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Abstract

The family of ribosomal proteins S1 contains about 20% of all bacterial proteins including

the S1 domain. An important feature of this family is multiple copies of structural domains in

bacteria, the number of which changes in a strictly limited range from one to six. In this

study, the automated exhaustive analysis of 1453 sequences of S1 allowed us to demon-

strate that the number of domains in S1 is a distinctive characteristic for phylogenetic bacte-

rial grouping in main phyla. 1453 sequences of S1 were identified in 25 out of 30 different

phyla according to the List of Prokaryotic Names with Standing in Nomenclature. About

62% of all records are identified as six-domain S1 proteins, which belong to phylum Proteo-

bacteria. Four-domain S1 are identified mainly in proteins from phylum Firmicutes and Acti-

nobacteria. Records belonging to these phyla are 33% of all records. The least represented

two-domain S1 are about 0.6% of all records. The third and fourth domains for the most rep-

resentative four- and six-domain S1 have the highest percentage of identity with the S1

domain from polynucleotide phosphorylase and S1 domains from one-domain S1. In addi-

tion, for these groups, the central part of S1 (the third domain) is more conserved than the

terminal domains.

Introduction

A comprehensive investigation of the distribution of ribosomal proteins and finding of the

specific signatures of ribosomal evolution between and within the ribosomal protein domains

is an actual task, which provides new insights into the emergence and evolution of the protein

component of ribosomes [1–4].
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As demonstrated in our recent paper [5], the family of polyfunctional ribosomal proteins

S1 contains about 20% of all bacterial proteins, including the S1 domain. This domain is one

of the structural versions of the OB-fold (oligonucleotide/oligosaccharide-binding fold), which

is considered to be one of the “most ancient” protein folds tolerant to mutations (designable)

and able to accommodate to the binding of a large number of ligands [6,7]. Proteins of this

family interact with mRNAs, are involved in initiation and translation of mRNAs in vivo and

interact with the mRNA-like part of the tmRNA molecule [8,9]. Like some other ribosomal

proteins, ribosomal protein S1 is an autogenic repressor of its own synthesis [10]. In addition,

S1 can perform functions outside of the ribosome. For example, the S1 domain as a part of one

of the four subunits of phage Qβ replicase increases its activity upon interaction with the ribo-

nuclease regB of bacteriophage T4 [11,12]. Initially, in the ribosomal protein S1 from Escheri-
chia coli, four unique repeats were found [13]. This repeat was named the S1 RNA-binding

motif or the S1 domain. Later, using the protein sequence alignment, six homologous repeats

were identified in ribosomal protein S1 (E. coli) [14]. The following studies demonstrated that

the number of structural S1 domains in bacteria changes strictly within a limited range from

one to six (Fig 1A).

At present, the structure of S1 from E. coli was obtained only with a very low resolution of

11.5 Å using cryo-electron microscopy [15]. Detailed 3D structure is not determined due to

the high flexibility of S1 [16]. In the Protein Data Bank, there are only 3D structures of separate

domains of S1 from E. coli obtained by NMR [17]. The RNA-binding domain of S1 is a β-bar-

rel with an additional α-helix between the third and fourth β-strands (Fig 1B–1D). Conse-

quently, the understanding of the connection between S1 repeats and their evolution,

functions, and structures is a significant task.

Domain S1 is one of the “most ancient” protein domains, and therefore its presence in dif-

ferent combinations is a direct result of the evolution of microorganisms [6,7]. For example,

the number and pairwise alignment of S1 domains in the family of ribosomal proteins S1 were

used [17] to probe the relationship between S1 proteins of Gram-negative and Gram-positive

bacteria. The study was performed considering 26 bacteria, which are typical representatives

of its phylum. The other authors [18] used the rpsA gene, which codes the ribosomal protein

S1, as a biomarker for identification of differences between 8 types of mycobacteria, which

were not disclosed by the analysis of the 16S RNA.

