGS

at or above the 90th percentile, and n ¼ 163 with PGS at or above

the 95th percentile of PGS. The proportional overlap for PGS at or

above the 80th percentile was calculated by identifying which 652

samples were located within that region of each of the two PGS

distributions being compared (e.g., those computed from an AFR
an Genetics and Genomics Advances 3, 100091, April 14, 2022 3



Figure 2. Reproducibility of Bayesian
posterior effects computed by PRS-CS
As illustrated for chromosome 3 (76,064
SNPs) and chromosome 21 (15,447 SNPs)
using the Nievergelt et al.39 EUR PTSD dis-
covery GWAS with the PNC EUR dataset,
posterior effects were more strongly corre-
lated between PRS-CS runs as the number
of MCMC iterations (and burn-in itera-
tions) increased.
GWAS for trait X and those computed from a EUR GWAS for trait

X), counting howmany of those samples were present at or above

that quantile for both distributions, and then dividing that count

by 652. A proportional overlap of 1 would indicate that the same

652 individuals had PGS that were among the top 20% of PGS for

both distributions.

UK Biobank experiment
We obtained imputed genotypes and standing height phenotypes

for 276,107 unrelated white British individuals in the UK Bio-

bank.58 The supplemental methods describe an experiment we de-

signed using these data to explore the degree to which our primary

findings could be attributed to differingGWAS sample sizes. In brief,

we used PRS-CS and PLINK 1.9 as described above to compute

height PGS for an independent test group using seven discovery

GWAS with controlled differences in their sample sizes and degree

of sample overlap (Figure S7; Table S16). GWAS A and GWAS B

were run using non-overlapping samples (each n ¼ 134,000),

whereas GWAS C and GWAS D were run using sub-samples (each

n ¼ 75,000) that were randomly drawn from the individuals

included in GWAS A and GWAS B, respectively. GWAS E and

GWAS F were run using sub-samples (each n ¼ 10,000) that were

randomly drawn from the individuals included in GWAS C and

GWAS D, respectively. Finally, GWAS AB was run using a superset

comprised of the individuals included in either GWAS A or GWAS

B (n ¼ 268,000). We performed LD score regression (Table S17)

and genetic correlation (Table S19) analyses for these GWAS as

described above. We also analyzed the correlation between the

height PGS computed from the different GWAS and assessed how

well the PGS predicted height for a test group of individuals who

were not included in any of the GWAS (n ¼ 8,107).

Statistical analysis
All statistics and graphical displays were generated using R.54

Pearson correlation coefficients were calculated to assess the
4 Human Genetics and Genomics Advances 3, 100091, April 14, 2022
strength of correlations between PC-

adjusted standardized PGS that were

calculated for a given trait using different

discovery GWAS. We quantified the asso-

ciation between PGS computed from

different discovery GWAS using Pearson’s

linear correlation coefficient (r), and we

ran two-tailed t tests for linear association

to determine whether the observed corre-

lations were statistically significant.

To evaluate the predictive accuracy of

the PGS produced from our height

GWAS experiment, we used each set of

standardized PGS to predict the height
of the test subjects via an additive multiple linear regression

model that also included sex, age at height measurement, and

the first 20 ancestry PCs supplied by the UK Biobank as covari-

ates. We calculated the coefficient of determination (R2) for

each model as a measure of how well the PGS from a given

GWAS predicted height in conjunction with these covariates,

and we also ran a partial F test for each predictive model to assess

the effect of adding the standardized PGS to a base model that

included sex, age, and the first 20 ancestry PCs as predictors of

height.
Results

Reproducibility across PRS-CS runs

Given that PRS-CS relies on Bayesian methodology to infer

posterior effects for the SNPs on each chromosome,4 it was

necessary to confirm that we had used enoughMCMC iter-

ations and burn-in trials to ensure convergence of

the underlying Gibbs sampler algorithm. We checked for

convergence indirectly by assessing the correlation be-

tween the posterior effects calculated across multiple

runs for a given chromosome (Figure 2). The PRS-CS

default setting of 1,000 MCMC iterations with the first

500 iterations serving as burn-in produced relatively

inconsistent posterior effects (r z 0.8), suggesting incom-

plete convergence. The correlation between the posterior

effects computed duringmultiple runs of PRS-CS improved

to r z 0.98 when we increased the number of MCMC iter-

ations to 10,000 (5,000 burn-in) and further improved to

r > 0.99 for both large and small chromosomes when we

used 25,000 MCMC iterations (10,000 burn-in). Given

that the computational time increases substantially as

more MCMC iterations are run, we opted to use 25,000



Figure 3. Reproducibility of PGS across
multiple runs of PRS-CS
PC-adjusted standardized PGS computed
from posterior effects generated by two
runs of PRS-CS using the same PTSD discov-
ery GWAS fromNievergelt et al.39 had corre-
lations greater than r ¼ 0.999 for both the
EUR (n ¼ 5,239) and AFR (n ¼ 3,260) co-
horts of PNC.
MCMC iterations with the first 10,000 as burn-in rather

than pursuing even stronger correlations.

The next concern was whether the PGS calculated by

PLINK 1.9 from the Bayesian posterior effects would also

be reproducible across PRS-CS runs. To address this ques-

tion, we ran PRS-CS twice using the PGC Freeze 2

PTSD discovery GWAS,39 and calculated PGS from both

sets of posterior effects. For both the EUR and AFR PNC co-

horts, the correlation between the adjusted PGS was

greater than 0.999 (Figure 3). Hence, we are confident

that PRS-CS yields reproducible PGS for a given discovery

GWAS provided that enough MCMC iterations are used.
Stability of PGS computed from different same-ancestry

discovery GWAS

Of the three traits that we analyzed, only PTSDhad two pub-

licly available AFR-ancestry GWAS.38,39 We computed PGS

using both GWAS for each AFR-ancestry individual and

then assessed the correlation between the two sets of PGS

(Figure 4).We foundamoderately strongpositive correlation

between the PGS computed from the PGC Freeze 138 and

Freeze 239AFR-ancestry PTSDGWAS for theAFR-ancestry co-

hortsofbothPNC(r¼0.696, t(3,258)¼55.26,p<2310�16)

and ABCD (r ¼ 0.657, t(1,739) ¼ 36.34, p < 23 10�16).

