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a b s t r a c t

Coronaviruses infect many animals, including humans, due to interspecies transmission. Three of the
known human coronaviruses: MERS, SARS-CoV-1, and SARS-CoV-2, the pathogen for the COVID-19
pandemic, cause severe disease. Improved methods to predict host specificity of coronaviruses will be
valuable for identifying and controlling future outbreaks. The coronavirus S protein plays a key role in
host specificity by attaching the virus to receptors on the cell membrane. We analyzed 1238 spike se-
quences for their host specificity. Spike sequences readily segregate in t-SNE embeddings into clusters of
similar hosts and/or virus species. Machine learning with SVM, Logistic Regression, Decision Tree,
Random Forest gave high average accuracies, F1 scores, sensitivities and specificities of 0.95e0.99.
Importantly, sites identified by Decision Tree correspond to protein regions with known biological
importance. These results demonstrate that spike sequences alone can be used to predict host specificity.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

The COVID-19 pandemic has heightened public awareness of
coronaviruses (CoVs) and our vulnerability to highly contagious
infections. CoVs are positive-sense enveloped RNA viruses
comprising 2 subfamilies (Orthocoronavirinae and Letovirinae) and
5 genera: (Alphacoronavirus, Betacoronavirus, Gammacoronavirus,
Deltacoronavirus, and Alphaletovirus) [1,2]. CoVs infect a wide
range of species, including humans, due to a high level of inter-
species transmission. Alpha and beta CoVs only infect mammals,
including humans, while delta and gamma CoVs are known to
infect birds and some mammals, but have not yet been shown to
infect humans [3]. Seven species are known to infect humans.
HCoV-NL63, HCoV-229E, HCoV-HKU1, HCoV-OC43, and BCoV-1,
cause mild respiratory disease. In contrast, SARS-CoV-1, MERS
and SARS-CoV-2, the pathogen causing the COVID-19 pandemic,
Science, Georgia State Uni-
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have emerged since 2003 as severe pathogenswith significant rates
of mortality. These outbreaks are presumed to result from inter-
species transmission from bats via intermediate hosts of civets or
camels to humans [2]. The SARS-CoV-1 outbreak in China in 2003
had a 10% mortality rate. Ten years later, MERS appeared in the
Middle East with a staggering mortality rate of 35%. SARS-CoV-2 is
the latest CoV species that was first identified in late 2019, and
induced an unprecedented outbreak that continues to affect mil-
lions worldwide.

The large genomes of CoVs code for 4 structural proteins and 16
non-structural proteins. The non-structural S protein or spike is
critical for virus attachment and fusion to the host cell membrane
and is an important determinant of host specificity [4e6]. S protein
sequences are highly variable among CoVs and may bind to
different host cell receptors. For example, the human pathogen,
MERS, uses DPP4 as its host cell receptor, while SARS-CoV-1 and
SARS-CoV-2 attach to ACE2 receptor [5,6]. After binding to the host
cell receptor, S protein is cleaved into S1 and S2 subunits for cell
fusion and entry. These critical stages in the viral life cycle have
been proposed as targets for development of antiviral drugs [7].

Due to the lack of a vaccine for human CoVs, it is critical to better
understand the potential infectivity of different CoVs. Therefore, we
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have applied several machine learning algorithms to sequences of S
proteins to assess predictions of host cell specificity.
2. Methods

Data collection and preprocessing. Data were obtained from
the Virus Pathogen Database https://www.viprbrc.org on April 11,
2020. It included 1253 unaligned S protein sequences of various
lengths, which belonged to 67 species of CoVs. We used a standard
preprocessing pipeline consisting of: (i) sequence cleaning; (ii)
sequence alignment; (iii) sequence encoding; and (iv) dimension-
ality reduction performed by truncated singular value decomposi-
tion (tSVD). This method is very close to principal component
analysis (PCA), a more traditional approach for dimensionality
reduction. We preferred tSVD since it works more efficiently with
sparse vectors as it does not need to center the data [8].

