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Colorectal cancer (CRC) is one of the most prevalent malignancies, and immunotherapy
can be applied to CRC patients of all ages, while its efficacy is uncertain. Tumor mutational
burden (TMB) is important for predicting the effect of immunotherapy. Currently, whole-
exome sequencing (WES) is a standard method to measure TMB, but it is costly and
inefficient. Therefore, it is urgent to explore a method to assess TMB without WES to
improve immunotherapy outcomes. In this study, we propose a deep learning method,
DeepHE, based on the Residual Network (ResNet) model. On images of tissue, DeepHE
can efficiently identify and analyze characteristics of tumor cells in CRC to predict the
TMB. In our study, we used ×40 magnification images and grouped them by patients
followed by thresholding at the 10th and 20th quantiles, which significantly improves the
performance. Also, our model is superior compared with multiple models. In summary,
deep learning methods can explore the association between histopathological images
and genetic mutations, which will contribute to the precise treatment of CRC patients.
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INTRODUCTION

Colorectal cancer (CRC), including colon cancer and rectal cancer, is one of the top 3 malignant
tumors in the world for morbidity and mortality (1–3). According to statistics from the American
Cancer Society, the estimated death toll in 2021 even reached 149,500 (4). In China, 25% of patients
experience metastasis during diagnosis or treatment, and the 5-year survival rate of patients is less
than 5% (5). The treatment of CRC is mostly based on surgery and chemotherapy. However,
because tumor cells grow rapidly and are prone to metastasis, surgery and chemotherapy can only
temporarily relieve the disease but cannot completely cure it. Immunotherapy kills tumors by
activating the host immune system that is anti-deteriorating and durable; this has become the focus
of the cancer treatment field in the new era.

In tumor immunotherapy, programmed death receptor programmed cell death-1/programmed
cell death-ligand 1 (PD-1/PD-L1) inhibitors and cytotoxic T lymphocyte-associated antigen 4
(CTLA-4) inhibitors are the main immune checkpoint inhibitors (ICIs) (6, 7). Several clinical
studies have proven that compared with platinum-based chemotherapy and surgery,
immunotherapy can improve the overall survival rate of patients in most cancers (8–14).
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However, not all patients respond well in the clinical treatment
with ICIs. Several studies have found that the efficacy of ICIs is
closely related to the level of PD-L1 (15). So mastering the
immune microenvironmental response of patients is a critical
requirement. Previously, PD-L1 expression was the main marker
for predicting the effect of immunotherapy. Several solid tumor
studies have shown the effectiveness of PD-L1 expression
detection, such as melanoma, CRC, and non-small cell lung
cancer (NSCLC) (16, 17). However, as immunotherapy research
continues to progress, the insufficient detection of PD-L1
expression has shown that it is no longer the only criterion to
predict the efficacy of ICIs (18). In this regard, tumor mutational
burden (TMB) appears as a marker of ICI efficacy identification
and plays an irreplaceable role in optimizing targeted regimens
and developing well-tolerated drugs for physicians.

The definition of TMB is the number of mutations per
megabase in the coding region of the tumor exome. With an
increase of the TMB, the degree of acquired somatic mutations
will increase and more tumor-specific neoantigens will be
released. A portion of the antigen is presented on the human
leukocyte antigen (HLA) molecules on the surface of the cancer
cells, thus triggering the recognition and processing of the tumor
cells by the immune system. The reflection of TMB on PD-L1
levels affects the formulation of ICI regimens for patients in the
clinic, which has aroused great interest in the determination of
the TMB in tumors by researchers in various fields. According to
current research, there is almost no correlation between TMB
and PD-L1 expression in many cancers and their subtypes,
including NSCLC, CRC, melanoma, and pancreatic cancer,
which indicates that the TMB can serve as an independent
prognostic marker (19, 20). Cao et al. (21) compiled the
survival indicators of 103,078 patients with different cancers
and included 45 immune-related studies; they finally found that
TMB-H (high tumor mutational burden) patients achieved
better survival after receiving immunotherapy. In 2020, the
Food and Drug Administration (FDA) for first time approved
TMB to be used as a diagnostic marker for pan-cancer
immunotherapy when unresectability or metastasis occurs (22).
In general, TMB-H has predictive and prognostic potential for
the immunotherapy of solid tumors.