The wider availability of EUR-ancestry GWAS allowed us

to compute PGS for EUR-ancestry individuals using pairs of

EUR-ancestry discovery GWAS for PTSD,38,39 T2D,40,41 and

height43,44 (Figure 5). Statistically significant positive cor-

relations between the pairs of PGS were observed for all

three traits for both the PNC (Table S8) and ABCD (Table

S9) EUR-ancestry cohorts, with the strongest association

observed between the height PGS (PNC: r ¼ 0.736;

ABCD: r ¼ 0.734) and the weakest observed for the PTSD

PGS (PNC: r ¼ 0.392; ABCD: r ¼ 0.378).
Hum
Stability of PGS computed from different-ancestry

discovery GWAS

Given the scarcity of AFR-ancestry GWAS, it is often

tempting to compute PGS for AFR-ancestry individuals us-

ing EUR-ancestry discovery GWAS. To assess the feasibility

of this approach, we computed PGS for AFR-ancestry indi-

viduals in PNC and ABCD using both AFR-ancestry discov-

ery GWAS and EUR-ancestry GWAS and then assessed the

correlation between the two sets of PGS (Figure 6).

For PTSD, there was no significant correlation between

the PGS computed from the newer Freeze 2 PGC AFR and

EUR discovery GWAS39 for AFR-ancestry individuals in

either PNC (r ¼ 0.00356, t(3,258) ¼ 0.203, p ¼ 0.839) or

ABCD (r ¼ 0.00283, t(1,739) ¼ 0.118, p ¼ 0.906). The

AFR PGS computed using the Freeze 1 PGC PTSD AFR

and EUR discovery GWAS38 were uncorrelated for ABCD

(r ¼ �0.00320, t(1,739) ¼ �0.133, p ¼ 0.894), but we

observed a weak positive correlation for PNC (r ¼ 0.0417,

t(3,258) ¼ 2.379, p ¼ 0.0174).

We made the same different-ancestry GWAS compari-

sons for the EUR-ancestry individuals in the PNC and

ABCD study populations (Figure 7). As was the case for

AFR-ancestry individuals, we found no significant correla-

tion between PGS computed from the PGC Freeze 2 EUR-

and AFR-ancestry PTSD discovery GWAS.39 While we

observed no significant correlation between the PGS

computed using the PGC Freeze 1 EUR- and AFR-ancestry

PTSD discovery GWAS for EUR-ancestry individuals in

ABCD (r ¼ �0.00109, t(5,813) ¼ �0.083, p ¼ 0.934), we

did observe a weak positive correlation for the EUR cohort

of PNC (r ¼ 0.0379, t(5,237) ¼ 2.746, p ¼ 0.0065).

We compared T2D PGS computed from an AFR-ancestry

discovery GWAS42 to those computed using two EUR dis-

covery GWAS40,41 published by the DIAGRAM con-

sortium. The newer EUR-ancestry T2D discovery GWAS41
Figure 4. Correlation between PGS
computed from two different AFR-ancestry
PTSD discovery GWAS for AFR-ancestry in-
dividuals
Significant positive correlations were
observed between the AFR PGS computed
from the PGC Freeze 138 and Freeze 239

AFR PTSD GWAS for both the PNC (r ¼
0.696, t(3,258) ¼ 55.26, p < 2 3 10�16)
and ABCD (r ¼ 0.657, t(1,739) ¼ 36.34,
p < 2 3 10�16) AFR cohorts.

an Genetics and Genomics Advances 3, 100091, April 14, 2022 5



Figure 5. Correlation between PGS computed from two different EUR-ancestry discovery GWAS for EUR-ancestry individuals
Pairs of PGS computed for the EUR samples of PNC (n ¼ 5,239) and ABCD (n ¼ 5,815) using two different EUR discovery GWAS for
PTSD,38,39 T2D,40,41 and height43,44 all showed significant positive correlations.
yielded PGS that were uncorrelated with those computed

from the AFR-ancestry discovery GWAS42 for the AFR-

ancestry individuals in both PNC (r ¼ 0.0185, t(3,258) ¼
1.055, p ¼ 0.292) and ABCD (r ¼ 0.0219, t(1,739) ¼
0.912, p ¼ 0.362). Similarly, there was no significant corre-

lation between the different-ancestry T2D PGS that we

computed for the EUR-ancestry individuals in PNC (r ¼
0.0240, t(5,237) ¼ 1.739, p ¼ 0.082) and ABCD (r ¼
0.0224, t(5,813) ¼ 1.71, p ¼ 0.0872). We observed a weak

positive correlation between the PGS computed from the

older EUR-ancestry T2D discovery GWAS40 and the PGS

computed from the AFR-ancestry T2D discovery GWAS42

for the PNC AFR cohort (r ¼ 0.0432, t(3,258) ¼ 2.469, p

¼ 0.0136), but there were no significant correlations be-

tween the two sets of PGS computed for the ABCD AFR
Figure 6. Correlation between PGS computed from AFR-ancestry
Pairs of PGS computed for the AFR samples of PNC and ABCD from th
lated for either PTSD39 or T2D,41,42 but there was a significant positi
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cohort (r ¼ �0.0458, t(1,739) ¼ �1.911, p ¼ 0.0562), the

PNC EUR cohort (r ¼ 0.00528, t(5,237) ¼ 0.382, p ¼
0.703), or the ABCD EUR cohort (r ¼ 0.0188, t(5,813) ¼
1.431, p ¼ 0.152).

We also computed different-ancestry PGS using EUR- and

AFR-ancestryheightdiscoveryGWAS thatweobtained from

the GIANT consortium.43,44 We observed significant posi-

tivecorrelationsbetween thePGScomputed fromthenewer

EUR- and AFR-ancestry height discovery GWAS44 for the

PNC AFR (r ¼ 0.287, t(3,258) ¼ 17.09, p < 2 3 10�16),

ABCD AFR (r ¼ 0.306, t(1,739) ¼ 13.42, p < 2 3 10�16),

PNC EUR (r ¼ 0.403, t(5,237) ¼ 31.82, p < 2 3 10�16), and

ABCD EUR (r ¼ 0.404, t(5,813) ¼ 33.69, p < 2 3 10�16) co-

horts. Likewise, we found significant positive correlations

between the PGS computed from the older EUR-ancestry
and EUR-ancestry discovery GWAS for AFR-ancestry individuals
e newer EUR and AFR discovery GWASwere not significantly corre-
ve correlation for height.44

2



Figure 7. Correlation between PGS computed from EUR-ancestry and AFR-ancestry discovery GWAS for EUR-ancestry individuals
Pairs of PGS computed for the EUR samples of PNC and ABCD from the newer EUR and AFR discovery GWAS were not significantly
correlated for either PTSD39 or T2D,41,42 but there was a significant positive correlation for height.44
height discovery GWAS43 and the AFR-ancestry

height discovery GWAS44 for the PNC AFR (r ¼ 0.258,

t(3,258) ¼ 15.22, p < 2 3 10�16), ABCD AFR (r ¼ 0.312,

t(1,739) ¼ 13.68, p < 2 3 10�16), PNC EUR (r ¼ 0.335,

t(5,239) ¼ 25.25, p < 2 3 10�16), and ABCD EUR (r ¼
0.327, t(5,813) ¼ 26.39, p < 2 3 10�16) cohorts. As was

the case for T2D, there was only one AFR-ancestry height

discovery GWAS44 available to use for computing PGS.

