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Abstract: The development of new radiotherapy technologies is a long-term process, which requires
proof of the general concept. However, clinical requirements with respect to beam quality and
controlled dose delivery may not yet be fulfilled. Exemplarily, the necessary radiobiological
experiments with laser-accelerated electrons are challenged by fluctuating beam intensities. Based on
tumour-growth data and dose values obtained in an in vivo trial comparing the biological efficacy of
laser-driven and conventional clinical Linac electrons, different statistical approaches for analysis were
compared. In addition to the classical averaging per dose point, which excludes animals with high
dose deviations, multivariable linear regression, Cox regression and a Monte-Carlo-based approach
were tested as alternatives that include all animals in statistical analysis. The four methods were
compared based on experimental and simulated data. All applied statistical approaches revealed
a comparable radiobiological efficacy of laser-driven and conventional Linac electrons, confirming
the experimental conclusion. In the simulation study, significant differences in dose response were
detected by all methods except for the conventional method, which showed the lowest power.
Thereby, the alternative statistical approaches may allow for reducing the total number of required
animals in future pre-clinical trials.

Keywords: pre-clinical studies; statistical analysis; experimental beams; radiotherapy

1. Introduction

The development of new radiotherapy (RT) beam delivery techniques, e.g., laser driven particle
acceleration [1], micro beam RT [2] or ultra-high dose rate irradiation (FLASH) [3], is a long-term
process, where the general concept should be proven early on, even though clinical requirements,
such as a stable dose delivery, are not yet fulfilled. In particular, with regard to the later application in
RT, the respective concepts should be tested in a translational manner [4] to validate their ability of
tumour killing and the effects on the surrounding normal tissue. Starting with physical optimization
and in vitro experiments, a successful concept will be validated by in vivo trials before considering it
for clinical application. Regarding the requirements of stability and reproducibility of beam parameters,
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animal trials are more challenging than in vitro experiments, since these trials cannot be prolonged or
repeated easily for ethical reasons.

Deviations from the prescribed dose may occur in all experiments, where pulsed radiation is
applied. Compared to continuous beam delivery, the pulsed mode is most often harder to control and
might result in over- or under-dosage. Another much less likely scenario is the failure of dosimetric
equipment or an accidental change of beam parameters, e.g., by using wrong settings of beam current,
beam filtration or treatment distance. For the statistical analysis of the corresponding data, it is
important to apply methods that allow for the inclusion of data points with deviations in dose delivery.
These methods achieve a higher power for detecting differences between differing treatments, which is
of particular importance for animal trials with their limited number of individuals and the current aim
to reduce animal numbers.

One particular example, for which a stable dose delivery is challenging, is the concept of
laser-driven particle acceleration. Its aim was to provide compact proton and ion accelerators
that might fit into existing hospitals [5,6] and replace the large particle accelerators. Due to the
acceleration by means of high-intensity lasers [6] the particle beams produced by this new technique
are characterized by very short (picosecond) beam pulses of very high pulse dose rates in the
order of 1010 Gy/s. In comparison, clinical RT typically delivers dose rates of up to about 103 Gy/s.
Consequently, the radiobiological properties of these new particle beams have to be investigated before
any clinical application.

Starting more than one decade ago, the first in vitro experiments with laser-driven electrons [7]
and protons [8–10] were followed by two in vivo trials [11,12] aiming on the biological effects of
pulsed laser-driven electron beams. In order to compare the radiobiological effect of laser-driven
and conventional clinical Linac electrons, the tumour growth time after treatment with two different
dose groups was evaluated at both accelerators [12]. While the dose delivery of the clinical Linac
was stable and reproducible, leading to a maximum deviation from the prescribed dose of about 2%,
beam-intensity fluctuations of the laser-accelerated electrons were not fully compensated by online
dosimetry, which resulted in deviations of more than 10 % from the prescribed dose as measured
by retrospective absolute film dosimetry. The common methods for evaluating tumour-growth data,
however, are based on grouping of animals treated with a similar dose (e.g., [13–16]). Consequently,
20 of 47 animals treated with laser-driven electrons were excluded from analysis, reducing the statistical
power to detect significant differences between the beam qualities.

On the basis of the data derived by Oppelt et al. [12], the present work describes and compares
different statistical approaches with the goal to maximize the number of animals in the analysis of
in vivo trials by including animals with deviations from the prescribed dose. Methods feasible with
commercial statistical software, like multivariable linear regression and Cox regression, but also a
Monte-Carlo-based approach were applied to the experimental dataset. In addition, a simulated
dataset with a difference in dose-response between the irradiation groups was used to evaluate the
statistical approaches with respect to their applicability, usability and validity.

