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Squamous cell carcinomas (SqCCs) arise in a wide range of tissues including skin, lung, and oral mucosa. Although all SqCCs
are epithelial in origin and share common nomenclature, these cancers differ greatly with respect to incidence, prognosis, and
treatment. Current knowledge of genetic similarities and differences between SqCCs is insufficient to describe the biology of these
cancers, which arise from diverse tissue origins. In this paper we provide a general overview of whole genome approaches for gene
and pathway discovery and highlight the advancement of integrative genomics as a state-of-the-art technology in the study of
SqCC genetics.

1. Introduction

Squamous cell carcinoma (SqCC) initiation and develop-
ment is characterized by the accumulation of genetic alter-
ations. Over the past two decades, technological advances
used to identify these alterations have expanded from single-
gene queries to genome-wide methods of analysis in a
multitude of dimensions, including genomics, epigenomics,
and transcriptomics. Mutations and copy number alterations
at the DNA level represent genomic alterations, while aber-
rant methylation patterns and histone modifications reflect
epigenetic changes. Gene expression changes manifest either
as a direct consequence of genetic and epigenetic alterations
or as reactive changes and downstream effects. Furthermore,
transcription patterns are also mediated by noncoding RNAs
such as microRNAs (miRNAs), which can be deregulated
by the aforementioned genetic and epigenetic alterations.
The global profiling of each omics dimension represents
a remarkable technological and bioinformatic achievement.
However, the integration of these individual dimensions
must be pursued in order to provide a comprehensive view
of the impact of gene disruption in SqCC. Hence, there is
a growing need to merge these multiple dimensions of data

to identify concerted and complementary alterations that
lead to the perturbation of oncogenic pathways and gene
networks.

2. Multidimensional Analysis of
Cancer Genomes

2.1. Genomic Alterations in Cancer. Genome destabilization
is one of the hallmarks of cancer and is reflected by
the accumulation of multiple genetic alterations such as
chromosomal translocation, DNA copy number alteration,
and sequence mutation [1]. Chromosomal translocation has
been shown activate oncogenes by gene fusion [2–4]. Seg-
mental duplication and amplification leads to increased gene
dosage and, often, inappropriate expression of oncogenes
[5] (Figure 1). Deletion leads to loss of tumor suppressor
function through either haploinsufficiency or two-hit inac-
tivation of functional alleles [6, 7]. Examples of such two-
hit mechanisms are homozygous deletion or a combination
of deletion and gene mutation. DNA mutation can lead to
a variety of effects, such as constitutive gene activation or
inactivation. A variety of technology platforms have been
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Table 1: Genome-wide methods for identifying genetic alterations.

Alteration Method of genome-wide analysis References

Chromosomal translocation Spectral karyotyping (SKY) [8–12]

DNA copy number
Array comparative genomic hybridization (aCGH)

[13–17]
Digital karyotyping and genome sequencing

Loss of heterozygosity Single-nucleotide polymorphisms (SNPs) analysis [18, 19]

Mutation Gene-specific, exomic, and whole-genome sequencing [20–23]

developed that are tailored to the detection of specific types
of genomic alterations. These technologies are summarized
in Table 1.

2.2. Epigenomics of Cancer. Epigenetics is the study of
heritable chromosomal changes that influence transcription
but do not directly alter the DNA sequence [24]. Mechanisms
of epigenetic gene regulation include DNA methylation and
histone modification. Altered epigenetic regulation in cancer
includes hypo- and hypermethylation of genes, which can
lead to increased genomic instability and the activation
of oncogenes or the silencing of tumor suppressor genes,
respectively. Similarly, the modification of histones can
modulate chromatin structure and accessibility (Figure 2).
The genome-wide alignment of epigenetic aberrations with
genetic alterations can lead to the identification of genes
disrupted in both alleles. For example, in the two-hit model
one allele could be lost to deletion, while the other copy is
silenced by hypermethylation. These events can in turn lead
to changes in gene expression levels [25–27]. A wide range of
methodologies exists for the determination of methylation
status, which rely on bisulfite conversion of cytosines [28–
32], immunoprecipitation of methylated DNA [33, 34], or
the sensitivity of endonucleases to DNA methylation [35, 36].
The technologies in methylome analysis are summarized in
Table 2 [27]. Histone modification analysis is complex due
to the variety of modifications and the different residues
being modified. Common methods of assessment such as
ChIP-chip and ChIP-seq involve immunoprecipitation using
antibodies against specific types of modification and are the
subject of recent review articles [37–39].