Although many studies have proven that the TMB performs
well as a marker in ICI treatment, it is still hard to accurately
measure and define the threshold of TMB-H (23). At present,
whole-exome sequencing (WES) is the main method of TMB
quantification that quantifies the TMB directly and
comprehensively. WES data sets are often used in tumors to
show the correlation between ICI reaction and TMB status (24,
25). Although this method can measure the TMB with high
standards, it has some stringent requirements. For example, it
not only requires fresh and high-quality samples but also is
expensive and has a long working time (26). Therefore, low-cost
targeted sequencing panel detection is often used as an
alternative measurement to WES; it infers full mutation
burden from a narrower sequencing space, leading to the
development of an integrated MSK-IMPACT assay by Zehir
et al. The assay can evenly cover clinically relevant genes and
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fusions of target genes, so the TMB content can be accurately
estimated (27). However, targeted sequencing has some fatal
drawbacks. Buchhalter et al. (28) evaluated the Illumina TSO500
panel and found that the 1.5–3-Mbp panel is more suitable for
TMB estimation, and lower ranges will bring errors in TMB
estimation, while targeted sequencing cannot detect small
sequencing ranges and only targets tumor cells with repeated
mutations. Deep learning has shown an ultrahigh level in
processing complex and large amounts of information in
histopathological images. Deep convolutional neural networks
(CNN) have yielded many shocking research results in image
feature recognition of cancer histopathology (29, 30). Moreover,
Mika et al. developed the Image2TMB method with deep
learning to measure the TMB in lung adenocarcinoma
pathological tissue images at three scales (×5, ×10, and ×20
magnification) (31). Finally, the performance of the ×20 scale is
the best with an area under the curve (AUC) of 0.81, showing
that high-resolution scale images are more conducive to the
prediction of markers. Therefore, there is indeed a correlation
between the tumor somatic mutations and gene mutations, and
deep learning can evaluate this correlation well. To further
understand the capability of deep learning for tumor cell
somatic recognition in histopathological images and to explore
efficient strategies for TMB measurement, this paper builds a
deep learning model, DeepHE. This can automatically analyze
the TMB in pathological images and predict the probability of
their potential TMB from CRC whole slices [whole-section
images (WSIs)] in The Cancer Genome Atlas (TCGA). We
downloaded the entire formalin-fixed paraffin-embedded
(FFPE) tissue data of CRC at ×40 resolution and grouped them
by patients. To train a more efficient model, a higher resolution
compared to that of previous studies is chosen. Also, the
classification by patients avoids errors caused by the same
pathological tissue images from one patient. The images of 509
patients remained after DeepHE sorted and filtered data by
patients, then we segmented the WSI slice and performed
color normalization. To improve its feature recognition ability
and speed up the convergence, this research introduced a
residual network model derived from CNN technology and
then trained the model of ResNet50 by 2-fold cross-validation.
The performance of the five models including ResNet18,
ResNet34, VGG16, AlexNet, and ResNet50 showed superiority.
This study provides an important way for patients to benefit
from ICI treatment and explores the relationship between the
TMB and the tumor immune microenvironment.
RESULTS

The Workflow of DeepHE
Figure 1 shows the workflow of DeepHE. The ×40 scale images
contain more details, and our model still performs well in
predicting the TMB on CRC in a short time. From 611
patients, a total of 509 patients were left by professional
pathologists, of which 12 patients were removed because they
lacked TMB information or the tumor area could not be
May 2022 | Volume 12 | Article 906888
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annotated. The clinical information of the remaining 509 CRC
patients was also obtained and collated from TCGA (Table 1).
Then 1,586,826 qualified slices were derived from the images of
these patients, which are approximately 3,117 slices in each
group. After that, each group was randomly divided into two
groups as the training set and validation set, resulting in two sets
of 793,413 H&E slices for model training and testing.

DeepHE Achieves Relatively Good
Performance in the Tumor Mutational
Burden Prediction
According to the standard of dividing the TMB level in a
previous related work, this study uses the thresholds of 10 and
20 (32). Then, the research divided the data into TMB-H (TMB
high) and TMB-L (TMB low), satisfying H:L (10) = 83:426 (with
a threshold of 10) and H:L (20) = 73:426 (with a threshold of 20),
after which the model was trained and tested on the FFPE
dataset. When the data set used a TMB threshold of 10, the
ratio of the number of patients between TMB-H and TMB-L
is 83:426.