The supplemental methods includes complete statistical

results for the comparisons between PGS computed from

different discovery GWAS for the PNC AFR (Table S6),

ABCD AFR (Table S7), PNC EUR (Table S8), and ABCD

EUR (Table S9) cohorts.

GWAS power

We hypothesized that PGS would be more stable for traits

with more powerful discovery GWAS. As such, we used

LDSC to compute the mean c2 as a proxy for power for

each of the EUR-ancestry discovery GWAS that we used

to compute PGS (Table S14). We found that the two height

GWAS had higher mean c2 than the two T2D GWAS,

which had higher mean c2 than the two PTSD GWAS.

Also, the newer, larger GWAS had higher mean c2 than

the older GWAS for each trait. The genetic correlation

calculated by LDSC for each pair of GWAS was essentially

perfect (Table S15), with the lowest rg ¼ 0.9225 5 0.1807

for PTSD.

Sample-size effects

In an effort to disentangle the effect of GWAS sample size

from other factors differing between the height, T2D, and

PTSD GWAS, such as trait heritability and sample overlap,

we computed height PGS from seven GWAS that we ran

using unrelated white British samples from the UK Bio-

bank. The heights, male-female ratios, and ages at height

measurement were comparable across all seven GWAS
Hum
groups and the test set (Table S16). The LDSC mean c2

for our seven height GWAS, which ranged from 1.0982

for GWAS E to 3.7259 for GWAS AB (Table S17), spanned

the range of the mean c2 we found for the EUR-ancestry

meta-GWAS we used for our primary analyses (Table

S14), suggesting that our height GWAS had a similar

range of power. The genetic correlations between the

GWAS computed by LDSC were essentially perfect for all

comparisons (Table S19). All seven of our height GWAS

identified genome-wide significant SNPs (p < 5 3 10�8),

with the larger GWAS identifying more such SNPs than

the smaller GWAS (Table S18).

We used our seven discovery GWAS to generate height

PGS for an independent test group of 8,107 unrelated

white British individuals who had standing height mea-

surements. We found that the correlation between PGS

is driven by both the discovery GWAS sample size and

the degree of sample overlap between the discovery

GWAS (Figures 8 and 9; Table S20). The PGS that were

computed from GWAS AB (n ¼ 268,000), which overlaps

with all of the other GWAS, showed similar degrees of cor-

relation with the PGS from the GWAS A and B (each n ¼
134,000; both rz 0.91), GWAS C and D (each n¼ 75,000;

both rz 0.79), and GWAS E and F (each n ¼ 10,000; both

r z 0.35) (Figure 8). However, the PGS computed from

GWAS A, which overlapped only with GWAS C and

GWAS E, showed a stronger correlation with the PGS

computed from the overlapping, smaller GWAS C (r ¼
0.88) than they did with the PGS computed from the

non-overlapping, larger GWAS B (r ¼ 0.65). In general,

the percentage overlap between discovery GWAS was rela-

tively more important than the number of subjects in

common (Figure 9). When the discovery that GWAS had

10,000 subjects in common, the PGS correlation was

stronger when the percentage overlap between the dis-

covery GWAS was 13% (C 3 E; D 3 F) than it was when
an Genetics and Genomics Advances 3, 100091, April 14, 2022 7



Figure 8. Correlation between PGS
computed from seven white British
height GWAS for an independent test
set of 8,107 unrelated white British indi-
viduals from the UK Biobank
GWAS A and GWAS B were each run for n
¼ 134,000 non-overlapping, unrelated
white British individuals using sex, age at
height measurement, and the first 20
ancestry PCs as covariates. The GWAS A
and GWAS B samples were combined to
run GWAS AB (n ¼ 268,000). GWAS C
was run using a random subsample (n ¼
75,000) of the individuals included in
GWAS A, and GWAS E was run using a
random subsample (n ¼ 10,000) of the in-
dividuals included in GWAS C. The same
relationship exists between GWAS B,
GWAS D (n ¼ 75,000), and GWAS F (n ¼
10,000). The strength of the correlation
between PGS is driven by both GWAS sam-
ple size and the degree of sample overlap
between the GWAS. ***p < 0.001.
the percentage overlap was 7.5% (A 3 E; B 3 F) or 3.7%

(AB 3 E; AB 3 F). Likewise, when two discovery GWAS

had 75,000 subjects in common, the correlation was

stronger when that number represented a 56% overlap

between the GWAS (A 3 C; B 3 D) than when it repre-

sented a 28% overlap (AB 3 C; AB 3 D). Moreover, PGS

computed from GWAS A were more strongly correlated

with those from GWAS C (r ¼ 0.88) than they were with

those from GWAS D (r ¼ 0.56), which was the same size

as GWAS C (n ¼ 75,000) but had no overlap with GWAS

A. When considering only non-overlapping discovery

GWAS, the correlation was stronger for PGS computed

from larger GWAS; for example, the PGS computed from

GWAS A were more strongly correlated with those from

GWAS B (r ¼ 0.65) than with those from either GWAS D

(r ¼ 0.56) or GWAS F (r ¼ 0.25). The additive models

including, sex, age, 20 ancestry PCs, and the PGS

computed from our height GWAS explained between

54.82% (GWAS E) and 62.86% (GWAS AB) of the vari-

ability in the measured heights for the test group (Table

S21). Moreover, the PGS computed from the height

GWAS all explained a significant amount of variability

in the height phenotypes beyond what was explained

by sex, age at height measurement, and 20 ancestry PCs

alone (Table S21). We obtained these experimental results

using a highly heritable trait (height), and the discovery

GWAS and test samples were drawn from the same ances-

trally homogeneous population (white British). The fact

that we observed variable degrees of correlation between

PGS even under these controlled conditions implies that

the differing degrees of correlation that we report for pairs

of PTSD, T2D, and height PGS cannot be attributed solely

to differing discovery GWAS sample sizes. The propor-

tional overlap between the discovery GWAS is also impor-

tant, as are the individual subjects who are included in a

discovery GWAS.
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Quantile-based comparisons

