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ABSTRACT 
 

Both goal-directed and automatic processes shape human behavior. These 
processes often conflict, and behavioral control is the decision about which determines 
behavior. Behavioral control, or deciding how to decide, is critical for adaptive behavior. 
However, the neural mechanisms underlying behavioral control remain unclear. We 
performed deep phenotyping of individual dopamine system function by combining PET 
measures of dopamine physiology, functional MRI, and administration of dopaminergic 
drugs in a within-subject, double-blind, placebo-controlled design. Subjects performed a 
rule-based response time task in which we operationalized goal-directed and automatic 
decision-making as model-based and model-free contributions to behavior, respectively. 
We found convergent and causal evidence that dopamine D2/3 receptors in the striatum 
regulate behavioral control by enhancing model-based and blunting model-free 
influences on behavior. In contrast, we found a double dissociation whereby presynaptic 
dopamine synthesis capacity in the striatum was linked to acquiring model-based 
knowledge but not behavioral control. Neuroimaging analysis suggested that striatal 
D2/3 receptors influence behavioral control by adjusting frontostriatal functional 
connectivity. This multimodal study establishes a specific role of D2/3 receptors in 
regulating behavioral control and could contribute to an improved understanding of 
dysregulated behavioral control in clinical disorders affecting dopamine 
neurotransmission.  
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Summary 
 
Behavior is controlled by deliberate and automatic processes1, often 

conceptualized as “model-free” and “model- (or rule-) based decision making, 
respectively2. These two systems can conflict, such as when the desire to purchase a 
pint of ice cream in the supermarket conflicts with one's goal to consume less sugar. 
The process of determining which system governs behavior, or deciding how to decide, 
is termed behavioral control3,4. Inappropriate behavioral control has a significant societal 
impact, from responding to phone notifications while driving to making poor retirement 
savings decisions5. However, the neural mechanisms underlying behavioral control 
remain unclear. 

 
Emerging evidence points to a role for striatal dopamine D2 receptors in 

behavioral control6. Theoretical models of behavioral control suggest that negative 
outcomes should cause decision-makers to rely more strongly on model-based 
information4,7,8. Striatal D2-expressing neurons appear well-suited to perform this 
function. D2-expressing neurons causally update future behavior in response to 
negative outcomes9–11. Moreover, D2-receptors modulate the influence of prefrontal 
inputs onto striatal neurons12–15. Therefore, striatal D2-receptor activation may facilitate 
the use of model-based knowledge. However, evidence that D2 receptors influence the 
balance between model-free and model-based behavior is lacking. 
 
  Behavioral control depends on sufficient learning of model-based and model-
free knowledge: one cannot decide to use model-based knowledge that does not exist. 
Distinct aspects of striatal dopamine physiology may influence model-free learning, 
model-based learning, and behavioral control. There is strong evidence that reward 
prediction errors conveyed by a subset of dopamine neurons underlie model-free 
learning16–18. Additionally, presynaptic dopamine synthesis capacity in the striatum is 
linked to cognitive processes important for model-based learning, including the 
willingness to engage in cognitive effort19,20 and working memory capacity21. We sought 
to distinguish the roles of dopamine synthesis capacity and D2/3 receptor function in 
behavioral control versus the acquisition of model-based knowledge.  
 

In the same human subjects, we employed pharmacological dopamine 
manipulations, PET imaging of multiple aspects of dopamine system physiology, 
functional fMRI probes of frontostriatal circuits, and a behavioral task that distinguishes 
rule-based from model-free contributions to behavior. We found a double dissociation 
between the striatal D2/3 function and dopamine synthesis capacity in their influence on 
behavioral control and the formation of rule knowledge, respectively. Additionally, 
neuroimaging analyses revealed that striatal D2/3 receptors modulated frontostriatal 
functional connectivity in a qualitatively similar manner as behavioral control. These 
results identify a specific role for striatal D2/3 function in regulating behavioral control in 
humans. 
 

 
Results 
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Figure 1. Experimental design and behavioral performance. (A) In a double-blind
and placebo-controlled study, subjects (n = 77) came to the lab for three drug
sessions (placebo, bromocriptine, and tolcapone). Subjects then underwent fMRI
imaging before completing the behavioral task outside the scanner. On different
days, a subset of the subjects underwent PET neuroimaging. (B) Subjects
performed a speeded reaction time task with probabilistic rewards. Each trial
began with a stimulus presented on the left and right side of the screen. The
stimulus features varied in color and shape, and one of the features indicated
high reward probability (“pink” in the example). After a variable interval, a target
appeared centrally. Subjects responded to the target by pressing a key as quickly
as possible. On rewarded trials, subjects received larger rewards for faster
responses. (C) Subjects reported the reward probability of each of the four stimuli
by moving a slider to indicate the probability of reward associated with each
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stimulus. They made these judgments once halfway through the task and once at 
the end of the task. (D) Reaction times were faster for high-reward probability 
stimuli than for low-reward probability stimuli. (E) Explicit probability reports were 
larger for high- than low-reward probability stimuli. Error bars depict the standard 
error of the mean (SEM).  