2.3. Gene Expression Profiling. The downstream effect of
genomic and epigenomic alterations is the dysregulation
of gene expression. Global gene expression profiling has
been instrumental in both disease classification and cancer
gene discovery [49–54], as well as in biomarker discovery
in a wide range of cancers [55–57]. The evolution of gene
expression profiling technologies and their applications to
cancer biology is well documented in the literature [58, 59].
While microarrays are widely used for expression profiling,
sequence-based approaches such as serial analysis of gene
expression (SAGE) present a digital alternative to measuring
transcript abundance [60]. More recently, the emergence of
massively parallel and next-generation sequencing platforms
has revolutionized whole transcriptome analysis [20–23].
Expression changes are not limited to protein coding genes;
alterations in miRNA levels have been well documented in
various cancer types, discussed below.

2.4. Noncoding RNAs. Approximately 90% of the human
genome is transcribed, with only a small fraction of these
transcripts representing protein coding mRNAs [61–64].
The remaining transcripts are comprised of a wide range
of noncoding RNAs (ncRNAs) including ribosomal RNAs
(rRNAs), transfer RNAs (tRNAs), miRNAs, and a recently
described class, long noncoding RNAs (lncRNAs) [65].

MicroRNAs are small∼22 nucleotide (nt) RNAs involved
in posttranscriptional silencing of mRNA targets [66]. These
regulatory RNAs exhibit an enormous influence on most
fundamental biological processes, altering the expression
of proteins by inhibiting translation or promoting mRNA
degradation [67]. Aberrant miRNA expression has been
linked to a range of diseases, including cancer progression
and prognosis [68, 69]. Many of the mechanisms described
to alter normal gene expression in cancer can also influence
the expression of miRNAs. For instance, the gain or loss
of a specific miRNA can function as either an oncogene
or a tumor suppressor [70–72], and mutations in miRNA
sequences or miRNA processing machinery can have a
tremendous impact on miRNA regulatory function [73].
Intriguingly, the expression of miRNAs can also be regulated
by epigenetic mechanisms [74], while in turn, miRNA
expression can modulate epigenetic regulation by targeting
enzymes responsible for histone modification and DNA
methylation [75, 76].

More recently, lncRNAs have been described to func-
tion as epigenetic regulators of transcription, chromatin
remodeling and cellular development [65, 77, 78]. While the
extent of their involvement in tumorigenesis is unknown, the
dysregulation of lncRNAs may prove to be yet another level
of complexity in the cancer genomic landscape.

In combination with genomic, epigenomic, and tran-
scriptomic alterations, the capacity of ncRNAs to influence
the expression of a range of biological processes highlights
the need to merge the multiple dimensions of whole
genome analysis. Integrative genomics is the response to this
requirement as highlighted below.