Given that much of the interest in PGS is in identifying

individuals at high genetic risk for a disorder, we evalu-

ated whether there would be more stability if we focused

on the individuals who had PGS located in the upper tail

of the distribution. As a baseline comparison, we deter-

mined the degree of overlap between the individuals in

the top quantiles of PGS computed from two PRS-CS

runs using the Freeze 2 AFR- and EUR-ancestry PTSD dis-

covery GWAS39 for the AFR (Figure 10A) and EUR

(Figure 11A) PNC cohorts, respectively. Of the n ¼ 3,260

individuals in the PNC AFR cohort, there are n ¼ 652 in-

dividuals with PGS at or above the 80th percentile, n ¼
326 with PGS at or above the 90th percentile, and n ¼
163 with PGS at or above the 95th percentile of PGS.

We found an overlap of 644 of the 652 AFR-ancestry indi-

viduals who had PGS at or above the 80th percentile from

the two runs using the same AFR-ancestry PTSD discovery

GWAS, which is a 98.7% overlap. Comparable degrees of

overlap were observed between the PNC AFR-ancestry

individuals with PTSD PGS at or above the 90th (318/

326 ¼ 0.975) and 95th (161/163 ¼ 0.988) percentiles.

Similarly, the proportional overlap between the PTSD

PGS computed from two PRS-CS runs using the Freeze 2

EUR-ancestry PTSD discovery GWAS39 for the EUR-

ancestry cohort (n ¼ 5,239) was 1,026/1,048 ¼ 0.979 at

or above the 80th percentile, 513/524 ¼ 0.979 at or above

the 90th percentile, and 255/262 ¼ 0.973 at or above the

95th percentile.

The proportional overlap decreases if we consider PGS

computed from two different same-ancestry discovery

GWAS. For the PNC AFR-ancestry cohort (Figure 10B),

PC-adjusted standardized PGS computed from the Freeze

138 and Freeze 239 PTSD AFR-ancestry discovery GWAS

had 53.6% of individuals in common at or above the

80th percentile, 47.5% at or above the 90th percentile,
2



Figure 9. Contributions of GWAS sample size and proportional
sample overlap to the correlation between height PGS
Height GWAS A and GWAS B were each run for n ¼ 134,000 non-
overlapping, unrelated white British individuals using sex, age at
height measurement, and the first 20 ancestry PCs as covariates.
The GWAS A and GWAS B samples were combined to run GWAS
AB (n ¼ 268,000). GWAS C was run using a random subsample
(n ¼ 75,000) of the individuals included in GWAS A, and GWAS
E was run using a random subsample (n ¼ 10,000) of the individ-
uals included in GWAS C. The same relationship exists between
GWAS B, GWAS D (n ¼ 75,000), and GWAS F (n ¼ 10,000). Black
dots correspond to the Pearson correlation coefficients for height
PGS computed frompairs of discovery GWASwith no sample over-
lap. When the PGS were computed from overlapping discovery
GWAS, the correlation coefficients are depicted using colored
dots; the legend lists the number of samples in common as well
as the proportion of samples in common for each color. Error
bars denote 95% confidence intervals. PGS from pairs of discovery
GWAS are more strongly correlated when there is a higher propor-
tion of sample overlap between the GWAS.
and 36.3% at or above the 95th percentile. The decrease in

proportional overlap was even more pronounced for PGS

computed from two different EUR-ancestry GWAS for the

PNC EUR-ancestry cohort (Figure 11B). The proportion of

overlap became progressively smaller as we considered pro-

gressively higher percentiles for PTSD, T2D, and height.

Moreover, the amount of overlap was greatest for height

and smallest for PTSD at each of the percentiles that we

considered.

Proportional overlap was even more dramatically

decreased when we compared the top quantiles of the

PGS that had been computed from an AFR-ancestry discov-

ery GWAS with those that had been computed from a EUR-

ancestry discovery GWAS (Figures 10C and 11C). For the

AFR cohort of PNC, the proportional overlap ranged

from a low of 4.91% for different-ancestry PTSD PGS at

the 95th percentile to a high of 32.8% for different-

ancestry height PGS at the 80th percentile, whereas the

proportional overlap for the PNC EUR cohort ranged

from 3.82% for different-ancestry T2D PGS at the 95th

percentile to 38.1% for height PGS at the 80th percentile.

For both the EUR and AFR cohorts, the general pattern is

that proportional overlap is largest for different-ancestry

PGS at the 80th percentile and smallest at the 95th percen-

tile. Within a given percentile, the proportional overlap is

largest for height and smallest for either PTSD or T2D.
Hum
Note that Figures 10 and 11 only include comparisons

for PNC between the PGS computed using the newer dis-

covery GWAS if there was more than one comparison

possible. We observed similar results for the ABCD cohort

and also for additional different-ancestry comparisons.

See the supplemental methods for complete results of our

quantile-based analyses for the PNC AFR (Table S10),

ABCD AFR (Table S11), PNC EUR (Table S12), and ABCD

EUR (Table S13) cohorts.
Discussion

Our work focused on comparing the PGS computed from

different discovery GWAS at the individual level. The cor-

relation in PGS across discovery GWAS was higher for a

strongly heritable anthropometric trait (e.g., height) as

compared with medical and psychiatric disorders, such as

T2D and PTSD; higher between GWAS with overlapping

samples than between non-overlapping GWAS; and higher

for same-ancestry versus different-ancestry GWAS. These

patterns of stability extended to comparisons between

the upper quantiles of PGS, underscoring the need to pro-

ceed cautiously with integrating PGS into precision medi-

cine applications.

This relatively modest correlation in PGS is especially

noteworthy given that it was observed for PGS computed

using successive generations of meta-GWAS that were pro-

duced by the PGC,38,39 DIAGRAM,40,41 and GIANT41,43

consortia. The fact that even same-ancestry meta-GWAS

computed by the same consortia using overlapping sam-

ples and SNPs (Tables 1 and 2) could yield PGS with corre-

lations <0.7 at the individual level raises serious concerns.