 
Healthy subjects (n = 77, 48 female sex, median age = 21, age range 18 - 30, 

standard deviation = 2.46 years) performed a speeded reaction-time task to earn 
rewards following ingestion of a placebo, bromocriptine (a D2 agonist), and tolcapone (a 
catechol-O-methyltransferase [COMT] inhibitor) in a within-subject, double-blind study 
(Figure 1A). In the task, targets were preceded by reward-predictive stimuli. One of the 
stimulus features was associated with a higher probability of reward (Figure 1B). 
Additionally, faster responses on rewarded trials led to larger reward outcomes. 
Therefore, subjects could prepare faster responses for reward predictive stimuli to earn 
higher rewards. Subjects responded more quickly to high-reward than low-reward 
stimuli across drug conditions, Z = -7.8, p < .001, β = -2.0 ms (Figure 1C). Additionally, 
subjects developed explicit knowledge of the task rules: subjects rated the high-reward 
stimuli as having a higher reward probability than low-reward stimuli, Z = 52, p < .001, β 
= 21% (Figure 1D). 

 
Our task design aimed to distinguish the contributions of rule-based and model-

free influences on behavior. Rules are abstract representations of task variables (i.e., 
the relationship between stimulus features and reward probability) that constitute a 
model of the task. Subjects could calibrate their responses to the stimuli according to 
the model-free reward value, learned via reinforcement learning22,23 (Figure 2A), or 
according to rule-based knowledge of which feature was reward predictive. Behavioral 
control refers to the relative contribution of reinforcement learning versus rule-based 
knowledge to behavior. Importantly, model-free learning is not the most effective 
response strategy for this task because the rules are fixed. For example, model-free 
learning reduces the value of a high-reward stimulus after a sporadic reward omission, 
which would erroneously lead to slower responses upon the next presentation of that 
stimulus. Humans can learn simple feature-response rules in only a few trials24 and 
could choose to uniformly respond more quickly to high-reward stimuli thereafter (Figure 
2B).  

 
We found that reinforcement learning and task rules (i.e., categorical rule effects) 

were independently associated with reaction times. In a cross-validated analysis (see 
Procedures), reinforcement learning values were associated with faster reaction times, 
Z = -4.0, p < .001, β = -0.71 ms per penny (Figure 2C). Critically, we also found an 
independent influence of task rules on reaction times, Z = -3.2, p = .001, β = -1.1 ms 
(Figure 2C), indicating that subjects used both rule-based and reinforcement-learning-
based strategies in the task. Our task is, therefore, well-suited to assess how dopamine 
physiology influences behavioral control. 
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Figure 2. Dissociating the influence of reinforcement learning from task rules on
reaction times. (A) Example data from one subject showing the trial-by-trial
relationship between reinforcement learning value and reaction times. Note that
the reinforcement learning values have been inverted for ease of visualization
(higher values are associated with faster reaction times). (B) Predicted reaction
times if subjects respond according to task rules. In contrast to reinforcement
learning values, task rule values are constant across trials. (C) Reaction times
are influenced by reinforcement learning, with higher value trials associated with
faster reaction times and task rules, with an overall faster reaction time for high
reward stimuli. Reinforcement learning values were generated using a cross-
validated model-fitting procedure. (D) Subjective reports of task rule knowledge
are positively related to the influence of task rules on reaction times. The x-axis
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denotes the difference in the reward probability ratings between high- and low-
reward probability stimuli. The y-axis denotes the change in RT in ms between 
high- and low-reward stimuli. (E) In contrast to C, subjective reports of task rule 
knowledge are unrelated to the influence of reinforcement learning on reaction 
times. (F) Task rules influence reaction times in both early and late learning. (G) 
Reinforcement learning values influence reaction times more strongly early in 
learning. Figure depicts a partial regression that removes task rule differences 
from reinforcement learning values. In D and E, dots depict one session from one 
subject. Error bars depict the SEM. 
 
We performed several validation checks to determine whether we could reliably 

distinguish the influence of task rules from reinforcement learning. First, our model 
performed well in a parameter recovery study (Table S1)25. Second, we reasoned that 
individual variability in task rule knowledge ought to relate to variability in the influence 
of task rules on reaction times. We operationalized task rule knowledge as the 
difference in the reward probability ratings between high- and low-reward probability 
stimuli. Task rule knowledge was correlated with the influence of task rules on reaction 
times, Z = 2.1, p = .038, β = 1.0 (Figure 2D). In contrast, there was no relationship 
between task rule knowledge and reinforcement learning, p > .1 (Figure 2E).  