In this study, the automated advanced exhaustive search allowed us to obtain a large dataset

including 1453 sequences of S1 proteins. We performed the bioinformatics analysis of 1453

sequences of S1 and demonstrated that the number of structural domains in the family of ribo-

somal proteins S1 is a distinctive characteristic for phylogenetic bacterial grouping in main

phyla. The alignments of S1 sequences with the S1 domain from polynucleotide phosphorylase

(PNPase) and other proteins S1 containing one structural domain allowed us to find the

sequential number of the domain with the highest value of identity and the largest number of

representatives. In addition, we showed that the central part for some groups of S1 (proteins

with five and six domains) is more conserved than the terminal parts.

Results

Databases of structural domains

The automated advanced exhaustive analysis allowed us to choose 1453 records corresponding

to search parameters. As noted above (see Materials and Methods), for each analyzed record in

the studied list, the numbers of S1 domains were collected from four databases of structural

protein domains: SMART, Pfam, PROSITE, and SUPFAM. Data on all identified domains and

their numbers from these databases are reflected in each record in the UniProt database. Each

Number of domains in S1 as distinctive characteristic for phylogenetic bacterial grouping
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database has definite algorithms for providing information about protein structures, their

folds, and domain organization. Inasmuch as in some cases, these algorithms are different and

the databases with the same algorithm have usually additional conditions or restrictions, the

output data may differ for the same object [19]. Therefore, we analyzed data on representation

(the number of different records) for the family of ribosomal proteins S1 in the considered

databases of protein domains (S1 Table). The data for the family of ribosomal proteins S1 for

the analyzed phyla of bacteria are represented equally in the four databases of protein domains,

showing that the analyzed collection is complete and corresponds to the aim of the study.

Phylogenetic bacterial grouping

The 1453 sequences of S1 satisfying our selection criteria were referred to the final dataset for

bioinformatics analysis. At present, all Bacteria are divided into about 30 main phyla (List of

Prokaryotic Names with Standing in Nomenclature (LPSN), http://www.bacterio.net/). Some

phyla include only several types of bacteria (for example, Thermomicrobia, Chrysiogenetes,

Fibrobacteres, Deferribacters), while about 90–95% of all known bacteria are included in such

phyla as Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes. The

1453 S1 sequences were identified in 25 different phyla (except candidate phyla). All studied

phyla of bacteria and the number of S1 domains found in them are shown in the sunburst

chart (Fig 2).

Fig 1. S1 domains in bacteria. (A) Number of structural S1 domains in different bacteria (according to the SMART

database). (B), (C), (D) NMR structures of the fourth (2KHI), fifth (5XQ5) and sixth (2KHJ) S1 domains from E.coli.
Conserved residues are located on the surface of the domains are given.

https://doi.org/10.1371/journal.pone.0221370.g001
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Only 0.8% from all investigated ribosomal proteins S1 contain one S1 domain. The most

represented in this group is the phylum Tenericutes. It should be noted that mycoplasma is the

simplest independent reproducing living organism. The total amount of its genetic informa-

tion is four times less than that of E. coli [20]. The shortest full length S1 is found in members

of the Mycoplasmatacea family (Mycoplasma auris– 110 amino acid residues). One S1 domain

is also found in very few bacteria of phylum Actinobacteria. One S1 domain is also identified

in some bacteria of phyla Firmicutes, Proteobacteria, and Bacteroidetes. Interestingly, in all

studied phyla only several bacteria (0.6%) containing two S1 domains were found (some bacte-

ria from phyla Actinobacteria, Firmicutes, and Proteobacteria). In all cases, Cyanobacteria

with an average length of ribosomal protein S1 of about 350 amino acid residues have three S1

domains; also, some representatives of phyla Firmicutes, Actinobacteria, and Proteobacteria

Fig 2. Sunburst chart reflecting division of studied bacteria into phyla. Names of phyla correspond to the Taxonomy Browser.