2. Results

The results of the different statistical methods for analysing experimental and simulated
tumour-growth data are summarized in Tables 1 and 2, respectively.

For the experimental data, no significant differences between the beam qualities were observed
by any of the statistical methods (Table 1), as reported previously [12]. The tumour-growth time
to reach the sevenfold volume (tV7) in the 3 Gy group was somewhat longer after irradiation with
laser-driven electrons (mean 16.46 days) than after irradiation with the Linac (mean 13.88 days).
However, this difference was not statistically significant, as estimated by the conventional method
(p = 0.14) and by the Monte-Carlo-based method (p = 0.18). Figure 1a shows the experimental data and
the corresponding linear regression lines, which are close to each other.
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Table 1. Summary of relevant parameters returned by the different statistical methods applied to
the experimentally determined tumour growth data in dependence on dose (D). Units (days, Gy) are
ignored for clarity.

Parameter Laser-Driven Electrons Linac Electrons p Value

Conventional Analysis

mean sd N mean sd N

tV7(0 Gy) 9.66 2.87 41 9.90 2.64 20 0.75
tV7(3 Gy) 16.46 5.41 17 13.88 3.97 13 0.14
tV7(6 Gy) 22.22 7.64 10 20.98 6.05 14 0.68

Monte-Carlo-Based Method

Mean sd Mean sd p Value

n (0 Gy vs. 3 Gy) 9.67 0.52 9.89 0.71 0.83
A (0 Gy vs. 3 Gy) 2.13 0.41 1.33 0.42 0.18
n (3 Gy vs. 6 Gy) 9.39 4.95 6.75 2.66 0.63
A (3 Gy vs. 6 Gy) 2.24 1.04 2.38 0.65 0.90

Linear Regression

Value sd Value sd

bDose 2.09 0.23 1.82 0.25
b0 9.70 0.69 9.53 0.90

value sd

bDose 2.09 0.22
bGroup −0.17 1.17 0.89

bDoseGroup −0.27 0.34 0.43
b0 9.70 0.67

∆R2 0.006 0.46

Cox Regression

Value sd Value sd

βDose −0.43 0.063 −0.44 0.083

Value sd

βDose −0.45 0.060
βGroup 0.12 0.26 0.66
βDoseGroup 0.053 0.078 0.50

∆2*log-likelihood 2.08 0.35

Conventional analysis: tV7(D): Time required to observe sevenfold tumour volume increase (days), sd: Standard
deviation, N: Number of animals; Monte-Carlo-based method: n, A: mean intercept and slope (tV7 = AD + n) of
randomly selected pairs of tV7 values of neighbouring dose groups; linear regression: top: Univariable regression
using dose (bDose) and intercept (b0) for each irradiation technique, bottom: Multivariable regression including
dose (bDose), irradiation group (bGroup), their interaction term (bDoseGroup) and an intercept (b0) for the combined
dataset; Cox regression: Top: Including dose (βDose) for each irradiation technique and bottom: Including dose
(βDose), irradiation group (βGroup) and their interaction term (βDoseGroup) for the combined dataset.

In addition to the experimental data, a simulated dataset was generated, in which the laser-driven
irradiation led to a dose-response slope that was 50% larger than that of the Linac (Figure 1b). Results
of the statistical tests are presented in Table 2. The difference in the slope of the dose response between
the groups was not detected using the conventional method (p = 0.15). All other statistical methods,
however, were able to identify this difference. The Monte-Carlo-based method identified a difference
in the slope between 0 Gy and 3 Gy (p = 0.012). In linear regression, the differing dose response was
reflected by the significant interaction term bDoseGroup (p = 0.006) and by the overall R2 test (p = 0.001).
Similar results were obtained using Cox regression, where the differing dose-response relationship
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was reflected by the interaction term βDoseGroup that was significantly different from zero (p = 0.049)
and by the overall likelihood-ratio test (p = 0.010).

The presented simulation was repeated 10000 times with different randomly chosen dose and tV7

values. Overall, the power to detect the existing difference between the groups was only 42% for the
conventional method, while the Monte-Carlo-based method reached a higher power of 75%, linear
regression achieved a power of 93% and Cox regression of 87%, Table 2.