 
Finally, as a test of the construct validity of reinforcement learning values, we 

asked whether we could replicate the phenomenon that the influence of reinforcement 
learning fades over time as subjects settle on rule-based response strategies26. 
Consistent with this literature, reinforcement learning was more prominent earlier in 
learning, Z = 2.0, p = .049, β = 64 (Figure 2G). In contrast, task rules influenced 
behavior similarly across task phases (Figure 2F), p > .2. Although reaction times 
decreased across trials, Z = -5.8, p < .001, β = -.084, the stability of task-rule effects on 
reaction times across learning suggests that the reduced influence of reinforcement 
learning across learning is not due to a floor effect. Moreover, the reduction in reaction 
times over time was accounted for when fitting our model (see Procedures). Learning 
phase effects were qualitatively unchanged when modeling trial numbers rather than 
learning blocks. These results demonstrate the reliable separation of rules and 
reinforcement learning. 

 
Dopamine physiology 

 
We hypothesized that ventral striatal D2 receptors influence behavioral control. 

We focused our analyses on the ventral striatum because of its role in model-free and 
model-based learning2. A subset of subjects (n = 52) underwent three positron emission 
tomography (PET) scans to assess distinct aspects of dopamine physiology: D2/3 
receptor availability with [11C]raclopride (raclopride has high affinity to both D2 and D3 
receptors), dopamine synthesis capacity with [18F]fluoro-l-m-tyrosine (FMT), and 
dopamine release using [11C]raclopride displacement with methylphenidate. In the 
placebo condition, we found an interaction between D2/3 availability in the ventral 
striatum and the influence of reinforcement learning values on reaction times, Z = 2.3, p 
= .022, β = 78 (Figure 3A), with higher D2/3 availability corresponding to a reduced 
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influence of reinforcement learning. Furthermore, higher D2/3 availability was
associated with an increased influence of task rules on reaction times on placebo, Z = -
2.8, p = .005, β = -2.0 (Figure 3B). These effects are not due to fluctuations in overall
task performance, as D2/3 availability was not related to average reaction times in the
task nor in a separate simple reaction time task (i.e., with no rewards or predictive
features), all ps > .1. These results show that higher D2/3 availability is associated with
a shift to rule-based, rather than reinforcement-learning-based, behavioral control
(Figure 3C).  

 
 
 

Figure 3. Dopamine D2/3 receptor function shifts behavioral control between 
reinforcement learning and rules. A-C depict placebo, and D-F depict 
bromocriptine. A) Higher D2/3 availability subjects show a reduced influence of 
reinforcement learning on reaction times. Figure depicts a partial regression that 
removes task rule differences from reinforcement learning values. B) In contrast 
to A, higher D2/3 availability subjects show an enhanced influence of task rules 
on reaction times, as evidenced by larger reaction time differences between low 
and high reward stimuli. C) Higher D2/3 availability is associated with a shift in 
behavioral control from reinforcement-learning-based to rule-based. D) 
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Bromocriptine, a D2 agonist, reduces the influence of reinforcement learning in 
subjects with lower D2/3 availability. E) Bromocriptine enhances the influence of 
task rules in subjects with lower D2/3 availability. F) Bromocriptine causes lower 
D2/3 availability subjects to favor the use of rule-based behavioral control. In the 
above panels, the median split of D2/3 availability is for visualization only, and 
the statistical analyses use continuous values. Error bars depict the SEM. 
 
To causally test whether D2 receptors influence behavioral control, we 

administered bromocriptine, a D2 agonist (with low D3 affinity27), in a placebo-
controlled, double-blind study. We predicted that bromocriptine would shift behavioral 
control from reinforcement-learning-based to rule-based in subjects with low D2/3 
availability. There was a three-way interaction between bromocriptine, D2/3 availability, 
and reinforcement learning value, Z = -2.9, p = .004, β = -140, confirming that 
bromocriptine blunts the influence of reinforcement learning in lower, relative to high, 
D2/3 availability subjects (Figure 3D). Moreover, we found a three-way interaction 
between bromocriptine, D2/3 availability, and task rule, Z = 3.1, p = .002, β = 3.0, 
indicating that bromocriptine enhanced rule-based responding in lower, relative to 
higher, D2/3 availability subjects (Figure 3E). These effects are not due to an influence 
of bromocriptine on overall task performance, as bromocriptine did not influence 
average reaction times in the task or in a separate simple reaction time task, all ps > .1. 
These results show that elevated D2 receptor activation, due to higher baseline D2/3 
availability or bromocriptine administration, shifts behavioral control from reinforcement 
learning to task rule use (Figure 3F). 