Colored regions show bacteria containing the same number of domains of ribosomal protein S1 in the different phyla (from one to

six). Colored outer segments represent the same phyla. Numbers, which are located near the phylum name, correspond to the

numbers of representatives of records for each phylum.

https://doi.org/10.1371/journal.pone.0221370.g002
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have three-domain S1 proteins. Generally, three-domain S1 proteins are identified in 1.9%

cases. Records with four S1 domains were identified in 33% cases from all investigated ribo-

somal proteins S1. Almost all analyzed bacteria (with the protein length of 390 amino acid resi-

dues) in this group relate to phyla Actinobacteria (50% from all four-domain S1 proteins) and

Firmicutes (47% from all four-domain S1 proteins). In bacteria of the monotypic (consisting

of one Deinococci class) phylum Deinococcus-Thermus, the length of protein S1 is on average

about 530 amino acid residues, and these bacteria have always five S1 domains (31% from all

five-domain S1 proteins). Five S1 domains are also found in bacteria of phyla Thermotogae,

Synergistetes, Haloplasmatales. Generally, five-domain S1 proteins compose 1.1% from all

investigated ribosomal proteins S1. About 62% of the records are identified as proteins con-

taining six S1 domains. Generally, these proteins belong to phylum Proteobacteria. Ribosomal

proteins S1 from bacteria of the phylum Chlorobi (green sulfur bacteria) also have six S1

domains. Gram-negative bacteria containing six S1 domains include Spirochaetes, Bacteroi-

detes, Chlamidia, and Proteobacteria (α, β, γ, δ, ε). In these bacteria, the length of the ribo-

somal protein S1 averages about 570 amino acid residues. Gram-positive bacteria contain

different numbers of the S1 domain depending on the phylum. Phylogenetic bacterial group-

ing according to the number of structural domains and length considering 1453 S1 sequences

is shown in Fig 3. As can be seen, the number of S1 structural domains in the family of ribo-

somal proteins S1 varies in a strictly limited range from one to six.

Comparison of the number of structural S1 domains in the family of

ribosomal proteins S1 identified by different methods

The automated advanced exhaustive analysis of 1453 S1 sequences allowed us to demonstrate

that the number of structural domains in S1 is a distinctive feature (hallmark) for the phyloge-

netic grouping of bacteria in the main phyla. Several attempts have been made to classify ribo-

somal protein S1 according to a different number of sequences. We are the first who has

performed an exhaustive analysis of S1. As noted above, S1 is identified in 25 different phyla.

13 phyla were studied by Salah et al. [17] They used the number and pairwise alignment of S1

domains in the family of ribosomal proteins S1 to study the relationship between Gram-posi-

tive and Gram-negative bacteria. 12 phyla were identified considering 273 S1 sequences[19].

Considering 1453 S1 sequences we found that four-domain proteins predominate in the phy-

lum Firmicutes. According to our data, a large number of bacteria of the phylum Actinobac-

teria contain four S1 domains and a smaller number contains five S1 domains. The authors of

the cited paper [17] refer all Actinobacteria to five-domain proteins with one domain at the C-

terminus, which is not identified as the S1 domain. Moreover, itcan be seen that the phylum

Proteobacteria contains all possible versions of the number of S1 domains with predominant

six domain proteins (Fig 3). It should be noted that each domain in S1 play different roles. So,

for a well-studied bacterial 30S ribosomal protein S1 from E.coli, the biochemical experimental

study of various fragments allowed to establish the functions of individual protein domains

and parts. It was shown that the removal of one S1 domain from the C-terminus or two S1

domains from the N-terminus of a protein decreases only the effectiveness of the protein func-

tions, but not its functional capabilities [21,22]. Wherein, for example, the bacterial 30S ribo-

somal protein S1, which has only one domain of parasitic bacteria of Mollicutes, effectively

performs the main function of RNA-binding [23].

Grouping of bacterial phyla in superphyla and the number of S1 domains

At present the evolutionary development and affinity of most bacterial phyla has remained

unclear, but some phyla were grouped into superphyla using a number of features. For

Number of domains in S1 as distinctive characteristic for phylogenetic bacterial grouping
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example, phylum Bacteroidetes is sometimes grouped with phyla Chlorobi, Fibrobacteres,

Gemmatimonadates, and Ignavibacteriae in the FCB group [24]. Our data from list (http://

bioinfo.protres.ru/other/Amount_and_borders_S1_domain.xlsx) demonstrate that the ribo-

somal protein S1 in this group always contains six S1 domains (Fig 3).