As a part of sequence cleaning, we used known accession
numbers to identify viral and/or host species for more than a
hundred “unknown” sequences. Also, we removed 15 sequences in
the Torovirinae, Piscanivirinae, and Serpentovirinae subfamilies
which were previously part of the Coronaviridae family but were
reassigned to the Tobaniviridae family in 2018 [1]. The overall
distribution of the data with respect to viral species and hosts is
shown in Fig. 1. We used MEGA X software https://www.
megasoftware.net to align the sequences. After alignment, all se-
quences were represented with an identical length of 2396 resi-
dues. We applied a well-known one-hot encoding to convert the
sequences into numerical vectors for input to machine learning
algorithms. The amino acid sequences contained 25 letters ABC-

DEFGHIJKLMNPQRSTUVWXYZ which represent the canonical 20
amino acids plus 5 codes for ambiguous amino acid assignments
[9]. The additional 5 codes are: B for aspartic acid or asparagine, J
for leucine or isoleucine, U for selenocysteine, X for any amino acid,
and Z for glutamic acid or glutamine. Each amino acid was encoded
as a corresponding unit vector, and the gap sign -was encoded as a
zero vector. This encoding produced 0e1 sparse vectors of length
59;900 ¼ 2;396� 25. Thus, in this mapping, Alanine (A) was
encoded as a 25-dimensional vector 1000…0, and Cysteine (C), for
example, was encoded as a 25-dimensional vector 0010…0, etc.
The gap was encoded as a 25-dimensional zero vector 00…0.
Finally, we performed tSVD retaining the 50 leading principal
components.

We experimented with omitting step (iv) in the pipeline as well
as sequence removal in step (i). Our experiments showed that SVD
significantly improves computational efficiency since it dramati-
cally reduces the dimensionality of the data set. Even reducing to
only 50 components has little influence on the results of both t-SNE
and the tested classifiers (e.g., the change in the average scores was
in the range of�2 toþ2%). The only disadvantage of SVD is that it is
a challenge to interpret the results of the DT classifier.
Fig. 1. The distribution of the cleaned dataset (1238 sequences). a The top 6 genera of
CoVs: avian CoV, porcine epidemic diarrhea virus (PEDV), betacoronavirus 1 (BCoV-1),
MERS, porcine CoV HKU15, SARS-CoV-2. b The top 5 of CoVs’ hosts: swine, avians,
human, bats, and camels.
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Deletion of the 15 sequences in Tobaniviridae family had little or
no effect on the average scores (accuracy, F1-score, sensitivity, and
specificity) of the classifiers and t-SNE embeddings. However, it
affected the identification of important sites in S proteins as
described later.

t-SNE visualisation of the data. We used t-SNE (t-distributed
Stochastic Neighbor Embedding) [10] which is known to reveal
local structure of high-dimensional data and yield excellent results
on RNA sequences [11]. t-SNE uses Student’s t-distribution as the
output kernel and KullbackeLeibler divergence as the loss function.
t-SNE’s main advantage over traditional clustering methods is that
it is prone to produce a two-dimensional visualisation with
distinctly isolated clusters if there are hidden clusters in the data.
As an alternative, we tried another classical approach to visualise
the data: first cluster the data with one of the clustering algorithms
and then embed it into two-dimensional space with multidimen-
sional scaling (MDS). However, the latter method demonstrated
slightly worse results as compared to t-SNE.

The most important parameter of t-SNE, perplexity, controls the
width of the kernel that measures similarities between points.
Thus, for each point it determines the number of the nearest
neighbours to which it is attracted. It is possible to choose any
perplexity from 1 to n� 1, where n is the number of data points,
however, the recommended range is from 5 to 100 [11]. For all t-
SNE embeddings, we used a perplexity equal to 30, which is the
default value in the majority of t-SNE implementations. Our ex-
periments demonstrated that perplexity values in the recom-
mended range yield similar results, confirming that t-SNE is not
very sensitive to the exact value of perplexity in that range.