 
Because bromocriptine binds to D2 receptors throughout the brain, 

bromocriptine’s effects on behavioral control could arise due to its influence on 
prefrontal D2 receptors. It is also possible that our findings are not specific to D2 
receptor activation, and any general stimulation of the dopamine system shifts 
behavioral control. As a negative control for these possibilities, we administered 
tolcapone to the same subjects. Unlike bromocriptine, tolcapone does not bind to 
dopamine receptors but inhibits dopamine clearance by disrupting COMT. Tolcapone is 
thought to influence dopamine clearance more strongly in the prefrontal cortex than the 
striatum28–31. If behavioral control is mediated by prefrontal dopamine tone or 
nonspecific dopamine system activation, tolcapone could influence task behavior 
similarly to bromocriptine. However, we did not find significant two-way interactions 
between tolcapone and either reinforcement learning or rule use, nor three-way 
interactions between tolcapone, D2/3 availability, and reinforcement learning or rule 
use, Table S2. These results indicate a selective role for striatal D2/3 receptors in 
behavioral control.   
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Figure 4: Double dissociation between dopamine synthesis capacity and D2/3
availability on task rule knowledge versus reinforcement learning. A) D2/3
availability does not relate to task rule knowledge. Task rule knowledge is
operationalized as the difference in the reward probability ratings between high-
and low-reward probability stimuli. B) Subjects with higher dopamine synthesis
capacity have better task rule knowledge. C) D2/3 availability influences
reinforcement learning (duplicated from 3A). D) Dopamine synthesis capacity
does not influence reinforcement learning. C and D depict partial regressions that
remove task rule differences from reinforcement learning values. All plots depict
data from the placebo session. In the above panels, the median split of dopamine
synthesis capacity is for visualization purposes only, and statistical analyses use
continuous values. Error bars depict the SEM. Asterisks indicate significant
effects at p < .05.  
 
Rule-based behavior requires knowledge of the task rules, and dopamine system

function has been linked to executive processes that could support the formation and
maintenance of task rules32–34. An alternative explanation of our results is that subjects
with higher D2/3 availability form better knowledge of task rules, resulting in a larger
influence of rules on reaction time. Because we measured subjects’ explicit knowledge
of the reward probabilities associated with the stimuli, we could distinguish the formation
of task rule knowledge from the influence of rule knowledge on reaction times. We
found no relationship between D2/3 availability and task rule knowledge (Figure 4A).  

 
In contrast, dopamine synthesis capacity, which has been linked to executive

processing35,36, was positively correlated with task rule knowledge, Z = 3.5, p < .001, β
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= 2.9 (Figure 4B). Similarly, dopamine synthesis capacity was associated with an 
increased influence of task rules on reaction times, Z = -2.1, p = .039, β = -1.4. In our 
task, behavioral control is the balance between the expression of task rules and 
reinforcement learning in reaction times. Unlike with D2/3 availability (Figure 4C), we did 
not find a relationship between dopamine synthesis capacity and the influence of 
reinforcement learning value, p > .1 (Figure 4D). These results reveal a double 
dissociation between D2/3 availability and dopamine synthesis capacity, with D2/3 
availability influencing reinforcement learning but not task rule knowledge and dopamine 
synthesis capacity showing the opposite relationship. Finally, we did not find evidence 
for a relationship between dopamine release, or DRD2 or COMT genotype on the 
influence of task rules on reaction times (see Supplemental Results).  
 
Dopaminergic influence on frontostriatal connectivity 

What is the mechanism by which D2/3 receptors influence behavioral control? 
Striatal D2 receptors gate the influence of prefrontal inputs on striatal medium spiny 
neurons14,15. Specifically, higher D2/3 receptor activation could enhance the influence of 
prefrontal inputs, facilitating the expression of rule-based behavior. To test this 
hypothesis, we assessed functional MRI data (fMRI) acquired prior to behavioral testing 
in each drug session from subjects with PET imaging and adequate fMRI data (n = 44; 
Figure 1A; see also Procedures).  

 
Because we found an interaction between bromocriptine and ventral striatal D2/3 

availability on behavioral control, we conducted a whole-brain analysis to identify brain 
areas where functional connectivity with the ventral striatum showed the same 
interaction (Figure 5A). This analysis identified a cluster in the bilateral anterior inferior 
frontal sulcus and frontal pole, p < .05, cluster-corrected threshold (Figure 5B, C). We 
extracted individual subject parameter estimates to visualize this interaction (Figure 5D). 
This analysis revealed a qualitatively similar pattern to the behavioral results: 
bromocriptine enhanced frontostriatal connectivity more strongly for subjects with low 
D2/3 availability. These results suggest that D2/3 receptor activation enhances 
behavioral control by increasing the strength of frontostriatal connectivity.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2024. ; https://doi.org/10.1101/2024.09.17.613524doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613524
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

11

Figure 5: D2/3 receptors modulate ventral striatal functional connectivity with the
prefrontal cortex. A) The ventral striatum was used as a seed region to identify
brain regions where connectivity was modulated by D2/3 availability and
bromocriptine, a D2 agonist. B) Regions within the prefrontal cortex exhibited
connectivity with the ventral striatum modulated by D2/3 availability and
bromocriptine. C) Depiction of activations in B on the cortical surface. Darker
gray indicates sulci, and lighter gray indicates gyri. The inferior frontal sulcus and
the frontopolar cortex showed connectivity modulated by D2/3 availability and
bromocriptine. D) Visualization of the interaction in B and C from the frontopolar
cortex/inferior frontal sulcus. Bromocriptine enhances connectivity between these
regions and the ventral striatum more strongly for subjects with low dopamine
synthesis capacity. Because this figure was derived from the group activation
map, it should be interpreted as a visualization of the interaction and not an
independent statistical test.  