It should be noted that these phyla on phylogenetic trees are often on the same level, that is,

they evolved evolutionarily in parallel. Analysis of 16S rRNA and characteristic conserved

indels in some proteins is used to group phyla Planctomycetes, Verrucomicrobia, Chlamydiae

in the PVC clan [25]. As shown by our data (Fig 3), bacteria of the phyla Chlamydiae and Ver-

rucomicrobia mainly contain six S1 domains, while Planctomycetes can have four, five, and

six S1 domains. According to some published data, the genome of organisms of the phylum

Planctomycetes compared with other phyla of superphylum PVC is the largest and most sus-

ceptible to evolutionary changes [26].

Family of 30S ribosomal protein S1 and RNA-binding S1 domain of

polynucleotide phosphorylase

It is known that the polynucleotide phosphorylase (PNPase) from E. coli contains at its C-end

one S1 domain with high identity to the initially isolated four S1 repeats. The 3D structure of

the S1 RNA binding domain from E. coli PNPase obtained by NMR spectroscopy is a β-barrel

with an additional α helix between the third and fourth β strands [6]. This OB-fold (oligonu-

cleotide binding fold) is generally considered as the main structural element of the ribosomal

protein S1 family [27].

Fig 3. Phylogenetic bacterial grouping by the numbers of structural domains in the family of ribosomal proteins S1. Colored symbols

show bacteria containing the same number of S1 domains in the ribosomal protein S1 (from one to six).

https://doi.org/10.1371/journal.pone.0221370.g003
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Alignments of 1453 S1 sequences and the S1 domain of PNPase allowed us to calculate the

average identity for each S1 domains and find the sequence number (No.) of the domain with

the high value of identity with the RNA-binding S1 domain of PNPase [2] with the most repre-

sentatives. This domain migrates along the chain (Fig 4A). This is the last domain in two-,

three-, and five-domain proteins. For most representatives of four- and six-domain proteins

the highest value of identity with PNPase and the amount of representatives were found for

the third domain (for four-domain proteins: 409 records with 73% identity and for six-domain

proteins: 741 records with 66% identity).

In addition, for the four- and six-domain S1 proteins, the fourth domains are also have a

high value of identity with PNPase and a large number of representatives. It should be noted

that the residues Phe19, Phe22, His34, Asp64, and Arg68 [28] (in some cases replaced by the

corresponding conserved residues) are located in this particular conserved domain, which

once again confirms the uniqueness of this repeat and should be considered as the strongest

RNA binding site [28].

Alignments of the S1 sequences and the S1 domain protein from M. auris (the shortest full

length S1 protein with 110 amino acid residues) allow us to find the domain with the highest

value of identity and the largest number of representatives located in the third domain (Fig

4B). For four- and six-domain proteins, the highest value of identity with the S1 domain pro-

tein from M. auris and the number of representatives were found for the fourth domain (for

four-domain proteins: 220 records with 54% identity and for six-containing domains: 634 rec-

ords with 49% identity). The same correlation (the third or fourth domain with the highest

value of identity and number of representatives) is found when the S1 protein sequences are

aligned with other one-domain S1 proteins (UniProt IDs: B3PLZ6, I5D611, N9UB66, D1J8E8,

Q6KH89; http://bioinfo.protres.ru/other/homology_with_PNPase_and_one-domain%20S1.

xlsx).

Thus, the most conserved domains with the S1 domain from PNPase (E.coli) and S1

domains from one-domain S1 proteins (mainly Tenericutes, Mollicutes) are the third and

fourth domains for the most representative four- and six-domain S1 proteins.

Search for the conserved domain within the family of 30S ribosomal

protein S1

To check the equivalence of domain characteristics, each S1 domain in the corresponding S1

protein sequence in different groups (according to the domain number) was aligned in pairs

(http://bioinfo.protres.ru/other/pairwise_alignment.xlsx) using the Pairwise2 module from

BioPython. The percentages of identity for these domains were calculated using standard

parameters. The maximal and minimal values of identity for each group are marked in Fig 5.

Domains with the same domain No. in each group were repeatedly aligned (http://bioinfo.

protres.ru/other/multiple_alignment.xlsx) using the Clustal Omega service (https://www.ebi.

ac.uk/Tools/msa/clustalo/). The obtained results are also shown in Fig 5.