Since t-SNE uses a non-convex objective, it may yield different
results depending on its initialisation (random state). We experi-
mented with choosing various values of random state and found
that even though the location of clusters may change, their content
does not. For reproducibility, we chose the random state 1 to
perform t-SNE embedding.

Classifications. Three classification were considered:

S Hum: the human related CoVs (463 entries) vs other CoVs (775
entries);
H A=S: the CoVs whose hosts are avians (300 entries) vs the CoVs
whose hosts are swines (367 entries);
H Mam: the CoVs whose hosts are mammals (938 entries) vs the
CoVs with all other hosts, which in fact are all avians (300
entries);

Note that in S Hum, only the species of virus matter, not the
hosts. Thus, human related CoVs (i.e., HCoV-NL63, HCoV-229E,
HCoV-HKU1, HCoV-OC43, BCoV-1, MERS, SARS-CoV-1, and SARS-
CoV-2) do not necessarily have human hosts. However, if a host is
human, then the virus belongs to the set of the human related CoVs.

Classifiers. Four well-known classifiers: Support Vector Ma-
chine (SVM), Logistic Regression (LR), Decision Tree (DT), and
Random Forest (RF) were used to perform the classifications S Hum,
H A=S, and H Mam. The performance was assessed by computing
means and standard deviations of 4 scores: accuracy, F1-score,
sensitivity, and specificity for each of 2-, 3-, 5-, 7-, 9-, and 10-fold
cross-validations.

Identificationof important sites. Since theDTclassifier is one of
the best for exploratory analysis [12], we used it to identify impor-
tant features (sites) in the S Hum classification. Since our classifica-
tions are binary, the feature importance was calculated as Gini
importance of a split [13]. To ensure that the sites do not depend on
the choice of training and test subsets, we performed 10 times each
of 2-, 3-, 5-, 7-, 9-, and10-fold splits of thedata. Thus, theDTclassifier
was run 20, 30, 50, 70, 90, and 100 times respectively.
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Code and data availability. We prepared a self-contained
Jupyter notebook in Python that shows the methods and results
presented here. The code and the dataset are available at https://
github.com/kuzminkg/CoVs-S-pr.
3. Results

Dimensionality reduction. Since the protein sequences were
transformed into high dimensional vectors with 59,900 compo-
nents, we wanted to decrease the number of components to make
the programs run faster and decrease the level of noise in the data.
Dimensionality reduction requires choosing the final number of
components. We used calculated explained variance to find the
number of components. Fig. 2 demonstrates the dependence be-
tween the number of components left and the level of explained
variance (1 corresponds to 100% of explained variance) for (i) all
data, and for (ii) the sequences whose hosts are avians or swine
only. The former is used in the S Hum and H Mam classification,
while the latter is used in H A=S. Starting with 2 components which
give the levels of 0.2557/0.5843 for (i)/(ii) respectively, the
explained variance grows quickly reaching the level 0.9 with 24/13
or more components, and level 0.95 with 61/35 or more compo-
nents. We chose 50 components to further perform SVD, which
preserves 94.20% and 96.28% of explained variance for (i) and (ii)
respectively.

Clusters in the data. In order to demonstrate that vectors
readily segregate into clusters with respect to genetic similarities in
S proteins, we applied t-SNE, which mapped the input vectors to 2-
dimensional vectors, see Fig. 3. In all figures but 3f, we use the same
embedding of all data. Known human related CoVs form distinct
clusters as shown in 3f.