If PGS are going to be used clinically, then they need to be

reproducible. In many ways, our UK Biobank experiment

provided the best-case scenario for PGS stability. We

considered height, a highly heritable, easily measured

quantitative trait, and the phenotyping, genotyping, sta-

tistical analyses, and study population were constant

across all discovery GWAS and the test set. PGS were

most correlated between the largest GWAS, but the degree

of sample overlap appeared to be a stronger predictor of

correlation strength than sample size.

Even if stand-alone PGS are not yet useful clinically, they

could still be used to help identify those individuals at

highest disease risk.59 For instance, PGS for psychiatric

traits could be used in conjunction with environmental

factors to identify adolescents most at risk for developing

psychosis and other mental health disorders.17 We are

actively pursuing such applications with the PNC and

ABCD cohorts and have found that ancestry-specific

PTSD PGS do indeed add predictive value to models that

include other non-genetic factors.60 Nonetheless, we

caution that it is dangerous to rely solely on PGS quantiles

to identify at-risk individuals. Successive generations of

discovery GWAS yielded PGS that did not identify the

same individuals at the top quantiles of the distribution,
an Genetics and Genomics Advances 3, 100091, April 14, 2022 9



Figure 10. Comparison of the samples
comprising the top PGS quantiles for the
PNC AFR cohort
(A) The samples located at the top 20%,
10%, and 5% of the PTSD PGS distribution
were virtually the same when PGS were
computed twice using the same discovery
GWAS. For example, 644 out of the 652
samples (98.7%) at or above the 80th
percentile were the same between the
two batches of PGS. (B) The overlap be-
tween samples at all three quantiles drop-
ped substantially when the PGS computed
from the AFR PGC Freeze 1 PTSD discovery
GWAS38 were compared with those
computed from the AFR Freeze 2 PTSD dis-
covery GWAS (Nievergelt et al.39), with the
degree of overlap being reduced at higher
quantiles. (C) The degree of overlap was
further reduced when comparing PGS
computed from an AFR-ancestry discovery
GWAS to those computed from a EUR-
ancestry GWAS for PTSD (Nievergelt
et al.39), T2D,41,42 and height (Marouli
et al.44). For context, the green bars depict
the number of samples included at or
above the 80th percentile (n ¼ 652), 90th
percentile (n ¼ 326), and 95th percentile
(n ¼ 163). Additional results can be found
in Tables S10 and S11.
and the amount of overlap decreased as higher quantiles

were considered (Figures 10 and 11; Tables S10–S13).

Hence, the instinctive decision to focus only on the upper

tail of the PGS distribution will notmitigate the lack of PGS

stability across different discovery GWAS.

We chose to use the Bayesian PRS-CS Python package

to compute PGS for this study. It has been demon-

strated5 that Bayesian methods generally yield more pre-

dictive PGS than those produced via traditional p-value
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thresholding approaches. The advantage of PRS-CS over

other Bayesian methods is that it employs a very robust

Strawderman-Berger continuous shrinkage prior rather

than a discrete mixture prior, which allows for more ac-

curate multivariate modeling of local LD in the poly-

genic prediction.4 When enough MCMC iterations are

used to ensure convergence of the underlying Gibbs

sampler algorithm, PRS-CS yields very consistent poste-

rior means of the estimated SNP effects (Figure 2). PGS
Figure 11. Comparison of the samples
comprising the top PGS quantiles for the
PNC EUR cohort
(A) The EUR samples located within the
top 20%, 10%, and 5% of the PTSD PGS
distribution were nearly the same when
PGS were computed twice using the same
EUR discovery GWAS (Nievergelt et al.39).
For example, 1,026 out of the 1,048 sam-
ples (97.9%) at or above the 80th percen-
tile were the same between the two runs
of PRS-CS. (B) The overlap between sam-
ples at all three quantiles dropped substan-
tially when the PGS computed from two
different EUR discovery GWAS were
compared for PTSD,38,39 T2D,40,41 and
height.43,44 (C) The degree of overlap was
dramatically reduced when comparing
PGS computed from an AFR-ancestry dis-
covery GWAS with those computed from
an EUR-ancestry GWAS for PTSD (Niever-
gelt et al.39), T2D,41,42 and height.43,44

Green bars depict the number of samples
included at or above the 80th percentile
(n ¼ 1,048), 90th percentile (n ¼ 524),
and 95th percentile (n ¼ 262). Additional
results can be found in Tables S12 and S13.
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Table 2. Estimated sample overlap between same-ancestry GWAS

Trait Discovery GWAS ancestry No. of overlapping samplesa No. of new samplesb
Percentage increase in
sample size (%)c

Correlation between PGS:

PNC ABCD

PTSD38,39 AFR 9,691 1,630 16.82 0.696 0.657

EUR 9,954 60,283 605.62 0.392 0.378

T2D40,41 EUR 152,599 78,821 51.65 0.602 0.597

Height43,44 EUR 252,048 129,577 51.41 0.736 0.734

PTSD, post-traumatic stress disorder; T2D, type 2 diabetes; PNC, Philadelphia Neurodevelopmental Cohort; PGS, polygenic score; ABCD, Adolescent Brain Cogni-
tive Development study.
Discovery GWAS references: Duncan et al.,38 Nievergelt et al.,39 Scott et al.,40 Mahajan et al.,41 Wood et al.,43 Marouli et al.44
aPRS-CS sample size for the older GWAS in the pair; calculated as described in the supplemental methods.
bCalculated as the difference between the PRS-CS sample size for the newer GWAS and that for the older GWAS run by the consortium. This is an estimate, as we
do not know the exact degree of overlap between the two GWAS.
cCalculated as the number of new samples divided by the number of overlapping samples.
computed using the same discovery GWAS are highly

correlated when computed using multiple PRS-CS runs

(Figure 3), and others have previously shown that PGS

computed from the same discovery GWAS are strongly

correlated when computed using PRS-CS and other

Bayesian and non-Bayesian approaches.5 Hence, the

limited PGS stability across discovery GWAS that we

report here cannot be attributed to the stochastic nature

of Bayesian methods; there must be differences between

the discovery GWAS.

By choosing to use multiple generations of GWAS pro-

duced by the same consortia, we hoped tominimize poten-

tial methodological differences between the same-trait

meta-GWAS. As expected, the genetic correlation between

each pair of same-trait GWAS was nearly perfect, no doubt

due to the large overlap between SNPs and samples within

each pair (Table 1). Initially, we had assumed that the

newer GWAS in each pair would be the "better" GWAS

since we thought that the larger sample size would yield

more explanatory power. We cannot rule out this possibil-

ity, but the results of our UK Biobank experiment suggest

that factors beyond sample size also contribute to PGS

stability.