It is noteworthy that S1 proteins containing one-domain have a low percentage of identity

among themselves (27%), as well as in one phylum (Tenericutes). Nevertheless, the predicted

secondary structures for these sequences [29] are very similar and represent the classic OB-

fold. This fact may indicate that for the functioning of proteins related to one-domain S1 pro-

teins, the structural scaffold is more important than the amino acid sequence. This observation

has confirmed the statement about the uniqueness of each individual domain in the one-

domain S1 proteins [17].

The first and the second domains of S1 proteins containing two structural domains have

38% identity, and pairs with maximum and minimal values of identity are identified for the

Number of domains in S1 as distinctive characteristic for phylogenetic bacterial grouping
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remaining domains. The first and second domains in S1 proteins containing two structural

domains also have a low percentage of identity in the domains: 27% and 30%, respectively.

For S1 proteins containing three structural domains, the maximal value of identity is

revealed between the first and third domains (53%) and the minimal value between the first

and the second domains (42%). Wherein, the third domain has the maximal percentage of

identity (57%) among other domains for this group.

For S1 proteins containing four structural domains, the maximal value of identity is

revealed between the third and fourth domains (78%) and the minimal value of identity

between the second and third domains. The third domain has also the maximal percentage of

homology (66%) among other domains of this group.

The third and fourth domains in the group of S1 proteins containing five structural

domains have the maximal percentage of identity (66%), while the second and fifth domains

Fig 4. S1 containing different numbers of domains. The conserved domains with the highest identity to (A) S1

domain from PNPase and (B) S1 domain from M. auris are shown in green color (UnitProt ID: N9VCN6).

https://doi.org/10.1371/journal.pone.0221370.g004
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have the lowest percentage of identity (43%). In this group, the fourth domain has the maximal

percentage of identity among other domains (49%).

For the most represented S1 proteins containing six structural domains, as well as for S1

proteins with four and five domains, the maximal values of identity are identified between the

third and fourth domains (71%) and the minimal values between the first and second (39%). It

should be noted that the third and fourth domains (in the groups containing three-, four-,

five- and six-domain S1 proteins) also have the maximal values of identity with the S1 domain

from PNPase and S1 protein sequences with different single-domain S1 proteins. Moreover,

the third domain has the maximal percentage of identity among other domains in this group.

Thus, the obtained results showed that for long S1 proteins (five- and six-domain ones) the

central part of the proteins (the third domain) is more conserved than the terminal domains.

Possible evolutionary development of the family of 30S ribosomal proteins

S1

The problem of understanding the nature of protein repeats, the corresponding functions for

each repeat, and their evolution is still unclear. These repeats evolved from a common ances-

tor, which necessarily contained a single repeat [30]. Some authors suggested that the common

ancestor of the family indeed was a single repeat that formed homo-oligomers for effective

functional activity [31]. The homo-oligomeric structure of the ancestor may reflect the

Fig 5. Conservatism of S1 domains within the family of 30S ribosomal protein S1. Average percentage of identity

between each domain as well as all domains in proteins containing different numbers of domains is given. Domains

with the highest and lowest sequence identity between each other are marked. Percentages of identity for these

domains are given in the figure.

https://doi.org/10.1371/journal.pone.0221370.g005
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intrachain repetitive structure of its modern homologue, with the exception of its multi-chain

character. But there are examples of homologous multirepeat assemblies, which are formed

both from oligomers with single repeats and from one chain of several repeats [30].

For the investigated bacterial proteins, the maximum number of S1 domain repeats (six) is

sufficient to perform all necessary functions. As shown above, the third domain in this group

has the maximal identity (68%) among other domains. In addition, this domain has the highest

identity with the S1 domain from PNPase (E.coli) and S1 domains from one-domain S1 pro-

teins (Tenericutes, Mollicutes) (Fig 6).

As can be seen from Fig 6, the maximal values of identity are identified between the third

and fourth domains (71%). Along with the fourth domain, the fifth domain is the most homol-

ogous (65%), which in turn has 50% identity with the sixth domain. The identity of the

remaining domains (first and second) are below 50%. Thus, the obtained results showed that

for six-domain S1 proteins, the central part of the proteins (the third and fourth domains) is

more conserved than the terminal domains. In addition, some of the conserved residues

Phe19, Phe22, His34, Asp64, and Arg68 [28] are located in the third domain, which once again

confirms the uniqueness of this repeat and allows us to consider it as the strongest RNA bind-

ing site. Thus, the central part of the proteins (third and fourth domains) is apparently vital for

the activity and functionality of these proteins.