Fig. 3a demonstrates the overall data distribution and relative
locations of human related CoVs with respect to other CoVs. Fig. 3b
and c shows relative locations of CoV species and their hosts. We
note that t-SNE without special adjustments may distort distances
between far apart clusters [11]. Therefore, the fact that a pair of
clusters are further apart than another pair does not necessarily
imply that the original (not t-SNE embedded) points have the same
relationship. However, t-SNE preserves distances very well locally
as seen in Fig. 3c (compare 3e), where humans are close to bats,
which are known [14] to be the natural hosts of 5 human related
CoVs: SARS-CoV-1, SARS-CoV-2, MERS, HCoV-229E, and HCoV-
NL63. In case of MERS, humans cluster is close to camels which
are intermediate hosts for this species of CoV [14,15]. Moreover, the
sequences near HCoV-OC43 and HCoV-HKU1 belong to cattle or
Fig. 2. Explained variance vs number of components for (i) all 1238 sequences and (ii)
for the sequences whose hosts are either avian or swine (667 entries). The 0.9
threshold is � 24 and � 13 for (i) and (ii) respectively. The 0.95 threshold is � 61 and �
35 for (i) and (ii) respectively. We chose 50 components to perform SVD which pro-
vided 94.20% and 96.28% of variance for (i) and (ii) respectively.
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rodents, both known to be either intermediate or natural hosts for
these viruses [14,16].

Interesting results are shown in Fig. 3d where the sequences are
grouped by genera. All 4 genera segregate into non-overlapping
clusters, which makes it possible to accurately predict the genus
of a new or unknown virus in the Orthocoronavirinae subfamily. As
our dataset contained a few unclassified sequences (marked as
black boxes in Fig. 3d), we used this t-SNE embedding to predict
their genera. The unclassified sequences in the area 1 are
YN2012_Rs3376, YN2012_Rs4125, YN2012_Rs4259, and
YN2012_Ra13591 that have been recently identified as alphacor-
onaviruses [17]. The unclassified sequences in the area 2 are
JTMC15, and 16BO133 of SARS related CoVs (and, thus, are beta-
coronaviruses) and are hypothesized to be the origin of SARSs [18].
The unclassified sequence in the area 3 is BtCoV92 which was
identified as a Nobecovirus [19] which is a subgenus of betacor-
onaviruses. Finally, the 3 unclassified sequences JPDB144, PREDICT/
PDF_2180, Vs_CoV_1 in the area 4 are likely to belong to
betacoronaviruses.

In Fig. 3e, the CoVs that are located next to HCoV-NL63 and
HCoV-229E are related to those species. For instance, the sequence
with GenBank accession numberMN611517, was recently identified
as 229E-related CoV [20], while the sequences BtKYNL63_9a and
BtKYNL63_9b were identified as NL63-related CoVs [21]. CoVs
located close to MERS include Hedgehog CoV1, Erinaceus hedgehog
CoV HKU31, as well as HKU4 and HKU5, which are known to be
closely genetically related to MERS [22,23]. The 3 unclassified se-
quences JPDB144, Vs_CoV_1, and PREDICT/PDF_2180 are also close to
MERS. The CoVs located close to BCoV-1\HCoV-OC43 (i.e, BCoV-1
without HCoV-OC43) are Murine CoV, HKU14, HKU23, and
HKU24, which are all closely related to BCoV-1 [24e26].

Classifications. In order to see how well the standard machine
learning classifiers recognize cluster structure intrinsic to the data
and revealed by t-SNE embedding, we ran 3 classifications (S Hum,
H A=S, and H Mam) with 4 classifiers (SVM, LR, DT, and RF) each. We
compared the performances of the classifiers with 2-, 3-, 5-, 7-, 9-,
and 10-fold cross-validations and calculated means and standard
deviations of accuracy, F1-score, sensitivity, and specificity. We also
compared the influence of the dimensionality reduction in the
input data on the classifier performance. Table S1 demonstrates
results of 3-fold cross-validation for S Hum classification.

Similar results (within �4% to þ2% range) were obtained for all
other folds of cross-validation and other classifiers as seen in
Tables S2 and S3. Dimensionality reduction sightly improved the
performance of SVM andmarginally worsened the performances of
the other classifiers.