It is not surprising that the two height GWAS had higher

mean c2, a proxy for GWAS power, as compared with the

PTSD and T2D GWAS (Table S14). Height is an easily

measured quantitative trait that is less susceptible to ascer-

tainment bias than qualitative disease traits. Furthermore,

environmental factors make substantial contributions to

the development of both PTSD61 and T2D.62 Even so,

LDSC gave an unusually high estimate of mean c2

(6.4544) for the newer height GWAS.44 While it is possible

that the LDSC calculations could have been biased due to

being based only on a small number of low-frequency

SNPs, we believe that a plausible explanation could lie in

the design of this GWAS. Specifically, the newer height

GWAS included a small number of targeted rare and low-

frequency SNPs (MAF between 0.1% and 4.8%) on a

specially designed exome array rather than casting the

same wide net as the earlier GWAS, although our LDSC
Hum
and PRS-CS calculations only included the low-frequency

SNPs (i.e., those with MAF > 1%). This modification

coupled with a substantially increased sample size and an

easily ascertained quantitative trait could have yielded

this improvement in explanatory power.

Our results add to the growing body of evidence that

PGS should be computed from an ancestrally matched dis-

covery GWAS. It is well established that EUR-ancestry

GWAS typically yield PGS that are less predictive for AFR

and other non-EUR-ancestry groups.20,22,26,31,32,35,63–67

We have further demonstrated that PGS computed from

same-ancestry GWAS for PTSD and T2D are uncorrelated

with those computed from different-ancestry GWAS for

both AFR- and EUR-ancestry study participants (Figures 6

and 7), and we also found that there is very little overlap

between the individuals in the upper tails of the PGS distri-

butions computed using EUR-ancestry GWAS as compared

with those computed using AFR-ancestry GWAS (Figures

10C and 11C; Tables S10–S13). Given the dearth of AFR-

ancestry and other non-EUR-ancestry discovery GWAS,

our results underscore the urgent need for more high-pow-

ered GWAS analyses to be run for non-EUR-ancestry

populations.

We chose to study PTSD, T2D, and height because all

three traits had publicly available GWAS for both EUR-

and AFR-ancestry populations. Of these three, PTSD was

the only trait that had two AFR-ancestry GWAS available

for comparison purposes. While we focused our current

work on the EUR- and AFR-ancestry individuals in the

PNC and ABCD cohorts, we hope that methodology and

GWAS data will soon exist to make it possible expand

our analyses to the admixed American and other ancestral

groups that are also included in these cohorts (Figure 1).

The recent release of PRS-CSx68 will make it possible to

use discovery GWAS that include a combination of East

Asian-, AFR-, and EUR-ancestry samples. Although it offers

an improvement over the current requirement that the dis-

covery GWAS be limited to only one of these three ancestry

groups, PRS-CSx still does not enable analyses of admixed

samples from other genetic backgrounds.
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Ultimately, we envision a future where genetic ancestry

will not be a necessary consideration before computing

PGS. Given that genetic ancestry is continuous, it is rather

artificial to assign samples to discrete ancestry groups.27

Within the AFR-ancestry group alone, there is an enormous

degree of genetic diversity.32,69 We controlled for such di-

versity by calculating PGS separately for each ancestry

group and then regressing out within-ancestry principal

components from the standardized PGS. We are optimistic

that new methods that incorporate local ancestry34,70 will

eventually allow us to embrace this diversity and compute

stable, accurate PGS for admixed populations. Increasingly

economical whole-genome sequencing,71 coupled with

expanded (i.e., less Eurocentric) genotyping arrays67 and

improved imputation to diverse reference panels from

TOPMed,72 should also facilitate the further development

of inclusive approaches, such as BOLT-LMM,73,74 trans-

ethnic GWAS,75 and multi-ethnic PGS.33 While it certainly

would be easier to continue to focus PGS development on

EUR-ancestry populations, we do so at the grave risk of

further exacerbating the inequities inmedical care between

EUR-ancestry populations and the rest of the world.30,76

Data and code availability

The PNC and ABCD genomic datasets used in this study

are available by application from dbGaP (phs00060) and

NDAR (NDA no. 2573), respectively. UK Biobank data are

also available by application. All discovery GWAS sum-

mary statistics and software used in this study are publicly

available; see Web resources for access information.
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McCarthy Group imputation checking perl script, https://

www.well.ox.ac.uk/�wrayner/tools/index.html#Checking

McCarthy Group genotyping chip strand and build files,

https://www.well.ox.ac.uk/�wrayner/strand/

Plink 1.9, https://www.cog-genomics.org/plink/1.9/

Bcftools, https://github.com/samtools/bcftools

Michigan Imputation Server, https://imputationserver.

sph.umich.edu/index.html

KING: Kinship-based Inference for GWAS, http://people.

virginia.edu/�wc9c/KING/index.html

The R Project for Statistical Computing, https://www.

r-project.org

R package e1071, https://cran.r-project.org/web/

packages/e1071/e1071.pdf

R package qqman, https://cran.r-project.org/web/

packages/qqman/vignettes/qqman.html

PRS-CS, https://github.com/getian107/PRScs

LDSC, https://github.com/bulik/ldsc

DIAGRAM GWAS summary statistics, http://diagram-

consortium.org/downloads.html

GIANT GWAS summary statistics, https://portals.

broadinstitute.org/collaboration/giant/index.php/

GIANT_consortium_data_files

Psychiatric Genomics Consortium GWAS summary sta-

tistics, https://www.med.unc.edu/pgc/data-index/
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2. Vilhjálmsson, B.J., Yang, J., Finucane, H.K., Gusev, A., Lind-