The performances of DeepHE in predicting TMB at different
thresholds were shown in Figure 2. ResNet50 with more hidden
layers in the residual network is selected to capture a more
detailed feature information. The results also showed that the
AUC of ResNet50 reached 0.729 under 2-fold cross-validation.
Then, when the threshold is 20, H:L (20) = 73:436, the AUC of
ResNet50 is 0.774. During the whole trial, 30 epochs were
maintained, which was the best value obtained after many
attempts. At the beginning of the experiment, the epoch was
set to 50. However, as the epoch was set greater than 30, the
training ACC result has stabilized at around 0.9679, which
means that a larger value will only take more time.

DeepHE Achieves Higher Areas Under the
Curve Than Those of Existing Methods in
the Tumor Mutational Burden Prediction
To verify the superiority of the model performance, we tested four
models that have contributed greatly to the current image
recognition field based on the same process, namely, ResNet18,
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ResNet34, VGG16, and AlexNet. The comparisons between their
results and our model are shown in Figure 3. We used a sliding
window to visualize the probability value on each small slice,
classified and counted the TMB level on the slice contained in each
complete WSI. When the ratio of the number of slices containing
TMB-H in a patient to the number of all his eligible slices is greater
than 50%, the patient was identified as TMB-H and vice versa for
TMB-L. It is worth noting that the eligibility here refers to slices
owned by the patient that were not screened out and participated
in the training. Figure 3A shows the ROC curves of the TMB
divided by 10 into all methods, and Figure 3B shows the case
where 20 is the threshold. After training of ResNet18, the AUC is
0.720; at H:L (20), the AUC is 0.736. It can be found that the
results of ResNet18 are very close to that of ResNet50, but there are
still some gaps. We suspect that as the number of layers increased,
the results would get closer to our model or even surpass it. As a
result, we experimented with ResNet34. When the threshold is 10,
the AUC value of the ROC curve is 0.716, and when H:L (20) =
73:426, the AUC is 0.715. Next, we tested VGG16 and AlexNet.
When AlexNet was split at 20, the AUC only reached 0.685, so it
was not tested with a threshold of 10. In the study, VGG16 made
the TMB at H:L (10) = 83:426, the AUC value of the ROC curve
was 0.677, H:L (20) = 73:426, and the AUC value was 0.701. The
reason is that compared with AlexNet, VGG16 has more
convolutional layers and smaller pooling kernels, which can
extract more detailed information, but the model requires more
parameters to participate, which will occupy more or a large
memory space (33). Taken together, the results are that ResNet50
performs well, while AlexNet performs the least well. For ResNet,
VGG, and AlexNet models, AlexNet has the least number of
convolutional layers, which may be one of the reasons for its
worst effect.

At the same threshold, the performances of all models are
comparable. We perform statistics on performance metrics of
all models used in the study in Tables 2, 3, namely, accuracy
(ACC), precision, recall, and F1 score. After statistics
highlighting the optimal value in red, it was found that
DeepHE based on ResNet50 has always maintained a
relatively high performance.
A

B D

C

FIGURE 1 | The workflow of this study. (A) Download the CRC image data of ×40 resolution from TCGA. (B) Categorize the data by patients and remove the
unqualified images. (C) Mark the tumor area and segment it, and then perform noise removal and color normalization processing. (D) Model training and testing.
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DISCUSSION

TMB has emerged as a biomarker responsive to the efficacy of
immunotherapy and has been approved by the FDA. In 2018,
Gandara et al. (34) for first time demonstrated that the TMB can
stably predict the effect of immunotherapy. In this study, the
content of the TMB was determined on pathological images of
CRC. For the selection of the threshold, the researchers found
Frontiers in Oncology | www.frontiersin.org 4
that in patients with NSCLC, when the TMB ≥10 mut/Mb was
used as the cutoff point, it was found that patients with high TMB
content were more responsive to immunotherapy. ICI treatment
prolonged the progression-free survival rate of these patients and
far exceeded the effect of platinum-based doublet chemotherapy
(35). Therefore, the ResNet50-based DeepHE had a threshold of
10 and 20, respectively. When the threshold was 10, the area
under the ROC curve reached 0.729. At the same time, when the
A B

FIGURE 2 | Results of the TMB prediction model. (A) ROC plot of the ResNet50 model with a TMB cutoff of 10 under 2-fold cross-validation. (B) ROC plot of the
ResNet50 model with a TMB cutoff of 20 under 2-fold cross-validation.
TABLE 1 | Clinical Information for TCGA Colorectal Cancer Patients.