2.5. Integrative Genomics. Until recently, the study of cancer
genomes, epigenomes, and transcriptomes has largely been
done in a solitary manner. With technologies to assess these
different dimensions becoming more accessible (Figure 3),
the integration of these diverse data dimensions in parallel
is the next logical step. In fact, large-scale initiatives, such
as those led by The Cancer Genome Atlas (TCGA) Research
Network (http://cancergenome.nih.gov/), are proposing the
comprehensive characterization of genomic, epigenomic,
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Figure 1: Mechanisms of DNA copy number alteration. (a) Segmental gains and losses can lead to DNA copy number alterations. (b) Allelic
imbalance and loss of heterozygosity (LOH) can arise from a deletion event or gene conversion during mitosis.
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Figure 2: Mechanisms of epigenetic gene silencing. Unmethylated DNA is accessible to activator proteins and transcription factors
(TF) enabling transcription. DNA methylation by DNA methyl transferases (DNMT) causes steric inhibition of transcription complexes
thus blocking transcription. Methylated DNA (me) is recognized by methyl binding domain proteins (MBD), histone deacetylases
(HDAC), and histone methyltransferases (HMT) which stimulate chromatin remodeling. Compaction of DNA into condensed chromatin
(heterochromatin) results in transcriptionally inactive DNA.

and transcriptomic alterations for a multitude of cancer
types.

While the majority of previous integrative studies have
focused on correlating copy number alterations with gene
expression changes, there have been a few more recent
studies which have incorporated the epigenomic dimension
as well [79–83]. Moreover, from these studies, it is clear
that both quantitative and qualitative benefits are reaped
when employing a Multidimensional approach. For example,
the abilities to (i) associate more of the observed aberrant
gene expression to genetic and epigenetic alterations (ii)

identify complementary alterations in different samples
which lead to similar downstream effects, and (iii) elu-
cidate complex disruption patterns of both known and
novel signaling pathways are some of the key findings
that have been made. However, a consequence of assessing
the cancer cell at a high resolution is the generation of
copious amounts of data and the subsequent need for
specialized bioinformatic tools [84]. As a result, there have
been a number of recently developed tools to address
this need. Table 3 lists these tools and where they can be
obtained.
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Table 2: Techniques for genome-wide analysis of the methylome.

Bisulfite Conversion. Sodium bisulfite treatment converts unmethylated cytosines to uracil, while methylated cytosines remain unaffected.
This change in sequence can be discriminated using the techniques listed here, and relative methylation can be quantified relative to
reference DNA.

Applications coupled with bisulfite conversion References

Whole-genome sequencing [40]

Illumina platforms [41]

Bisulfite microarray (BS chip) [41]

Methylation-specific quantum dot fluorescence resonance energy
transfer (MS-qFRET)∗

[42]

Bisulfite padlock probes (BSPPs) [43]

Methylated DNA Precipitation. DNA is fractionated and methylated DNA sequences are subsequently eluted through the use of specific
antibodies or methyl binding proteins. Following completion of the applications listed below, precipitated DNA can be analyzed using CpG
island or promoter microarray hybridization, or sequenced.

Applications Coupled with Methylated DNA Precipitation References

Methylated DNA immunoprecipitation (MeDIP) and (mDIP).
Methylation-specific antibodies are utilized to immunoprecipitate
methylated DNA fragmented by sonication.

[26, 34, 44]

Comprehensive high throughput arrays for relative methylation
(CHARM). Custom tiling array used in conjunction with a
genome-weighted smoothing algorithm.

[45]

Antibodies specific to 5-methyl-cytosine or methyl binding proteins are
used to immunoprecipitate fragments of methylated DNA.

[27]

Methylated-CpG island recovery assay (MIRA). A matrix of methyl
binding proteins is used to elute methylated DNA.

[46]

Methylation-sensitive Enzymes. The sensitivity of certain restriction endonucleases (REs) to DNA methylation is exploited to
differentially digest DNA.