ström, S., Ripke, S., Genovese, G., Loh, P.-R., Bhatia, G., Do,
22

https://doi.org/10.1016/j.xhgg.2022.100091
https://doi.org/10.1016/j.xhgg.2022.100091
https://abcdstudy.org
https://abcdstudy.org
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/consortium_members/
https://abcdstudy.org/consortium_members/
https://www.well.ox.ac.uk/%7Ewrayner/tools/index.html#Checking
https://www.well.ox.ac.uk/%7Ewrayner/tools/index.html#Checking
https://www.well.ox.ac.uk/%7Ewrayner/tools/index.html#Checking
https://www.well.ox.ac.uk/%7Ewrayner/strand/
https://www.well.ox.ac.uk/%7Ewrayner/strand/
https://www.cog-genomics.org/plink/1.9/
https://github.com/samtools/bcftools
https://imputationserver.sph.umich.edu/index.html
https://imputationserver.sph.umich.edu/index.html
http://people.virginia.edu/%7Ewc9c/KING/index.html
http://people.virginia.edu/%7Ewc9c/KING/index.html
http://people.virginia.edu/%7Ewc9c/KING/index.html
https://www.r-project.org
https://www.r-project.org
https://cran.r-project.org/web/packages/e1071/e1071.pdf
https://cran.r-project.org/web/packages/e1071/e1071.pdf
https://cran.r-project.org/web/packages/qqman/vignettes/qqman.html
https://cran.r-project.org/web/packages/qqman/vignettes/qqman.html
https://github.com/getian107/PRScs
https://github.com/bulik/ldsc
http://diagram-consortium.org/downloads.html
http://diagram-consortium.org/downloads.html
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://www.med.unc.edu/pgc/data-index/
https://www.ukbiobank.ac.uk/
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref1
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref1
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref1
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref2
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref2


R., et al. (2015). Modeling linkage disequilibrium increases ac-

curacy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–

592.

3. Lloyd-Jones, L.R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G.,

Kemper, K.E., Wang, H., Zheng, Z., Magi, R., Esko, T., et al.

(2019). Improved polygenic prediction by Bayesian multiple

regression on summary statistics. Nat. Commun. 10, 5086.

4. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C.A., and Smoller, J.W.

(2019). Polygenic prediction via Bayesian regression and

continuous shrinkage priors. Nat. Commun. 10, 1776.

5. Ni, G., Zeng, J., Revez, J.A., Wang, Y., Zheng, Z., Ge, T., et al.

(2021). A comparison of ten polygenic score methods for psy-

chiatric disorders applied acrossmultiple cohorts. Biol. Psychi-

atry 90, 611–620.

6. Khera, A.V., Chaffin, M., Aragam, K.G., Haas, M.E., Roselli, C.,

Choi, S.H., Natarajan, P., Lander, E.S., Lubitz, S.A., Ellinor, P.T.,

et al. (2018). Genome-wide polygenic scores for common dis-

eases identify individuals with risk equivalent to monogenic

mutations. Nat. Genet. 50, 1219–1224.

7. Gettler, K., Levantovsky, R., Moscati, A., Giri, M., Wu, Y., Hsu,

N.-Y., Chuang, L.-S., Sazonovs, A., Venkateswaran, S., Korie,

U., et al. (2021). Common and rare variant prediction and

penetrance of IBD in a large, multi-ethnic, health system-

based biobank cohort. Gastroenterology 160, 1546–1557.

8. Padilla-Martı́nez, F., Collin, F., Kwasniewski, M., and Kretow-

ski, A. (2020). Systematic review of polygenic risk scores for

type 1 and type 2 diabetes. Int. J. Mol. Sci. 21, 1703.

9. Rao, A., and Knowles, J. (2019). Polygenic risk scores in coro-

nary artery disease. Curr. Opin. Cardiol. 34, 435–440.

10. Dikilitas, O., Schaid, D.J., Kosel, M.L., Carroll, R.J., Chute,

C.G., Denny, J.A., Fedotov, A., Feng, Q., Hakonarson, H., Jar-

vik, G.P., et al. (2020). Predictive utility of polygenic risk scores

for coronary heart disease in three major racial and ethnic

groups. Am. J. Hum. Genet. 106, 707–716.

11. Graff, R.E., Cavazos, T.B., Thai, K.K., Kachuri, L., Rashkin, S.R.,

Hoffman, J.D., Alexeeff, S.E., Blatchins, M., Meyers, T.J., Leong,

L., et al. (2021). Cross-cancer evaluation of polygenic risk scores

for 16 cancer types in two large cohorts. Nat. Commun. 12, 970.

12. Zhou, X., Li, Y.Y.T., Fu, A.K.Y., and Ip, N.Y. (2021). Polygenic

score models for Alzheimer’s disease: from research to clinical

applications. Front. Neurosci. 15, 650220.

13. Ronald, A., de Bode, N., and Polderman, T.J.C. (2021). System-

atic review: how the attention-deficit/hyperactivity disorder

polygenic risk score adds to our understanding of ADHD

and associated traits. J. Am. Acad. Child Adolesc. Psychiatry

60, 1234–1277.

14. Mistry, S., Harrison, J.R., Smith, D.J., Escott-Price, V., and

Zammit, S. (2018). The use of polygenic risk scores to identify

phenotypes associated with genetic risk of bipolar disorder

and depression: a systematic review. J. Affective Disord. 234,

148–155.

15. Biederman, J., Green, A., DiSalvo, M., and Faraone, S.V.

(2021). Can polygenic risk scores help identify pediatric bipo-

lar spectrum and related disorders?: a systematic review. Psy-

chiatry Res. 299, 113843.

16. Mistry, S., Harrison, J.R., Smith, D.J., Escott-Price, V., and Zam-

mit, S. (2018). Theuse of polygenic risk scores to identifypheno-

types associated with genetic risk of schizophrenia: systematic

review. Schizophr. Res. 197, 2–8.

17. Murray, G.K., Lin, T., Austin, J., McGrath, J.J., Hickie, I.B., and

Wray, N.R. (2021). Could polygenic risk scores be useful in

psychiatry?: a review. JAMA Psychiatry 78, 210–219.
Hum
18. Lambert, S.A., Abraham, G., and Inouye, M. (2019). Towards

clinical utility of polygenic risk scores. Hum. Mol. Genet. 28,

R133–R142.

19. Torkamani, A., Wineinger, N.E., and Topol, E.J. (2018). The

personal and clinical utility of polygenic risk scores. Nat.

Rev. Genet. 19, 581–590.

20. Wray, N.R., Lin, T., Austin, J., McGrath, J.J., Hickie, I.B., Murray,

G.K., and Visscher, P.M. (2021). From basic science to clinical

application of polygenic risk scores: a primer. JAMA Psychiatry

78, 101–109.

21. Wand, H., Lambert, S.A., Tamburro, C., Iacocca, M.A., O’Sulli-

van, J.W., Sillari, C., Kullo, I.J., Rowley, R., Dron, J.S., Brockman,

D., et al. (2021). Improving reporting standards for polygenic

scores in risk prediction studies. Nature 591, 211–219.