Clinical variable Category Number of patients

Tumor stage Stage I 88
Stage II 178
Stage III 147
Stage IV 75
Unknown 21

Prior malignancy Yes 55
No 451
Unknown 2

AJCC pathologic T T1 15
T2 91
T3 341
T4 58
Unknown 4

AJCC pathologic N N0 282
N1 130
N2 91
Nx 2
Unknown 4

AJCC pathologic M M0 366
M1 74
Mx 58
Unknown 10

Gender Women1 246
Men0 260
Unknown 3

Vital status Alive 395
Dead 111
Unknown 3

Age at index ≥66 272
<66 237

New tumor event after initial treatment Yes 91
No 332
Unknown 86
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threshold was 20, the AUC of ResNet50 was 0.774. Ciardiello
et al. (36) studied colon cancer with mismatch repair deficiency
(dMMR), and high microsatellite instability (MSI-H) concluded
that immunotherapy has a certain clinical therapeutic effect. The
TMB has been reported as an important marker for concomitant
CRC immunotherapy, which fully justifies our trial design.
Furthermore, the addition of residual blocks further improves
the performance of the model. Therefore, our research is bound
to have an important impact on improving the survival rate of
cancer patients. The detection of TMB mainly relies on WES
technology, which is expensive, requires a lot of time (about 60
days), will delay the treatment time of cancer patients, and is
likely to make the best treatment time missed. In contrast, the
DeepHEmethod does not require a large amount of biopsy tissue
sample, a lot of manpower, material resources, and time. It only
needs to run the trained model on the pathological images
of patients.

In recent years, machine learning methods have been widely
used in biomedical research like drug repositioning (37, 38) and
single-cell analysis (39). Among all of these fields, deep learning
showed advantages over many previous related technologies (40,
41). For example, in lung cancer research, deep learning methods
can be used to identify biomarker genes on pathological images
(42, 43). The success of Residual Networks in the ImageNet
Large Scale Visual Recognition Competition in 2015 brought the
ResNet model into the limelight. When ResNet18 predicted MSI
Frontiers in Oncology | www.frontiersin.org 5
on H&E tissue section images of gastric adenocarcinoma (STAD)
and CRC, it not only had a shorter training time but also
achieved an AUC of 0.84 (44). Moreover, it has been reported
that ResNet50 has demonstrated exciting performance results in
breast cancer and skin cancer classification (45, 46). ResNet18
includes convolution layers and fully connected layers.
Compared with ResNet50, ResNet18 lacks the reduction of the
corresponding dimension and the function given by the batch
norm (BN) layer, which may be the reason why the performance
of ResNet18 in predicting the TMB is slightly lower than that of
ResNet50 (47). ResNet34, VGG16, and AlexNet can be regarded
as the classic models in the deep CNN. After AlexNet was
proposed in 2012, it has triggered a boom in its application
and plays an important role in the research of medical images.
Notably, the structure of VGG16 is very simple. However, the
number of VGG network channels is too large, and its structure
determines that it requires more parameters and brings more
memory usage (48). In addition, the VGG16 network structure is
too densely connected, resulting in a long training time, these
factors may lead to the relatively poor effect of VGG16 in this
study. Currently, the research of deep learning on medical
images is quite mature, and most of its achievements have also
been recognized and practically applied in clinical practice.

In our research, we used deep learning to identify and analyze
CRC histopathological images and achieved the purpose of
predicting the TMB. However, the content of the TMB in
TABLE 2 | Comparison of the performance of different models (TMB cutoff = 10).

Model ACC Precision Recall F1-score

ResNet18 0.820 0.640 0.562 0.575
ResNet34 0.815 0.607 0.548 0.552
ResNet50 0.830 0.681 0.587 0.605
VGG16 0.830 0.681 0.587 0.605
May 2022 | Volume 12 | Artic
A

B

FIGURE 3 | ROC curves of the comparison models. (A) ROC plots for different models with a TMB cutoff of 10 under 2-fold cross-validation. (B) ROC plots for
different models with a TMB cutoff of 20 under 2-fold cross-validation.
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tumors was seldom estimated using deep learning previously.
The reason may be the difference between gene level and
phenotype level. DeepHE divides the complete WSI into 512 ×
512 H&E slices and predicts the TMB probability. Our results,
shown in Figure 2, illustrate the promise of exploring
associations between cancer genotypes and phenotypes.