Table 2. Summary of relevant parameters returned by the different statistical methods applied to the
simulated tumour-growth data. Units (days, Gy) are ignored for clarity. Significant p-values are marked
in bold. The power was estimated based on 10000 repetitions of the simulation.

Parameter Laser-Driven Electrons Linac Electrons p-Value Power

Conventional Analysis

Value sd N Value sd N

tV7 (0 Gy) 8.31 2.50 20 9.38 2.69 20 0.20
tV7 (3 Gy) 17.04 4.55 4 14.49 3.07 20 0.35
tV7 (6 Gy) 26.58 8.10 7 21.28 6.09 20 0.15 0.42

Monte-Carlo-Based Method

Mean sd Mean sd

n (0 Gy vs. 3 Gy) 8.31 0.54 9.38 0.59 0.17
A (0 Gy vs. 3 Gy) 3.26 0.54 1.70 0.30 0.008
n (3 Gy vs. 6 Gy) 7.65 3.72 7.68 1.86 0.99
A (3 Gy vs. 6 Gy) 3.03 0.83 2.26 0.49 0.44 0.75

Linear Regression

Value sd Value sd

bDose 2.94 0.26 1.98 0.22
b0 8.38 0.99 9.10 0.86

Value sd

bDose 2.94 0.24
bGroup 0.72 1.32 0.59

bDoseGroup −0.96 0.34 0.006
b0 8.38 0.92

∆R2 0.041 0.001 0.93

Cox Regression

Value sd Value sd

βDose −0.71 0.10 −0.60 0.089

Value sd

βDose −0.73 0.080
βGroup −0.04 0.30 0.99
βDoseGroup 0.16 0.080 0.049

∆2*log-likelihood 9.25 0.010 0.87

Conventional analysis: tV7(D): Time required to observe sevenfold tumour volume increase (days), sd: Standard
deviation, N: Number of animals; Monte-Carlo-based method: n, A: mean intercept and slope (tV7 = AD + n) of
randomly selected pairs of tV7 values of neighbouring dose groups; linear regression: Top: Univariable regression
using dose (bDose) and intercept (b0) for each irradiation technique, bottom: multivariable regression including dose
(bDose), irradiation group (bGroup), their interaction term (bDoseGroup) and an intercept (b0) for the combined dataset;
Cox regression: Top: Including dose (βDose) for each irradiation technique, and bottom: Including dose (βDose),
irradiation group (βGroup) and their interaction term (βDoseGroup) for the combined dataset.
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Figure 1. Experimental (a) and simulated (b) tumour growth data, i.e., time to achieve sevenfold 
relative volume increase (tV7), and the corresponding linear regressions for treatment with laser-
driven (black squares) and Linac electrons (blue triangles). For the experimental data, the dose region 
useable for conventional analysis is marked in grey. Therefore, black squares outside the grey area 
mark mice, which were not included in the conventional analysis. 

3. Discussion 

The starting point for the statistical analyses performed in this manuscript was the substantial 
exclusion rate of animals from the analysis of a treatment comparison study [12] due to deviations 
from the prescribed dose. Following the translational chain from bench to bedside, the radiobiological 
effectivity of laser-driven electrons and conventional Linac electrons was compared to reveal 
potential pitfalls of the new acceleration regime. Although the campaign itself was performed 
successfully, 43% of all animals treated with laser-driven electrons had to be excluded from analysis 
due to deviations of more than 10% from the prescribed radiation dose. This lowers the statistical 
power to reveal a significant difference between the beam qualities.  

Conventionally, growth data from xenograft subcutaneous tumours were obtained for 
dedicated, pre-defined treatment groups [13–17] with a sufficient number of animals. Since the 
allocation in different groups took place before treatment, deviations from the treatment schedule 
and censoring of animals during follow-up must be taken into account. The latter is considered both 
in planning of an animal trial and in analysis using approaches that allow for handling censored 
tumour growth data [13,18,19]. At conventional accelerators, like X-ray tubes or clinical Linacs, 
deviations from the scheduled treatment regime are very rare. Hence, there was no standard 
approach available that can handle data with substantial dose deviations as occur, e.g., at the 
experimental laser-driven accelerator considered here. In a similar experiment with pulsed proton 

Figure 1. Experimental (a) and simulated (b) tumour growth data, i.e., time to achieve sevenfold
relative volume increase (tV7), and the corresponding linear regressions for treatment with laser-driven
(black squares) and Linac electrons (blue triangles). For the experimental data, the dose region useable
for conventional analysis is marked in grey. Therefore, black squares outside the grey area mark mice,
which were not included in the conventional analysis.