Since DT consistently demonstrated the best performance for
non-reduced inputs (binary vectors with 59,900 components),
while SVM exhibited the best behaviour on SVD-reduced inputs
(vectors with 50 components only), to save space only the results of
these two classifiers in the corresponding cases are shown in
Tables S2 and S3. Table S1 demonstrates that 3-fold cross-validation
gives the best results among other k-fold cross-validations (k ¼
2;5;7;9;10; the results for k ¼ 7;9 were similar to k ¼ 10 and not
shown in Table S2). Notably, on SVD-reduced inputs, the means of
accuracy, F1-score, sensitivity, and specificity tend to increase with
the growth of k, while on non-reduced inputs, they vary with no
particular dependence. This regularity was consistently observed
not only in S Hum classification, but also in the other two H A=S and
H Mam, and may be considered as evidence that SVD successfully
decreased the level of noise in the data.

We experimented with adding or deleting sequences in the
dataset to assess the robustness of site selection. The sequence
addition/deletion had minimal effect unless it altered the compo-
sition of species in the dataset. Deletion of the species that have
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Fig. 3. t-SNE embeddings of all sequences (aee), and human related CoV sequences only (f). a Human related CoVs vs the other CoVs. b The most represented virus species in the
dataset. cMajor types of hosts in the dataset. d Relative locations of different genera of CoVs. e Human related CoVs embedded with all other CoV sequences (1238 entries in total). f
Embeddings of human related CoVs only (463 entries in total).
genetic analogs (e.g., deletion of all SARS-CoV-1 sequences while
SARS-CoV-2 sequences remain untouched) has no significant effect.
However, addition and deletion of “unique” species may alter re-
sults dramatically. For instance, when we included the 15 Tobani-
viridae sequences deleted from the original dataset during the
prepossessing, the sites 1483 and 2258 were identified, but their
proportion gradually changed from 11:8 for a 2-fold split to 35:64
for a 10-fold split. Additionally, another important site 2213
appeared among the sites with high (>0.7) importance. In another
example, deletion of all BCoVs drastically altered the ranking of
important sites identifying 1634 as the only site with high
importance.
4. Discussion

Our analysis shows that host specificity of CoVs can be predicted
with high accuracy using only S protein sequences. A total of 1238
sequences were aligned and SVD used for dimensionality reduc-
tion. Machine learning classifiers SVM, LR, DT, and RF gave excellent
results with high accuracies of >0.98 for 3-fold cross-validation.
Similar results were obtained by another group using RF models
applied to a different database of spike sequences [27].

Clustering of data with t-SNE embeddings confirms the reli-
ability of the analysis. S protein sequences segregate correctly by
virus genus and type of host species. The observed overlap of hu-
man with bats or camel hosts is likely due to the hypothesized
origin of SARS-CoV-1 in bats and MERS from bats via the inter-
mediate host of camels [2]. As expected, the two SARS-CoVs
comprise two regions of the same cluster. A recent alternate
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approach applied supervised machine learning on whole genome
sequences of CoV for rapid classification of COVID-19 [28]. Our
approach achieves excellent classification and clustering results
using only CoV spike sequences.

The DT classifier for S Hum identifies two sites (1483 and 2258)
with an average importance of 0.81. Other sites were more variable
and less significant with importance of 0.13 or less. We examined
the location of the two key sites in S protein and their known
biological roles. Site 1483 is equivalent to the conserved arginine
(R685 in SARS-CoV2) in the S1/S2 protease cleavage site of the S
protein. Protease cleavage at this site is required for viral cell entry
[7]. Site 2258 corresponds to Q1201 in the heptad repeat 2 (HR2) of
SARS-CoV2 S protein. HR2 is critical for viral fusion to the host cell
membrane. This region has been targeted in development of anti-
bodies and peptide inhibitors as antiviral agents for SARS CoVs
[29,30]. Therefore, DT has identified key amino acid residues in
biologically important regions of S protein.

Accurate predictions of CoV host specificity are essential in light
of the COVID19 pandemic and the potential for new trans-species
infections in future. Our analysis relies only on the S protein se-
quences rather than using the entire viral genome. Similar analyses
might be valuable to predict the host specificity of novel CoV
sequences.
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Table S4
The average importance and number of occurrences (in parentheses) for deciding
sites identified by DT classifier in S Hum. The classifier was run 10� k times, where k
is the number of folds.
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Table S1
3-fold cross-validation of different classifiers for S Hum. The results are presented as
mean (m) ± standard deviation (s) of 4 measures of performance: accuracy (Ac),
F1-score (F1), sensitivity (Sn), and specificity (Sp). The best performances (with the
greatest value m� s) are shown in bold.