 
  

 
Discussion 
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Our results show that activation of D2/3 receptors increases the use of rule-
based over model-free knowledge without influencing the acquisition of rule knowledge. 
In contrast, higher dopamine synthesis capacity was linked to better explicit knowledge 
of the task rules and a stronger influence of that knowledge on reaction times. 
Importantly, dopamine synthesis capacity was unrelated to the influence of 
reinforcement learning. This double dissociation shows that dopamine synthesis 
capacity is linked to the formation and use of model-based knowledge but does not 
influence behavioral control.  

 
Previous reports have found mixed evidence for a relationship between 

presynaptic dopamine in the striatum and model-based behavior in a two-stage decision 
task37,38. However, these studies did not separately examine the acquisition of model-
based knowledge. Our results show that striatal dopamine synthesis capacity influences 
model-based behavior indirectly by influencing the formation of model-based knowledge 
rather than directly regulating behavioral control. This interpretation is consistent with 
recent data showing that dopamine synthesis capacity is associated with the willingness 
to engage in cognitive effort19. More broadly, our results show that dissociable 
components of the striatal dopamine system influence the formation of model-free and 
model-based knowledge and the decision about which to use.  
 

Our neuroimaging findings showed that D2/3 receptors also influence the 
strength of frontostriatal connectivity, offering a mechanism by which activation of D2/3 
receptors could increase behavioral control. The regulation of behavioral control by 
striatal D2/3 receptors may complement the role of prefrontal D1 receptors in working 
memory maintenance39,40, which is required for many model-based behaviors. It is also 
possible that prefrontal D2/3 receptors contribute to our results. Notably, our PET 
findings are specifically linked to ventral striatal D2/3 availability, and D2/3 receptors are 
much less strongly expressed in the prefrontal cortex than in the striatum41,42. 
Additionally, tolcapone did not influence behavioral control. Nonetheless, we cannot rule 
out a contribution of prefrontal D2/3 receptors, and future research is needed to 
disentangle the relative contributions of D2/3 receptors in the prefrontal cortex and the 
striatum in behavioral control. 

 
D2 receptors may be particularly well-suited to regulating behavioral control 

because of their role in responding to negative feedback9. Our results are consistent 
with a model in which the D2 system responds to negative feedback by activating 
model-based behavioral control. The D2 system may enable habitual behavioral control 
when outcomes are generally positive but trigger a shift to more reliable model-based 
decision-making upon salient losses4,43. However, our study was not designed to 
compare the impacts of losses versus rewards, and future work is needed to test this 
hypothesis.  

 
 Our results show that the influence of bromocriptine on behavioral control 
depends on the baseline state of an individual’s D2 availability. This baseline 
dependence has been observed in other aspects of cognition where administration of 
the same drug can have opposite effects depending on individual dopamine 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2024. ; https://doi.org/10.1101/2024.09.17.613524doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613524
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

13 

physiology44. These inverted-U relationships between dopamine and cognition may help 
to explain inconsistent findings in previous investigations into the influence of dopamine 
on behavioral control. While some studies have found that administration of the 
dopaminergic drug L-DOPA enhances45,46 model-based behavior in a two-step decision-
making task, another study did not find this relationship47. Additionally, the D2/3 
antagonist amisulpride increased model-based behavior in a two-step decision-making 
task6. L-DOPA enhances dopamine release, which will increase the activation of many 
classes of dopamine receptors with differing influences on behavior and differing 
baseline expression levels. Most importantly, our results indicate an inverted-U 
relationship between activation of D2/3 receptors and behavioral control36,48,49. 
Therefore, modulation of D2/3 receptors could have opposing consequences for 
behavioral control depending on the baseline availability of D2/3 receptors.  

 
This inverted-U relationship between D2/3 and behavioral control has relevance 

to clinical disorders linked to disruption in the dopamine system. Schizophrenia, which is 
linked to an overexpression of D2 receptors and can be treated with D2 antagonists50, is 
associated with reduced behavioral control51 and disrupted performance in the task 
used in this study52,53. Although the authors are not aware of data from Parkinson’s 
disease patients performing this task, administration of bromocriptine or other dopamine 
agonists in Parkinson’s disease patients can cause deficits in other forms of behavioral 
control, including compulsive gambling, binge eating, or overspending54,55.  