3. Discussion

The starting point for the statistical analyses performed in this manuscript was the substantial
exclusion rate of animals from the analysis of a treatment comparison study [12] due to deviations
from the prescribed dose. Following the translational chain from bench to bedside, the radiobiological
effectivity of laser-driven electrons and conventional Linac electrons was compared to reveal potential
pitfalls of the new acceleration regime. Although the campaign itself was performed successfully, 43%
of all animals treated with laser-driven electrons had to be excluded from analysis due to deviations
of more than 10% from the prescribed radiation dose. This lowers the statistical power to reveal a
significant difference between the beam qualities.

Conventionally, growth data from xenograft subcutaneous tumours were obtained for dedicated,
pre-defined treatment groups [13–17] with a sufficient number of animals. Since the allocation in
different groups took place before treatment, deviations from the treatment schedule and censoring
of animals during follow-up must be taken into account. The latter is considered both in planning
of an animal trial and in analysis using approaches that allow for handling censored tumour growth
data [13,18,19]. At conventional accelerators, like X-ray tubes or clinical Linacs, deviations from the
scheduled treatment regime are very rare. Hence, there was no standard approach available that can
handle data with substantial dose deviations as occur, e.g., at the experimental laser-driven accelerator
considered here. In a similar experiment with pulsed proton beams, Zlobinskaya et al. [20] circumvented
the grouping problem by analysing the growth time for each of the treated animals individually.
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To improve the analysis of animal trials at experimental radiation sources, in this manuscript,
different statistical approaches were compared based on the data published by Oppelt et al. [12].
We considered the conventional method, including only animals with an applied dose close to the
prescribed dose and as alternatives a Monte-Carlo-based method, linear regression and Cox regression,
which allow for including animals with applied doses that strongly deviate from the prescribed dose.
As for the previous publication of Oppelt et al. [12] no significant differences between Linac and
laser-accelerated electron treatment were obtained for the time to sevenfold tumour growth (tV7)
regardless the method applied. Also for other endpoints, i.e., tV3, tV5 and tV10, a dose response similar to
Figure 1a with no significant difference between the radiation sources was observed and the variability
between individual mice was similar to tV7. The large variability of the tumour growth data (Figure 1a)
complicates the comparison of the two treatment regimens and the detection of significant differences
between the radiation modalities. With respect to this large variability, one may question the previously
applied threshold of the conventional method excluding animals with more than 10% deviation from
the prescribed dose. Increasing this threshold would improve the power of the conventional method,
while the precise assignment of mice to particular dose groups would be lost.

Compared to patient treatment with large inter-patient variability, in preclinical experiments
aiming on the comparison of treatment regimes, one tries to minimize the variability as much as
possible. For the experiment described in Oppelt et al. [12], a previously established protocol was
applied, which used mice of a strain with defined immune status, age and radiation doses, showing
measurable differences between dose groups. However, despite standardized handling procedures,
subtle changes, i.e., in the number of tumour cells inoculated in the mice [12], in the position of
inoculation, in the stress status of the individual mouse etc., might result in variations in the tumour
radiation response, as visible in Figure 1a. This biological variability is hard to predict and must be
taken into account by a sufficient number of animals per group and improved tumour models [16].

In order to reveal advantages of the applied statistical methods, a dataset was simulated in which
laser-driven electrons deliberately led to a steeper dose-response curve than Linac electrons. Overall,
the conventional method, excluding animals with doses too far from the prescribed dose, was able to
detect the differing dose response only with a probability of 42%, while the other methods showed
a power of more than 75%. The highest power was reached by linear regression, which is due to
the assumed linear dose-response relationship in the simulation. It is expected that for a non-linear
dose response, the power of linear regression would decrease, while the power of the nonparametric
Monte-Carlo-based method would remain stable.