This suggestion is consistent with experimental data. One of the well-studied proteins with

six S1 domain repeats is the bacterial 30S ribosomal protein S1 from E.coli. It was shown that

cutting one S1 domain from the C-terminus or two S1 domains from the N-terminus of a pro-

tein decreases only the effectiveness of protein functions, but not its functional capabilities

[21,22].

It should be noted that the bacterial 30S ribosomal protein S1 from parasitic bacteria Molli-

cutes effectively performs the main functions of RNA-binding [23]. There is an assumption in

the literature that mycoplasmas (Mollicutes) are a regressive branch of evolution of some

Gram-positive bacteria or clostridia (Firmicutes) [32]. This hypothesis was confirmed experi-

mentally and is considered in two possible variants: all mycoplasmas originate either from a

common ancestor with Gram-positive bacteria, or from different bacteria [32]. Based on a

comparison of the 16S rRNA oligonucleotide sequences of several species of mycoplasmas and

Gram-positive bacteria of the genera Clostridium, Bacillus, Lactobacillus, and Streptococcus, a

reasonable assumption was made regarding their evolutionary relationship with the division

Firmicutes [33,34]. A more detailed analysis of 16S RNA sequences showed that mycoplasmas

are phylogenetically closest to clostridia [35]. In turn, the most likely ancestors of clostridia are

believed to be Gram-positive bacteria with a low G + C content in their DNA.

In the future, a more detailed analysis of the phylogenetic and evolutionary relationships

between one-containing S1 domain proteins and the third and/or fourth domains will allow us

to conclude the evolutionary development of the family of bacterial proteins S1 and verify our

previous suggestion about the effect of reducing the evolution of the number of repeats in the

family of 30S ribosomal proteins S1 [36].

Discussion

Studies of 1453 S1 sequences available in the UniProt database showed that the number of

structural domains in the ribosomal proteins S1 can be considered as a distinctive feature for

the phylogenetic grouping of bacteria in 25 different bacterial phyla. It can be assumed that

bacteria affiliation may be associated with the structural features and multifunctional activity

of ribosomal proteins S1. The obtained results differ from the data obtained for small data sets

[17,34], and they should be considered as more accurate. For example, our data show that a
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large number of bacteria of the phylum Actinobacteria contain four S1 domains, and a smaller

number contains five S1 domains. According to [17], all Actinobacteria should be considered

as proteins with five domains, with one domain at the C-terminus that is not identified. Also,

Proteobacteria contain all possible variants of the number of S1 domains with a predominance

of six domain proteins. Such differences are primarily associated with the volume of the sam-

ples studied.

Proteins belonging to the phylum Proteobacteria and containing six S1 domains are mainly

presented. This fact undoubtedly is associated with the wide distribution of this phylum bacte-

ria and the presence of their sequences in the UniProt database. However, the stability of the

number of multiple structural domains in these bacteria is apparently an evolutionary feature,

that is necessary for functional diversity. The least represented proteins contain two S1

domains. The sequences found in this group belong to bacteria of phyla Actinobacteria, Firmi-

cutes, and Proteobacteria and are mainly represented by an individual representative in each

bacterial class within the phylum.

Verification of the equivalence of domain characteristics showed that for long S1 proteins

(five- and six-domain S1 proteins), the central part of the proteins is more conserved than the

terminal domains, and, apparently, is vital for the activity and functionality of S1. Moreover,

when aligning sequences between individual domains in each group, a rather low percentage

of identity is revealed, which indicate that for the general functioning of these proteins the

structure scaffold (OB-fold) is obviously more important than the amino acid sequence.

Based on the obtained data, further investigations of possible evolutionary, functional, and

structural relationships between bacterial phyla and bacterial classes within each phylum will

reveal the relationship between the number of structural repeats and the specificity of the mul-

tifunctional activity of proteins of this family. Besides, the study of evolutionary relationships

for the considered phyla will allow us to find evidence for one of the proposed theories of the

evolutionary development of proteins with structural repeats: from multiple assemblies to sin-

gle or vice versa.