 
The direction of our findings contrasts with these clinical patterns of poorer 

behavioral control linked to overexpression or overactivation of D2 receptors. However, 
an inverted-U model can account for this discrepancy36,48,49. Low D2/3 subjects in our 
study benefit from a moderate dose of bromocriptine, whereas very high D2/3 activation 
due to clinical state or pharmacological intervention can impair behavioral control. 
Ultimately, a mechanistic understanding of the neural basis of behavioral control could 
lead to improved treatment options for psychiatric and neurological disorders linked to 
dopamine system dysfunction. 

 
 

 
Methods 

 
Procedure Overview 

Drug and genotype procedures have been previously described56, and key 
details are reproduced here. Individuals meeting the advertised inclusion criteria were 
invited to the Helen Wills Neuroscience Institute at the University of California, Berkeley, 
to provide a saliva sample for genotyping. Subjects meeting medical and genotype 
criteria (see below) were scheduled for three pharmacological study sessions to be 
completed on different days. Between 2 to 86 days separated subsequent sessions 
(median = 7, mean = 10.2, SD = 9.7). At each of the three sessions, subjects were 
administered a single dose of bromocriptine, tolcapone, or placebo, after which they 
performed a cognitive task in an MRI scanner, the results of which have been previously 
reported 56.  
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Following the scanner task and outside of the scanner, they performed the 

probabilistic response time task described here. Although overall session start times 
varied between 7 a.m. and 4 p.m., efforts were made to keep start times consistent 
across sessions for each subject. A subset of the subjects performed two PET sessions. 
All subjects gave written, informed consent in accordance with the procedures approved 
by the Committee for the Protection of Human Subjects at the University of California, 
San Francisco, the University of California, Berkeley and the Lawrence Berkeley 
National Laboratory and were compensated for their participation. 

 
Subjects 

Healthy young subjects were recruited for genetic sampling from the University of 
California, Berkeley, community, and surrounding area using online and print 
advertisements. Subjects affirmed at the time of genetic sampling that they met initial 
inclusion criteria: (1) 18–30 years old, (2) right-handed, (3) current weight greater than 
100 pounds, (4) able to read and speak English fluently, (5) nondrinker or light drinker 
(women: <7 alcoholic drinks/week; men: <8 alcoholic drinks/week), (8) no recent history 
of substance abuse, (9) no history of neurological or psychiatric disorder, (10) not 
currently using psychoactive medication or street drugs, (11) not pregnant, and (12) no 
contraindications to MRI (e.g., no claustrophobia, pacemakers, history of seizures, or 
MRI-incompatible metal in body).  

 
Genetically eligible subjects underwent a medical screening with an on-site 

physician or nurse practitioner and a liver function test to ensure there were no medical 
contraindications to tolcapone and bromocriptine use and to verify the absence of 
neurological and psychiatric history. Seventy-seven subjects completed the behavioral 
study, not including three who dropped out. We did not exclude any subjects from the 
behavioral analyses. One subject did not perform the bromocriptine session, but their 
placebo and tolcapone data are included.  

 
Genotype 

Saliva samples were obtained using Oragene collection kits with stabilizing liquid 
(DNA Genotek). Genotyping of COMT (rs4680) and Taq1A (rs1800497) SNP testing 
was performed at the UCSF Genomics Core, Vincent J. Coates Genomics Sequencing 
Laboratory, and Kashi Clinical Laboratories using polymerase chain reaction-based 
TaqMan technology (Applied Biosystems). Only individuals who were homozygous for 
either the Val or Met allele of the COMT polymorphism were invited to participate in the 
remainder of the study. Taq1A genotypes were binned according to the presence 
(“A1+”) or absence (“A1−”) of any copies of the A1+ minor allele. Subjects were 
selected based on compound COMT/Taq1A genotype, with roughly equal 
representation in each of the following groupings: Met/A1+ (n = 20), Val/A1+ (n = 17), 
Met/A1− (n = 21), Val/A1− (n = 19). 

 
Drugs 

During each session, subjects received a single oral dose of bromocriptine (1.25 
mg), tolcapone (200 mg), or placebo. These doses were selected based on their 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2024. ; https://doi.org/10.1101/2024.09.17.613524doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613524
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

15 

established efficacy in eliciting changes in cognitive performance33,57–59. After 
administration, bromocriptine reaches peak plasma concentrations between 0.5 and 3.5 
hr (mean time to peak = 1.7 hr) and has an elimination half-life of 3–7 hr60,61. Tolcapone 
reaches peak plasma concentration, on average, 1.8 hr after oral administration and 
has an elimination half-life of about 2 hr62. Subjects began the task approximately 3.1 hr 
after drug/placebo administration, after the most probable peak concentration time but 
within the elimination half-life of both drugs.  