The considered statistical methods have different advantages and disadvantages: The conventional
method applies t-tests for every dose level. In addition to the reduced power due to large drop-out,
repeated testing generates a multiple testing problem and applying corresponding corrections would
further reduce the power. However, the conventional method does not use a specific assumption
on the dose-response relationship, as is required for the regression approaches. The developed
Monte-Carlo-based method is similar to the conventional method. It includes all data, does not
assume a dose-response relationship and analyses the change in response in neighbouring dose groups.
However, in contrast to the other methods, it is not available in standard statistical software and first
has to be implemented. While linear regression assumes a linear dose response, Cox regression models
the hazard function of tumour recurrence that is related to the tumour control probability using a
linear dose dependency. It is also able to handle animals that do not reach the considered endpoint as
censored observations, thereby further increasing the sample size. More advanced models like linear
mixed models or time-dependent Cox regression also with non-linear terms may be considered as
further alternatives [21].
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4. Materials and Methods

4.1. Input Data Sets

4.1.1. Experimental Data

In the experiment described by Oppelt et al. [12], tumour-bearing mice were irradiated with a
prescribed dose of 0, 3 or 6 Gy. After electron treatment, either with laser-driven or conventional Linac
electrons, the tumour growth was followed up to a predefined final size. The tumour growth time was
determined by the time needed to develop a tumour size, which is a multiple of the size at irradiation.
In this manuscript, the time for observing a sevenfold volume, tV7, was considered and analysed by
different statistical approaches.

Animal numbers are summarised in Table 3. There were 47 mice irradiated at the laser accelerator
and 27 mice irradiated at the Linac with a prescribed dose of 3 Gy or 6 Gy. Additionally, 41 mice at the
laser accelerator and 20 mice at the Linac were used as controls (0 Gy), which were not irradiated but
handled in the same way. In Oppelt et al. [12], 20 of the 47 mice irradiated at the laser accelerator were
excluded (43%). The detailed experimental data, comprising treatment doses and the corresponding
tumour growth data for the two radiation qualities are tabularized in the Supplement (Tables S1 and S2).

Table 3. Overview of the animals allocated and finally analysed for the electron irradiation experiments
described in Oppelt et al. [12] and in this manuscript.

Laser-Driven Electrons Linac Electrons

0 Gy 3 Gy 6 Gy 0 Gy 3 Gy 6 Gy

Allocated 41 29 18 20 13 14
Out of dose tolerance - 12 8 - - -
Final analysis in [12] 41 17 10 20 13 14

Included in present work 41 29 18 20 13 14

4.1.2. Simulated Data

In the experimental data, no difference between laser-driven and conventional Linac electrons was
observed. Thus, to reveal advantages of the applied statistical methods, we simulated dose-response
data in which we deliberately included a different dose-response relationship for both groups.
For simulating the laser-irradiated mice, 40 data points were generated in three steps. First, a dose
D was chosen as uniformly distributed in the interval [1,8] Gy. The tumour growth time was then
estimated by a normal distribution with mean µ and standard deviation σ according to

µ = 9 + 3 × D (1)

and
σ = 0.28 × µ (2)

The given parameters of Equations (1) and (2) were chosen such that the simulated data distribution
resembled the experimental data. For 20 control animals, the dose 0 Gy was used.

The process of generating the simulated data for the mice irradiated by the Linac was similar.
It differed in the distribution of dose D, using the fixed dose values of 0 Gy, 3 Gy and 6 Gy, including
20 data points for every dose group. Furthermore, the slope of the dose response was reduced,
i.e., Equation (1) was replaced by:

µ = 9 + 2 × D (3)

Results of the statistical methods are presented for one particular example in Table 2. Furthermore,
the outlined procedure was repeated 10000 times using different random realizations. For every
statistical method, the power to detect the difference in the dose-response relationship was calculated
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as the ratio of the number of significant results divided by 10000. Methods with a high power should
be preferred.

4.2. Methods for Analysing Tumour Growth Data

The statistical tests described in the following were performed using SPSS Statistics version 25
(IBM Corporation, Armonk, NY, USA), while Monte-Carlo sampling was performed in Python (Python
Software Foundation, Python Language Reference, version 3.6). In this manuscript, p-values smaller
than 0.05 were considered as statistically significant.

4.2.1. Conventional Analysis

For calculation of the mean tumour growth time per dose group, animals with applied doses
not too far from the prescribed dose were included, leading to the 0 Gy, 3 Gy and 6 Gy dose groups.
Tumours with more than 10% deviation in the absolute dose were excluded from analysis, i.e., the dose
had to be within the intervals of [2.7; 3.3] Gy or [5.4; 6.6] Gy, respectively. After that selection, the mean
tV7 of the selected N mice and its standard deviation were calculated for every dose group. The data of
the two beam qualities were then compared by a two-sided t-test with Welch correction.