Applications coupled with restriction enzymes References

Methyl-sensitive cut counting (MSCC) [43]

HpaII tiny fragment enrichment by ligation-mediated PCR (HELP)
differentially amplifies methylated DNA

[47]

Restriction landmark genome scanning for screening methylated
sites (RGLS-M)

[48]

Comprehensive high throughput arrays for relative methylation
(CHARM)

[46]

3. Applying Integrative Genomics to
Squamous Cell Carcinoma

The unique biology of SqCCs arising from different tissues
is reflected in their underlying genetic variability. Here we
examine the use of multiple dimensions of omics data in
elucidating the underlying genetic features of three common
types of SqCCs. (1) Oral SqCC illustrates how elevated
genomic instability may predispose early lesions to cancer
progression. (2) Lung SqCC has recently been found to
harbor critical cell lineage-specific genetic alterations. (3)
Finally, skin SqCC demonstrates how a single pathway can be
disrupted at multiple nodes, and specific pathways are dys-
regulated in cancer subtypes. These inherent tissue-specific
differences in SqCCs may yield novel genes and pathways
suitable for tailoring cancer diagnostics and therapy. The
use of Multidimensional, genome wide analysis will be
instrumental in facilitating these discoveries.

3.1. Genetic Instability in Oral Squamous Cell Carcinoma.
The majority of oral malignancies in the upper aerodigestive
tract are SqCCs [93]. The strongest etiological factor for
oral carcinogenesis is tobacco smoke, while human papil-
lomavirus (HPV) infection has been frequently detected
in nonsmoker and younger oral squamous cell carcinoma
(OSCC) patients [93–97]. Differences in the pattern of
genetic alterations suggest that HPV-positive oral cancers
may represent a distinct disease entity that develops via a
different genetic pathway [98].

As in other SqCCs, the evolution of OSCC is known
to result from the acquisition of multiple genetic events
targeting different genes and molecular pathways [99].
Genomic instability increases progressively from hyperplasia
through various stages of dysplasia to invasive carcinoma
[100]. Although specific genetic alterations have been fre-
quently detected in early stage dysplasias, it is believed
that it is the accumulation of genomic instability, rather
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Table 3: Software for integrative analysis of Multidimensional omics data.

Program Application Website Reference

Agilent Genomic Workbench 5.0
Genomics

http://www.chem.agilent.com/en-us/products/instruments/
dnamicroarrays/dnaanalyticssoftware/pages/default.aspxEpigenomics n/a

Transcriptomics

SIGMA2
Genomics

http://www.flintbox.com/technology.asp?page=3716Epigenomics [85, 86]

Transcriptomics

Integrative Genomics Viewer
Genomics

Transcriptomics
http://www.broadinstitute.org/igv/ n/a

Nexus Copy Number
Genomics

Transcriptomics
http://www.biodiscovery.com/index/nexus n/a

CGH Fusion
Genomics

Transcriptomics
http://www.infoquant.com/index/cghfusion n/a

ISA-CGH
Genomics

Transcriptomics
http://www.isacgh.bioinfo.cipf.es [87]

VAMP
Genomics

http://www.bioinfo-out.curie.fr/projects/vamp/Epigenomics [88]

Transcriptomics

Partek Genomics Suite
Genomics

http://www.partek.com/partekgsEpigenomics n/a

Transcriptomics

Genomics
http://www.GenomicsPortals.org/Genomics Portals Epigenomics [89]

Transcriptomics

CHESS
Genomics

Transcriptomics
http://www.biostone.khu.ac.kr/CHESS [90]

integrOmics
Genomics

http://www.CRAN.R-project.org/Epigenomics [91]

Transcriptomics

SEURAT
Genomics

http://www.seurat.r-forge.r-project.org/Epigenomics [92]

Transcriptomics

Genome Studio
Genomics

http://www.illumina.com/software/genomestudio software.ilmnEpigenomics n/a

Transcriptomics

than the sequence of specific events, that determines oral
carcinogenesis [100, 101]. Thus, examining oral premalig-
nant lesions (OPLs) would allow the identification of early
genetic events that may be masked by increased genomic
instability in late stage tumors and, as such, could potentially
identify biomarkers for predicting OPLs that will progress to
cancer. Previous studies have identified several loci, including
multiple regions on chromosome arm 3p, such as the 3p14
locus that harbors FHIT (Fragile Histidine Triad), to be
commonly deleted in oral dysplasias [102–104]. However,
assaying only several loci does not provide sufficient predic-
tive power for progression. Whole-genome tiling-path array
comparative genomic hybridization (aCGH) facilitated com-
prehensive mapping of genetic alterations in premalignant
and malignant oral tissues. It was determined that low-grade