 
The order of drug administration was double-blind and counterbalanced across 

subjects (and within genotype groups). After each session, subjects were asked 
whether they received a placebo or a drug that day. As a group, subjects demonstrated 
no better than chance-level accuracy in their guesses, and rates of “drug” vs. “placebo” 
guesses did not differ significantly across the three sessions, χ2(2) = 3.2, p = .2 
(excludes four omitted responses).  

 
PET procedures 

Fifty-two of the subjects completed three PET scans. The PET procedures and 
analysis techniques are described in prior reports using this dataset63. Briefly, subjects 
underwent an [18F]fluoro-l-m-tyrosine (FMT) PET scan to measure dopamine synthesis 
capacity, a [11C]raclopride PET scan to measure D2/3 receptor occupancy, and a 
[11C]raclopride PET scan one hour following a 30mg oral dose of methylphenidate to 
measure dopamine release. All PET data were acquired using a Siemens Biograph 
Truepoint 6 PET/CT scanner. Data were reconstructed using an ordered subset 
expectation maximization algorithm with weighted attenuation, corrected for scatter, 
smoothed with a 4�mm full width at half maximum (FWHM) kernel, and motion 
corrected. Ventral striatal ROIs were hand-drawn on subjects’ T1-weighted images 
according to established procedures64. FMT data were analyzed using a reference 
region Patlak model65 to determine net tracer influx (Ki) as the outcome variable of 
interest reflecting dopamine synthesis capacity. Raclopride analyses used a reference 
tissue reversible tracer mode66

  to calculate non-displaceable binding potential (BPND) 
as the outcome of interest reflecting receptor availability. 

 
MRI procedures 

Functional and anatomical MRI data was obtained during each drug session with 
a Siemens 3T Trio Tim scanner at UC Berkeley's Brain Imaging Center. Of the fifty-two 
subjects with PET data, one subject did not complete the placebo MRI session, three 
subjects had unusable MRI acquisitions, and four subjects were excluded for poor 
scanner task performance. This resulted in a sample of forty-four subjects with PET, 
fMRI, and behavioral data. After preprocessing and regressing task and noise effects 
from the task-fMRI data67,68 (Supplemental Methods), we performed functional 
connectivity analyses using a multilevel model in FSL 6.0.3. At the individual run level, 
we created a model using the average signal from the same ventral striatal mask used 
in the PET analyses, the whole-brain signal, and a regressor containing censored 
volumes69. At the subject level, we modeled the effects of both drugs on ventral striatal 
functional connectivity. At the group level, we modeled the effects of ventral striatal D2/3 
availability and its interaction with the drug condition on ventral striatal functional 
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connectivity. Z-statistic images were thresholded non-parametrically using clusters 
determined by Z>1.7 and a (corrected) cluster significance threshold of P=0.0570. To 
visualize the activation clusters on the surface mesh, we used RF-ANTs to register 
results to fsaverage surface coordinates71.  

 
Task design 
 Subjects completed a speeded reaction time task with probabilistic rewards 
known as the salience attribution task52,53. Each trial began with a stimulus presented 
on both the left and right sides of the screen. After a variable interval, a central target 
appeared. Subjects were instructed to respond to the target by pressing a key as 
quickly as possible.  

 
Subjects were not told whether a trial was rewarded or unrewarded. However, 

the pre-target cues provided predictive information. There were four cue stimuli that 
could have one of two colors and one of two shapes. One feature predicted a reward 
with an 85% probability (e.g., “pink” in Figure 1B), and the other feature of that 
dimension (e.g., “green”) predicted a reward with a 15% probability. The other 
dimension (e.g., “shape”) did not predict reward. To facilitate subjects’ use of rules, 
these probabilities were fixed for the task’s 128 trial duration. The reward-predictive 
dimension was balanced across subjects and drug conditions. To prevent interference 
across sessions, new shapes and colors were used in each drug session and 
counterbalanced across subjects.  We refer to the two stimuli with the reward predictive 
feature as “high-reward stimuli” and the other two stimuli as “low-reward stimuli.”  
 

On rewarded trials, subjects earned more monetary reward for faster responses, 
provided they responded faster than a predetermined threshold. This threshold was set 
individually and for each session based on a simple RT task immediately preceding the 
salience attribution task. In the simple RT task, subjects responded to the target for 35 
trials without any informative cues and received no feedback or rewards. Monetary 
rewards were accompanied by a coin sound. If responses on reward trials were too 
slow, or subjects responded before the target appeared, they were given feedback 
(“Miss” or “Too Early,” accompanied by a “beep” sound). However, they earned a small 
($.02) reward to ensure equal reward probabilities across subjects and sessions. On 
unrewarded trials, subjects received no feedback about their performance and no 
monetary reward. 
 

Subjects were also asked to explicitly report the reward probability of each of the 
four stimuli using a slider that ranged from 0 to 100%. Subjects made these judgments 
once halfway through the task and again at the end of the task. 