To save the detection time of the TMB, researchers have also
explored single-panel sequencing methods and more clinically
practical panel-based methods. However, many factors like the
protein-coding regions of the panel, the association of selected
genes with tumors, and the number of genes will affect the ACC
of the results (49). DeepHE extracts the potential features of
TMB on the pathological images of tumors through deep
learning, which does not depend on the selection of genes.
Therefore, these shortcomings of the gene panel do not exist
for the DeepHE method.

Although DeepHE showed good performance, it was still
controversial in many aspects. Firstly, our samples have been
delineated and annotated by professional pathologists, and the
pathological images have been segmented and screened. The
addition of professional pathologists makes this study more
professional in medicine and more promising for clinical use.
These steps are not required by some TMB detection methods,
but those methods still achieved good results. Second, our data all
came from FFPE images in TCGA, and no independent
validation set was established. Moreover, much complex
information and noise in these images cannot be completely
analyzed and removed that could affect the ACC and
persuasiveness of DeepHE.
MATERIALS AND METHODS

Data Sources
TCGA (https://www.cancer.gov/tcga) is a joint cancer multi-
omics analysis database co-founded by the National Cancer
Institute and the National Human Genome Research Institute
in 2006. From TCGA database, we have collected all available
FFPE images of CRC patients; this type of images is often used
for clinical diagnostic analysis and is stored simply. This manner
does not affect the pathology contained in FFPE tissue, thus
guaranteeing the ACC of our model (50). The data resolution
was chosen as ×40 and submitted to professional pathologists in
SVS format. The TMB distribution of patients is known and
published in TCGA, and 20 or 10 were used as the cut points to
categorize patients. Patients whose TMB content is higher than
the threshold were marked as 1 and recorded as TMB-H, while
Frontiers in Oncology | www.frontiersin.org 6
those lower than the threshold are marked as 0 and recorded as
TMB-L.

Data Processing
In this study, CRC images were downloaded from TCGA and
were classified by patients. There are 611 sets of image data in
total. According to the diagnosis of pathologists, 6 groups of data
have unclear tumor areas in the images, and 96 patients were
excluded because the TMB information is missing. WSIs of 509
CRC patients were used for model training in this study. There
are thousands of pixels in a WSI, which often contains too much
complex information and is not conducive to the analysis of the
features on these images by DeepHE. The DeepHE model
divided the patient’s WSI scan into H&E slices of 512 × 512
pixels. These slices were used for subsequent training, as shown
in Figure 1C.

Noise information, blurred areas, and blank areas in H&E
slices have a non-negligible impact on model training, such as
false-positive results and capture feature deviations; then, that
information must be paid attention to. As an open-source
computer vision library for image processing, OpenCV has
powerful and reliable image processing capabilities to reduce
the research cost and time of researchers (51). Based on
OpenCV, this research regarded H&E slices as pixel matrices
and performs segmentation, signature detection, and noise
removal for specified targets. After reading the slice data,
OpenCV was used to calculate the ratio of the number of
blank area pixels in the slice to the slice area, and 70% was
used as the threshold to screen samples suitable for predicting
target genes. Denote K0 as the real value of the pixel in the image,
and the noise pixel as L, then K = K0 + L. OpenCV collected
many pixels in the image and calculated the average value to
make the value of L tend to 0, then used the average values to
represent the new pixel values that achieve smooth filtering and
noise elimination. In addition, OpenCV also shows the functions
of image edge expansion (filling), highlighting important parts of
the image and adjusting brightness to improve image quality, as
shown in Figure 4.

In H&E slices of CRC, some images inevitably contain more
microvessels, inflammatory cells, microfibrils in the background,
and are wrinkled and blurry. Once these images were identified,
they were abandoned. After a series of program operations and
careful screening, a total of 1,586,826 CRC H&E slices remained.
The high quality of these slices ensures the ACC and reliability of
the results of the TMB prediction model.

Hematoxylin and eosin staining are commonly used staining
methods in FFPE sectioning technology. Hematoxylin can
differentiate cell structures into various colors, while eosin
TABLE 3 | Comparison of performance of different models (TMB cutoff = 20).