dysplasias that would progress had the genomic patterns
that resembled those observed in high-grade dysplasias
(Figure 4), exhibiting increased genomic instability before
phenotypic or histological appearances. In contrast, these
genetic alterations were rare in benign low-grade dysplasias
that did not progress. [101, 105]. Another frequent genomic
alteration present in oral dysplasias that have a high risk
of progression was DNA amplification, which is often an
indicator of tumor aggressiveness. Specifically, coamplifi-
cation of the oncogenes EGFR and CCND1 was observed
[101, 105, 106].

This pattern of genomic instability was informative, but
it is useful to derive the mechanism of cancer progression.
To decipher what pathways were disrupted and what genes
were involved, the aCGH data was overlaid with publically
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Figure 3: Multidimensional omics data integration using SIGMA2 software. Combined genetic, epigenetic and gene expression analysis
of cancer samples facilitates identification of oncogenes and tumor suppressor genes which are concertedly disrupted. (a) Examples of
annotation tracks. (b) Copy number profile from array CGH experiment—a focal DNA amplification of a region on 17q12 is highlighted
in yellow. (c) Allelic status (SNP array). This region is also encompassed in a large stretch of allelic imbalance. Blue horizontal bars indicate
loci that become homozygous (loss of heterozygosity) in the tumor sample. (d) DNA methylation analysis (MeDIP-microarray) shows a
concurrent loss of methylation, as indicated by a peak shifted to left of the center line. (e) Heat map summary of gene expression profile
in the region of interest. The gene boxed in blue on the heatmap is ERBB2. It shows the highest level of differential expression between the
tumor line and a panel of normal tissue samples. (f) The histogram displays the relative expression of the tumor sample as compared with
the normal samples for ERBB2 (i.e., expanded view from heat map).

available expression data. It was discovered that the majority
of genes altered at the genomic and transcriptomic level
converged into a single pathway, the FGF signalling pathway.
Oral cancer is therefore an example of the importance of con-
sidering the downstream effect of genomic alterations and
determination of biochemical pathways affected. Pathways
may be affected early or late, but the ultimate phenotype may
be redundant.

3.2. Lineage-Specific Genetic Features in Lung Cancer. Lung
cancer is divided into two major categories, small cell lung
cancer (SCLC) and nonsmall cell lung cancer (NSCLC).
The latter accounts for 85% of lung cancer cases and is
further subdivided into adenocarcinoma (AC), squamous
cell carcinoma (SqCC), and large cell carcinoma (LCC).
While the prevalence of AC is rising, SqCC accounts for
approximately 30% of lung cancer cases [107, 108].

The differential response to specific therapy highlights
the importance of treating lung cancer subtypes as genet-
ically distinct. For example, Gefitinib and Erlotinib target
the tyrosine kinase surface receptor, EGFR, which was found

to be overexpressed in at least 50% of lung cancers [109].
Strikingly, clinical trials revealed that most patients with
NSCLC had moderate to no drug response, except only a
subset of patients that were highly responsive [110–113]. The
responders had mutations in the catalytic domain of EGFR,
which resulted in increased drug efficacy [114]. Specifically,
EGFR mutations and drug sensitivity were associated with
the AC subtype, never-smoking status, Asian ethnicity, and
female gender [110]. In another example, drug response
variability was seen with the advent of the thymidylate
synthase (TS) inhibitor, Pemetrexed. Pemetrexed exhibits
a higher efficacy in AC compared to SqCC, likely due to
the generally higher levels of TS expression in SqCC [115–
117]. These clinical results have provided an impetus to
delineate the different genetic mechanisms governing lung
cancer subtypes, in order to tailor treatment for SqCC and
AC.