Materials and methods

Construction of ribosomal proteins S1 dataset

To make a representative dataset of records for the family of ribosomal proteins S1 from the

UniProt database, all records for the bacteria containing any one of the keywords «30s ribo-
somal protein s1», «ribosomal protein s1», «30s ribosomal protein s1 (ec 1.17.1.2)», «30s ribo-
somal protein s1 (ribosomal protein s1)», «ribosomal protein s1 domain protein», «rna binding
protein s1», «rna binding s1 domain protein», «s1 rna binding domain protein» in the protein

name were selected (UniProt release 2018_04). Then the obtained array of data was used to

choose only proteins encoded by the rpsA gene or its analog, for example, rpsA_1, rpsA_2,

rpsA_3 etc. Only this gene, coding the ribosomal protein S1, in the European nucleotide

Fig 6. Identity of domains in the six-domain S1 protein. Average percentage of identity between domains and within

separate domains is given in the figure.

https://doi.org/10.1371/journal.pone.0221370.g006
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archive (ENA, http://www.ebi.ac.uk/ena) is affiliated to the STD class, i.e. the class of standard

annotated sequences. Therefore, the selection of records for the rpsA gene made it possible to

regard the obtained collection as reliable, complete and sufficient for the aim of the study.

From the obtained dataset records with six-digital identification numbers (annotated records

in the UniProt database) were selected. All data were collected in one file that was the basis for

further analysis, namely for collection of data on the number of structural domains and for

phylogenetic grouping in the main bacterial phyla (http://bioinfo.protres.ru/other/uniprot_

ids.xlsx). Records characterized by the presence of the word “candidate” were removed from

our dataset, because there is not enough information for such records to call it a new species

and define phylum according to the International Code of Nomenclature of Bacteria.

Number and identification of structural domains in protein sequences

Four databases of protein domains, SMART (about 1200 domains), Pfam (16295 families of

proteins united in 559 clans), PROSITE (1775 models, 1174 profiles and 1195 rules), and SUP-

FAM (1962 protein domains and 3245 different types of organisms) were analyzed in the

study. The values of the number of domains S1 corresponding to the data from each database

were selected for each analyzed record. If no data on the number of domains in one of the ana-

lyzed bases were available (None), this number was taken to be zero. Profiles of additional

domains (not S1) according to their sequences were taken from the database InterPro (http://

www.ebi.ac.uk/interpro/).

Number and identification of structural domains in protein sequences

The values of the number of S1 domains corresponding to the SMART database (about 1200

domains), were selected for each analyzed record. If no data on the number of domains in one

of the analyzed bases were available (None), this number was taken to be zero (these records

were removed from investigated dataset). Accurate borders for each S1 domain for each record

were taken from the UniProt database (position, domain and repeats field). Records with addi-

tional domains (not S1) according to the InterPro database (http://www.ebi.ac.uk/interpro)

were also removed from the investigated dataset.

Taxonomic diversity of bacteria

Bacteria were classified in main taxonomic categories (phylum, class, family, genus, type) in

accord with the Taxonomic database NCBI (http://www.ncbi.nlm.nih.gov/taxonomy)

Alignment

A global pairwise sequence alignment (Needleman-Wunsch algorithm) using a dynamic pro-

gramming algorithm was used. The Multiple Sequence Alignment was implemented by the

Clustal Omega service (https://www.ebi.ac.uk/Tools/msa/clustalo/). Clustal Omega is a multi-

ple sequence alignment program that uses seeded guide trees and HMM profile-profile tech-

niques to generate alignments between three or more sequences. In our work standard

parameters of this program were used.

Realization

Algorithms of search, collection, alignment, representation and analysis of the data were real-

ized using the freely available programming language Python 3 (https://www.python.org/).

Pairwise2 module from Biopython was used for the alignment functions to get global
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alignments between two sequences. Bio.pairwise2 uses the Smith-Waterman algorithm for

local alignment, and Needleman-Wunsch for global alignment with standard parameters.
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