SVM LR DT RF

Inputs with 59,900 components
Ac .983 ± .007 .985 ± .005 .986±.009 .984±.006
F1 .978 ± .009 .980 ± .006 982±.012 .979±.008
Sn .981 ± .014 .987 ± .011 .996±.003 .985±.011
Sp .985 ± .011 .983 ± .012 .981±.016 .983±.012
Inputs with 50 components
Ac .986 ± .004 .974 ± .018 .969±.026 .977±.016
F1 .981 ± .005 .966 ± .024 .960±.034 .969±.016
Sn .989 ± .011 .970 ± .029 .968±.021 .961±.029
Sp .983 ± .012 .977 ± .016 .970±.032 .987±.010

Site 2-fold 3-fold 5-fold 10-fold

1483 .811 (3) .803 (2) .800 (1) NA (0)
S2258 .807 (17) .806 (28) .806 (49) 0.806 (100)
Table S2
k-fold cross-validations for S Hum performed by DT and SVM classifiers run on non-
reduced and SVD-reduced inputs respectively. The results are presented as mean (m)
± standard deviation (s) of 4 measures of performance: accuracy (Ac), F1-score (F1),
sensitivity (Sn), and specificity (Sp). The best performances (with the greatest value
m� s) are shown in bold.

2-fold 3-fold 5-fold 10-fold

DT, inputs with 59,900 components
Ac .983 ± .011 .986 ± .009 .973 ± .029 .974 ± .047
F1 .978 ± .014 .982 ± .012 .967 ± .034 .970 ± .053
Sn .991 ± .000 .996 ± .003 .989 ± .007 .994 ± .014
Sp .978 ± .017 .981 ± .016 .964 ± .046 .963 ± .075
SVM, inputs with 50 components
Ac .972 ± .022 .986 ± .004 .986 ± .013 .989 ± .023
F1 .962 ± .030 .981 ± .005 .981 ± .017 .986 ± .029
Sn .950 ± .032 .989 ± .011 .989 ± .017 .998 ± .006

Sp .985 ± .016 .983 ± .012 .983 ± .021 .983 ± .034
Table S3
3-fold cross-validation of DT and SVM classifier run on inputs without and with
dimensionality reduction respectively. The results are presented as mean
(m ± standard deviation (s) of 4 measures of performance: accuracy (Ac), F1-score
(F1), sensitivity (Sn), and specificity (Sp).

S Hum H A=S H Mam

DT, inputs with 59,900 components
Ac .986 ± .009 .977 ± .023 .978 ± .012
F1 .982 ± .016 .974 ± .027 .986 ± .008
Sn .996 ± .003 .957 ± .048 .984 ± .018
Sp .980 ± .016 .995 ± .004 .960 ± .057
SVM, inputs with 50 components
Ac .986 ± .004 .976 ± .025 .987 ± .018
F1 .981 ± .005 .972 ± .030 .992 ± .012
Sn .989 ± .011 .957 ± .061 1.000 ± .000
Sp .983 ± .012 .992 ± .012 .947 ± .075

Table S3 demonstrates decent results for all performed classifications (referring to
the 4 statistical metrics used e accuracy, F1-score, sensitivity, and specificity)
reaching more than 98% for S Hum, 95% for H A=S, and 94% for H Mam Important
sites. We used DT to identify important sites in S Hum classification, see Table S4.
Only two sites (1483 and 2258) had high importance of greater than 0.80.
Remarkably, they appeared in each run of DT classifier independently of the number
of splits k. All other sites used in DT had importance of less than 0.13. As k increases,
the proportion of occurrences of the two sites changes in favor of 2258, reaching
100% in the 10-fold split.
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