Evidence from lung tumors is rapidly accumulating to
indicate not only that are AC and SqCC composed of
different genomic backgrounds (Figure 5), but also that they
arise from the disruption of different biochemical pathways.
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Two key lineage-specific genetic differences between SqCC
and AC were recently discovered using integrative genomics
technologies. Both genes appear to be specific to the SqCC
lineage and were found to be highly amplified. These genes
were SOX2, likely involved in squamous pluripotency and
differentiation [118], and BRF2, a RNA polymerase III
transcription initiation factor controlling cell growth [119].
These discoveries suggest that SqCC and AC are genetically
distinct.

3.3. Genes and Pathways Disrupted in Squamous Cell Carci-
noma of the Skin. Like lung cancer, skin cancer is divided into
two types: melanoma skin cancer and nonmelanoma skin
cancer (NMSC). Skin SqCC is a subtype of nonmelanoma
skin cancer (NMSC), a classification that also includes basal
cell carcinoma (BCC). The standard treatment option for
NMSC is surgical biopsy, which has been applied frequently
and successfully without recurrence [120]. Occasionally,
NMSC develops to an advanced stage, and in 3%–5% of
cases the tumor metastasizes, lowering the 5-year survival
rate to 14%–39% [121]. Advanced cases of NMSC are
not always treatable by biopsy alone [120]. Subsequent
treatment options include chemotherapy, radiation therapy,
or a combination of surgery and radiation [120, 121]. To
date, chemotherapeutics such as cisplatin, 5-Fluor-Uracil,
Paclitaxel, and combinations have been utilized with limited
success [121]. Knowledge of the molecular mechanisms
controlling NMSC tumors holds promise in improving
treatment.

SqCC and BCC should be regarded as genetically distinct
as different biological pathways are disrupted in these disease
types [122]. The pathogenesis of SqCC is complex and
dependent on many intrinsic and extrinsic factors. It is
generally recognized that the most important extrinsic factor
is UV sunlight exposure, as incidence of squamous cell
carcinoma increases with lifetime UV exposure [123]. Using
previously unexposed human skin, exposure to UV was
shown to result in a missense point mutation with a UV
signature in one TP53 allele, and the remaining allele is
deleted [124]. SqCC undergoes the inactivation of multiple
tumor suppressor genes, namely, TP53 which is inactivated
in 90% of all precancerous lesions and invasive tumors, and
also P16 and P14 [125, 126]. TP53 is also mutated in BCC;
however, the mutation rate decreases from 90% to 50%
[127–129]. Broader examination of subtype-specific changes
indicates that SqCC and BCC accrue alterations of different
biochemical pathways.

In SqCC, deregulation of the PI3K/AKT signaling path-
way is common. This pathway has been demonstrated to
control cellular functions such as apoptosis, cell prolifera-
tion, and cell growth in isogenic cell lines [121, 130]. Mech-
anistically, the most common mechanisms of alteration are
constitutive growth factor receptor activation, PI3K ampli-
fication or mutation, AKT amplification or mutation, and
PTEN inactivation (Figure 6(a)) [121]. The main affected
pathway in BCC is the sonic hedgehog (Shh) signaling
pathway. In skin, this pathway regulates the development
of follicles and sebaceous glands, as well as maintains stem
cell populations [131]. In tumors the patched (PTCH)

or smoothened (Smo) genes have been found to be most
commonly altered, with mutation rates of 30%–60%. PTCH
is inactivated most commonly by chromosomal deletion or
by mutation [131, 132], while mutations in sonic hedgehog
(Shh) and Smo have also been documented. In addition to
genomic alterations, expression level analysis has revealed
increased levels of PTCH and hedgehog interacting protein
(HIP) mRNA, adding a dimension of change (Figure 6(b)).
Much like oral cancer, both SqCC and BCC experience
dysregulation of a certain pathway, via disruption of multiple
component genes.