 
Data analysis 

Behavioral data were analyzed using mixed linear models implemented in 
statsmodels 0.11.0. Drug conditions were treatment-coded with the placebo condition 
as the baseline. All other effects were deviation coded. PET values were z-scored prior 
to inclusion in models. Although some figures show PET data as median split for 
visualization purposes, all statistical analyses were conducted on continuous data. All 
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RL analyses included reinforcement learning value and task rule as regressors, as well 
as their two and three-way interactions with drug and PET measures in the same 
model. All mixed-effects models contained random intercepts for each subject. We 
chose this random effects approach because theoretical and modeling work shows that 
mixed-effects models generalize most effectively when they use the maximal random 
effects structure that is justified by the design and does not create convergence 
failures72. Random slopes caused convergence failures and were removed from our 
models. Analysis of the simple RT task preceding the main task included trial number as 
a nuisance covariate. 

 
Due to a computer error, reaction times slower than the threshold time were not 

recorded, which occurred in 9.6% of trials. Nevertheless, these trials contain information 
because we know that subjects responded more slowly than the response threshold. 
Therefore, we implemented a data imputation procedure to estimate these reaction 
times (Supplemental Methods). We note that this procedure did not change the 
qualitative patterns in the reported results.  

 
Reinforcement learning model 

We used reaction time data to infer learning in the task, an approach used 
successfully in similar tasks73–75. The key concept of the model is that trials with higher 
values should be associated with faster reaction times. We modeled reaction times as a 
function of reinforcement learning value using linear regression. We quantitatively 
compared several model variations (Supplemental Methods), and the best-fitting model 
is described here. The value of each stimulus was defined as the sum of the weights of 
the features comprising that stimulus:  

1) �����  �  ∑ ��	���  
  ����  

Where ����� is the value of stimulus s on trial t, the �� are the weights of the different 
features (e.g., square, circle, green, purple), and 1 is an indicator function equal to one 
if the feature was present on that trial and 0 otherwise. This model learns the values of 
the individual features and computes the stimulus value as the sum of the component 
feature values. The model generalizes information learned about individual features 
(e.g., “square”) across different stimuli (“purple square” and “green square”), accurately 
reflecting the underlying reward structure of the task. 

After feedback, the weights of features present on that trial are updated 
according to the Rescorla-Wagner rule: 

2� ��
���  � ��

�  �  ���  � ������  �� ��  
  �� 

Where Rt is the reward earned on trial t and α, the learning rate, is determined 
separately for rewards and reward omissions76: 

3)  �  ���  �� �� � 0; 

 �  �	
  �� �� � 0 
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Finally, to reflect memory decay77, weights of features not present on a trial are 
decremented by a free parameter d, 

4� ��
���  � ���

�
  �� ��  � �� 

 
We jointly fit the parameters of the regression model and the parameters of a 

reinforcement learning model using Scipy’s minimize function. We calculated likelihoods 
from the regression fits using: 

5� �� �  �����
�

√��
) � 

�

���
∑ �� � � ∑ !�"�

�
� ���

� � �  

Where n is the number of trials, the "�
� are different predictors of RT at trial t, and 

!� are regression coefficients. In addition to value, we included three other mean-
centered predictors of RT ("�) in the model: 1) an indicator function of whether the last 
trial was rewarded ("�	������������; to account for post-reward slowing) 78,79, 2) a linear 
function of trial number within a block ("�����), and 3) a main effect of the learning block 
("�����). The latter two regressors isolate value-related changes in RT from stimulus-
general improvement in RTs over time.  

  
We fit the data of all subjects and sessions simultaneously to compute 

parameters of the reinforcement learning model ( ���, �	
,d, 
!����	,!�	������������,!�����,!�����; Table S1) and used these parameters to generate 
reinforcement learning value estimates for every trial. Pooling subjects has a 
regularizing effect on parameter estimates that helps to avoid over-fitting and improve 
parameter identifiability (See Parameter recovery study in Supplemental Methods)2,24,74. 
Pooling over sessions ensures that differences observed between drug conditions are 
not due to biased model-fitting to an individual condition. Thus, our modeling approach 
was designed to deliver robust estimates of trial-by-trial value, enabling us to assess 
how dopaminergic drugs and PET measures influence behavioral control.  

 
To assess whether reinforcement learning and task rules contribute to behavior 

in the task (Figure 2C), we used leave-one-subject-out cross-validated model-fitting. For 
each subject, we fit the parameters of the reinforcement learning model to group data 
composed of all the other subjects. We used these parameters to generate predicted 
reinforcement learning values for that subject. This approach enables a statistically 
independent test of whether reinforcement learning values influence reaction times. 
Having established this effect, we used the reinforcement learning values described 
above (which use the same set of parameters for all subjects) for subsequent analyses.  

 
Data Availability Statement 
Analysis code will be made available on GitHub at the time of publication. 
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