Model ACC Precision Recall F1-score

ResNet18 0.835 0.622 0.564 0.575
ResNet34 0.845 0.649 0.548 0.555
ResNet50 0.850 0.677 0.567 0.582
VGG16 0.845 0.620 0.530 0.530
AlexNet 0.840 0.643 0.563 0.575
May 2022 | Volume 12 | Artic
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stains the cytoplasm and intercellular substance. There are often
differences in the color of each structure. And there are many
reasons for color differences, including temperature, solution
dose, tissue or cell type, changes in cell cycle, and histopathology
(52). Therefore, in the study, H&E slices often show different
colors on the same structure, which increases the difficulty of
DeepHE in capturing the target information during the training
process. To address this issue, we incorporated a color
normalization method into the development of the DeepHE
model. The color normalization employs an unsupervised deep
convolutional Gaussian mixture model (DCGMM) to identify
color information in H&E tissue slice images and converts them
into a reference image, as shown in Figure 5. The color
normalization method only transforms the chromaticity of
Frontiers in Oncology | www.frontiersin.org 7
H&E images; the spatial structure and pathological
information on it do not change. This method does not require
labels and premise assumptions; it also has the capability of
automatic learning (53).

The Gaussian mixture model (GMM) can be regarded as a
linear group sum of multiple Gaussian functions. Using GMM,
the number of clusters n can be specified, and the random
variable data are fn. The training of GMM is to cluster points
according to the distance between two different pixels to
maximize the expectation:

b(n) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fn − qnð ÞTo

−1

n
fn − qnð Þ

s
(4:1)
FIGURE 4 | OpenCV process.
FIGURE 5 | Color normalization. I. Original slice images. II. Color-normalized slice images. III. Reference images.
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where qn represents the mean, and the process is very similar to
the k-means algorithm.
When the normal distribution is ∂, the n-nt data are ∂ (fnjqn, gn),
and GMM satisfies:

a nð Þ = o
N

n=1
ln ∂ fnjqn, gnð Þ (4:2)

where gn is the covariance matrixo
N

n=1
ln is the weight of ∂ (fnjqn, gn)

which satisfies the condition o
N

n=1
Wn = 1 (54).

The DCGMMmodel is a probability distribution model based
on GMM. The model is generated by linear superposition of an
N-dimensional GMM. When ln is the prior condition of fn and
the data are n, it satisfies:

P(n) =
ln ∂ fnjqn, gnð Þ

o
N

i=1
lj ∂ fnjqn, gnð Þ

(4:3)

When fn is the submodel data, all submodels can finally form a
DCGMM model whose (natural) log-likelihood function is:

lnP xkj ln, qn, gnð Þð Þ = o
K

k=1

ln P xð Þ (4:4)

At this time, the selection and change of the parameter (ln, qn,
gn) have a decisive effect on the effect of the DCGMM model.

Deep Learning Algorithms
ResNet50 is one of the methods in ResNet. It contains two basic
blocks, Conv Block and Identity Block. Usually, Bottlenecks is
included in the four blocks, and the number of channels is
reduced by a 1 × 1 convolutional layer to half, followed by 3 × 3
and a 1 × 1 convolution to achieve dimensionality reduction and
pooling of these images, reducing the amount of subsequent
computation and outputs to the next block. Identity Block does
not change the dimension of the data itself; it performs the
mapping of the data itself. As a result, the network can be
extended to a deeper level, which will make the model feature
extraction better and improve the model’s classification ACC of
image features. The nature of the residual block skip link reduces
the training time, which is shown in Figure 6. After the data are
output, they can linearly reach the input layer of the following
block through the skip link, so that the network only needs to
learn the differential information between the input layer and the
output layer. Compared with traditional CNN, the introduction
of ResNet reduces the loss of information and optimizes the
model generalization ability and training speed (55).

In this study, ResNet50 is mainly used to form the neural
network part of the DeepHE model, and Conv is used as the
convolution layer. After the image data x is input, it will first enter
the convolution layer with 32n×n kernels and perform feature
extraction by weight. Conv Block will change the network
dimensions, so they cannot be directly connected in series. Then,
the BN layer is added to normalize the Conv results, smooth the
landscape of the entire loss function, and improve the feature
extraction accuracy and generalization ability of the network (56).
Frontiers in Oncology | www.frontiersin.org 8
FI
G
U
R
E
6
|
R
es
id
ua

ln
et
w
or
k.
May 2022 | Volume 12 | A
rtic
le 906888

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Predicting CRC TMB
We choose ReLU as the activation function, which can be regarded
as an identity mapping model for forwarding calculation. This
makes the network sparse and at the same time acts as a
regularization to realize the repeated comparison of extracted
information and feature confirmation.
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