SqCC is associated with significant chromosomal aber-
rations at all stages of progression (reviewed in [133, 134]).
In general, SqCC has increased genomic instability with
25%–90% of tumors demonstrating DNA aneuploidy. In
contrast, BCC genomes are reasonably stable demonstrating
9%–40% aneuploidy. Early studies examined the extent of
LOH in SqCC, finding it to be both diverse and widespread.
Frequent regions of LOH were determined at 13q (46%),
9p (41%), 17p (33%), 17q (33%), and 3p (23%) [135].
In addition, SqCC has a range of other chromosomal
alterations, including gain of chromosomes 3q, 8q, 14q, and
17q and deletion of chromosomes 8p, 9p, 17p, and 18q
[133]. In BCC, loss of genetic material was found to be
confined to 9q22.3, the locus of the PTCH tumor suppressor
gene [136–138]. A more complete picture of the genes and
pathways disrupted in SqCC development could be obtained
if these genomic data were integrated with epigenetic and
transcriptomic data sets. However, the literature on genome-
wide scans for epigenetic alterations and transcriptional
changes in NMSC is scarce; global approaches will be crucial
to identifying novel genes and pathways involved in the
carcinogenesis of NMSC.

4. Squamous Cell Carcinoma and
Integrative Genomics: Present and Future

While genetic, epigenetic, and transcriptional changes are
associated with disease, their pathological impact is ulti-
mately held at the levels of protein, cell, tissue, and
organismal functions. It is widely believed that integrative
phenomics—high throughput phenotyping of any type—
will reveal different cancer subtypes with distinct biochem-
ical and biological profiles (Figure 7). After transcriptomics,
proteomics and metabolomics were the next types of phe-
nomics to be developed [139].

The proteome is the universe of proteins, and proteomics
is the study of the structure, regulation, and function of
the proteome. The most obvious types of knowledge to be
gained are the functional consequences of differential protein
expression, profiles of proteins and their posttranslational
modification (phosphorylation, ubiquitination, acetylation,
palmitoylation, polysialylation, proteolytic cleavage, and
dozens more), and identification of protein-protein interac-
tions. Recent reviews address different aspects of cancer pro-
teomics [139–142]. The most common proteomics approach
has been the coupling of two-dimensional gel electrophoresis
with mass spectrometry (MS). This gel methodology can
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Figure 5: Genome-wide comparison of lung adenocarcinoma (AC) and squamous cell carcinoma (SqCC). Affymetrix SNP 6.0 data for 11
SqCC and 49 AC cell lines were downloaded from the Wellcome Trust Sanger Cancer Genome Project. Data were analyzed against a pool of
a normal reference samples using Partek Genomics Suite. For each position in the genome, the frequency of (a) gain and (b) loss are shown
for SqCC (purple) and AC (orange). (c) Magnified view of chromosome arm 8p shows that SqCC has a higher frequency of segmental DNA
gain at cumulative position 1.43 Gbp as compared to AC.

resolve up to 11000 spots but more commonly separates
approximately 2000–4000. 2D fluorescence difference gel
electrophoresis (2-D DIGE) uses ultrasensitive fluorescent
dyes to label multiple samples in different colors, thus
allowing the relative quantification of the same proteins
from different samples. More recently, gel-free proteomic
techniques have been developed, such as multidimensional
protein identification technology (MudPIT). There have
been many recent developments in MS sample preparation,
methodologies, and data analysis [143]. Another large-scale
approach to detect proteins is antibody microarrays [144].
The most common techniques used to discover protein-
protein interactions are affinity purification coupled with MS
and yeast two-hybrid analysis [145]. Among the most impor-
tant new applications of proteomics are those defining the
universe of posttranslational modifications (e.g., related to
signaling or metabolism) and conducting functional screens
of gene (e.g., using shRNA) and compound libraries. Other
recent studies have begun to yield candidate biomarkers and
suggest therapeutic pathways.