4.2.2. Monte-Carlo-Based Method

In contrast to the conventional analysis, the Monte-Carlo-based method includes all irradiated
animals, but it does not require the explicit specification of a regression function as the following
alternatives methods. The Monte-Carlo-based method is visualized in Figure 2. Data points (Di, tV7,i)
for each beam quality were divided into three groups according to the applied dose, named “0 Gy”,
“3 Gy” and “6 Gy”. In general, every combination of two data points belonging to two different dose
groups defines a linear function with a slope parameter A and a constant n. We randomly selected as
many pairs as there were data points in the dose group with the smallest sample size and calculated
A and n for every pair. Subsequently we calculated the difference of the mean slopes, ∆A = ALinac −

ALaser, and constants, ∆n = nLinac − nLaser, between the beam qualities. This bootstrap procedure was
repeated 10000 times for pairs based on data points from the 0 Gy and 3 Gy groups and for pairs based
on data from the 3 Gy and 6 Gy groups. A significant difference in slope or constant between the beam
qualities was observed if the central 95% range of the corresponding distributions did not include the
value 0. To increase robustness, pairs with too small dose differences were excluded using a minimally
allowed difference of 0.5 Gy.
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Figure 2. Scheme of the Monte-Carlo-based method. A: slope, n: intercept.

The grouping of the experimental data from the Linac as well as of the simulated Linac data,
was based on the prescribed dose, which was close to the applied dose (0 Gy, 3 Gy or 6 Gy). For the
experimental laser-driven electron data, the dose was prescribed accordingly (0 Gy, 3 Gy and 6 Gy),
but may differ from the applied dose, which is used for the calculation. Here the groups were defined
by the intervals of [1.0; 4.5) Gy and [4.5; 8.0] Gy containing 26 and 21 data points, respectively.
This definition was also used for the simulated laser-driven irradiations.
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4.2.3. Linear Regression

This method is based on the assumption of a linear dependency of the tumour-growth time on
the applied dose, which was observed, e.g., in an independent experiment with the same tumour
model [16] using irradiation with 200 kV X-rays. The high-energy electrons may exhibit the same
dose-effect relationship, because it is also a beam quality with low linear energy transfer.

Linear regression was performed using

tV7(D) = bDoseD + b0 (4)

where tV7(D) are the tV7 derived for individual tumours treated with a certain dose D, and the
parameters b0 and bDose were fit to the data. The fit was performed for both beam qualities individually,
including all irradiated animals, as shown in Figure 1. The quality of the fit can be measured by the
coefficient of determination R2.

To compare the slopes and intercepts of the regression lines between the radiation qualities,
the following multivariable model was applied,

tV7(D) = bDoseD + bGroupG + bDoseGroupDG + b0 (5)

where the group variable G represents the radiation quality and b are the fit coefficients. Here, we set
G = 0 for tumours treated with laser-accelerated electrons and G = 1 for those treated with electrons
delivered by a clinical Linac. The comparison of the two beam qualities was evaluated by the p-values
corresponding to bGroup and bDoseGroup. If bGroup significantly differs from 0, a global shift between
the growth times of both radiation qualities is observed, while a parameter bDoseGroup significantly
different from 0 describes differing slopes of the dose-effect curves. As an alternative, the change in R2

between a model with bGroup = bDoseGroup = 0 and a model including all fit parameters can be tested
for a significant difference from 0 using an F-test.

4.2.4. Cox Regression

Cox regression can handle censored data, i.e., include mice that did not reach the endpoint of
achieving a sevenfold volume increase. First, the hazard function given by:

h(t) = h0(t) exp(βDoseD) (6)

was fitted for the two beam qualities individually. It consists of a time-dependent baseline hazard h0(t)
that is not estimated, and a time-independent factor containing the regression coefficient βDose. In a
second step, multivariable Cox regression was performed by:

h(t) = h0(t) exp(βDoseD + βGroupG + βDoseGroupGD) (7)

where G is the same group parameter as used for the multivariable linear regression. A global
difference between the groups is obtained if βGroup significantly differs from zero, while a significant
parameter βDoseGroup describes a dose-group interaction. As an alternative, a likelihood-ratio test can
be performed using the difference in twice the negative log-likelihood between the model with βGroup

= βDoseGroup = 0 and the model including all fit parameters.

5. Conclusions

In this work, we applied different statistical approaches to identify differences between the time
to sevenfold tumour volume increase after treatment of mice with laser-driven and conventional Linac
electrons. Except for the conventional approach, these methods allow for including animals with
applied doses considerably differing from the prescribed dose. Overall, a Monte-Carlo-based method,
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linear regression and Cox regression were more sensitive than the previously used conventional
method and may be applied in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/9/1281/s1,
Tables S1 and S2.
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