22. Peterson, R.E., Kuchenbaecker, K., Walters, R.K., Chen, C.-Y.,

Popejoy, A.B., Periyasamy, S., Lam, M., Iyegbe, C., Straw-

bridge, R.J., Brick, L., et al. (2019). Genome-wide association

studies in ancestrally diverse populations: opportunities,

methods, pitfalls, and recommendations. Cell 179, 589–603.

23. Choi, S.W., Mak, T.S.-H., and O’Reilly, P.F. (2020). Tutorial: a

guide to performing polygenic risk score analyses. Nat. Protoc.

15, 2759–2772.

24. Wray, N.R., Yang, J., Hayes, B.J., Price, A.L., Goddard, M.E.,

and Visscher, P.M. (2013). Pitfalls of predicting complex traits

from SNPs. Nat. Rev. Genet. 14, 507–515.

25. Sirugo, G., Williams, S.M., and Tishkoff, S.A. (2019). The

missing diversity in human genetic studies. Cell 177, 26–31.

26. Duncan, L., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feld-

man, M., Peterson, R., and Domingue, B. (2019). Analysis of

polygenic risk score usage and performance in diverse human

populations. Nat. Commun. 10, 3328.

27. Manolio, T.A. (2019). Using the data we have: improving di-

versity in genomic research. Am. J. Hum. Genet. 105, 233–

236.

28. Mills, M.C., and Rahal, C. (2019). A scientometric review of

genome-wide association studies. Commun. Biol. 2, 9.

29. Hindorff, L.A., Bonham, V.L., Brody, L.C., Ginoza, M.E.C.,

Hutter, C.M., Manolio, T.A., and Green, E.D. (2018). Priori-

tizing diversity in human genomics research. Nat. Rev. Genet.

19, 175–185.

30. Martin, A.R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B.M.,

and Daly, M.J. (2019). Clinical use of current polygenic risk

scores may exacerbate health disparities. Nat. Genet. 51,

584–591.

31. Martin, A.R., Gignoux, C.R.,Walters, R.K.,Wojcik, G.L., Neale,

B.M., Gravel, S., Daly, M.J., Bustamante, C.D., and Kenny, E.E.

(2017). Human demographic history impacts genetic risk pre-

diction across diverse populations. Am. J. Hum. Genet. 100,

635–649.

32. Majara, L., Kalungi, A., Koen, N., Zar, H., Stein, D.J., Kinyanda,

E., et al. (2021). Low generalizability of polygenic scores in Af-

rican populations due to genetic and environmental diversity.

bioRxiv. https://doi.org/10.1101/2021.01.12.426453.

33. Márquez-Luna, C., Loh, P.-R., South Asian Type 2 Diabetes

(SAT2D) Consortium; and SIGMA Type 2 Diabetes Con-

sortium, and Price, A.L. (2017). Multiethnic polygenic risk

scores improve risk prediction in diverse populations. Genet.

Epidemiol. 41, 811–823.

34. Bitarello, B.D., and Mathieson, I. (2020). Polygenic scores for

height in admixed populations. G3 (Bethesda) 10, 4027–4036.

35. Grinde, K.E., Qi, Q., Thornton, T.A., Liu, S., Shadyab, A.H.,

Chan, K.H.K., Reiner, A.P., and Sofer, T. (2019). Generalizing
an Genetics and Genomics Advances 3, 100091, April 14, 2022 13

http://refhub.elsevier.com/S2666-2477(22)00007-0/sref2
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref2
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref2
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref3
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref3
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref3
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref3
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref4
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref4
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref4
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref5
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref5
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref5
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref5
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref6
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref6
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref6
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref6
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref6
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref7
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref7
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref7
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref7
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref7
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref8
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref8
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref8
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref9
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref9
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref10
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref10
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref10
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref10
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref10
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref11
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref11
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref11
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref11
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref12
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref12
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref12
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref13
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref13
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref13
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref13
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref13
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref14
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref14
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref14
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref14
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref14
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref15
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref15
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref15
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref15
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref16
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref16
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref16
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref16
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref17
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref17
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref17
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref18
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref18
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref18
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref19
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref19
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref19
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref20
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref20
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref20
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref20
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref21
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref21
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref21
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref21
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref22
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref22
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref22
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref22
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref22
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref23
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref23
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref23
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref24
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref24
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref24
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref25
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref25
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref26
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref26
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref26
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref26
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref27
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref27
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref27
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref28
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref28
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref29
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref29
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref29
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref29
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref30
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref30
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref30
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref30
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref31
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref31
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref31
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref31
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref31
https://doi.org/10.1101/2021.01.12.426453
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref33
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref33
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref33
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref33
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref33
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref34
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref34
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref35
http://refhub.elsevier.com/S2666-2477(22)00007-0/sref35


polygenic risk scores from Europeans to Hispanics/Latinos.

Genet. Epidemiol. 43, 50–62.

36. Slunecka, J.L., van der Zee, M.D., Beck, J.J., Johnson, B.N., Fin-

nicum, C.T., Pool, R., Hottenga, J.-J., de Geus, E.J.C., and Ehli,

E.A. (2021). Implementation and implications for polygenic

risk scores in healthcare. Hum. Genomics 15, 46.

37. Wald, N.J., and Old, R. (2019). The illusion of polygenic dis-

ease risk prediction. Genet. Med. 21, 1705–1707.

38. Duncan, L.E., Ratanatharathorn, A., Aiello, A.E., Almli, L.M.,

Amstadter, A.B., Ashley-Koch, A.E., Baker, D.G., Beckham, J.C.,

Bierut, L.J., Bisson, J., et al. (2018). Largest GWAS of PTSD

(N¼20070) yields genetic overlap with schizophrenia and sex

differences in heritability. Mol. Psychiatry 23, 666–673.

39. Nievergelt, C.M., Maihofer, A.X., Klengel, T., Atkinson, E.G.,

Chen, C.-Y., Choi, K.W., Coleman, J.R.I., Dalvie, S., Duncan,

L.E., Gelernter, J., et al. (2019). International meta-analysis

of PTSD genome-wide association studies identifies sex- and

ancestry-specific genetic risk loci. Nat. Commun. 10, 4558.
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