Metabolomics is the large-scale identification and quan-
tification of metabolites [146]. These include sugars, salts,
amino acids, peptides, lipids, acids, bases, steroid hormones,
and so forth. There are almost 7000 known endogenous
metabolites from 52 classes of compounds [147], but there
are likely many more to be discovered. Metabolites are
not only the products of cellular metabolism but also
signaling molecules involved in the regulation of physio-
logical states (e.g., feedback regulation, homeostasis). Thus,

metabolomics may not only lead to the discovery of new
biomarkers, but is also likely to reveal altered biochemical
and physiological states. That would, in turn, suggest bio-
chemical pathways that could be targeted therapeutically, and
cellular assays to screen drugs or biologicals (e.g., siRNA,
humanized antibodies). The most common approaches
for global metabolomic profiling involve different sepa-
ration technologies—such as liquid/gas chromatography
and capillary electrophoresis—coupled with detection and
identification using MS or nuclear magnetic resonance
spectrometry (NMR) [148]. The data generated in this field
is complex, and there is intense focus on the development
of statistical methods [149] and database resources [150].
Oncology is one of the leading applications of metabolomics,
both in clinical [151] and animal studies [152]. A major
area of recent interest in cancer metabolomics is that
related to the Warburg effect—the switch from oxidative
phosphorylation to glycolysis that is associated with many
cancers [153], including OSCC [154]. The state of the art
in cancer metabolomics is illustrated by a prostate study
that profiled 1126 metabolites across 262 clinical samples
from 42 tissues and 110 each of urine and plasma [155].
The resulting profiles distinguished pathological subtypes
(as well as the benign condition) and identified sarcosine
as a metabolite that is highly increased with prostate cancer
progression.

Many areas of proteomics and metabolomics have unique
methodological requirements and are considered subdisci-
plines—for example, glycomics, lipidomics, spliceosomics,



10 Journal of Skin Cancer

Extracellular space

Cytoplasm

Growth
factor

Growth
factor

RTK RTK
PIP2 PIP2 PIP2PIP3 PIP3

PDK1 PDK1
PI3K
p85 PI3K

p110
PTEN

PI3K
p85

RTK RTK
GRB2 GRB2

GAB1/2 SHC SOS

Ras
PI3K
p110

CTMP

AKT

Cell cycle
progression

Cell death

Cell growth

Angiogenesis

Cell survival

NF-κB-mediated
transcription

(a)

Cytoplasm

Lysosomal degradation

SHH

SHH

SHH

PTCH

PTCH

PTCH
Smoothened

Smoothened

HHIP

GRK2

ARRB2

FU

SUFU

PKA

Endosome

GLI

GLI

DYRK1

Nucleus

Transcriptional regulation
proliferation

GSK-3β

(b)

Figure 6: Major pathways affected in NMSC. (a) SqCC undergoes frequent alterations to the PI3K/AKT signaling pathway. (b) BCC
undergoes frequent alterations to the sonic hedgehog pathway. Various pathway components affected are highlighted in red.

phosphoproteomics, and ubiquinomics. A major challenge
for human studies is that available tissues are generally
limited to biopsy samples, circulating blood cells (including
purified lymphocytes, hematopoietic stem cells, platelets,

etc.), and body fluids [142]. Recently, methodologies have
been developed to allow analysis of not only fresh and
frozen tissues but also formalin-fixed and paraffin-embedded
tissue. Notably, workflows are being developed to collect and
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process diverse clinical samples for integrative omics studies
[140].

In conclusion, from the early studies integrating genomic
and epigenomic data, it is apparent that much can be gained
when a multifaceted approach is employed. With multiple
large-scale initiatives prioritizing this style of analysis on a
diverse spectrum of tumor types, and with the continuing
evolution of high throughput technologies to measure addi-
tional dimensions, the ability to perform bona fide molecular
systems biology in clinical specimens may finally be in sight.

Acknowledgments

The authors wish to thank Emily Vucic and Ian Wilson for
their useful comments. This work was supported by funds
from the Canadian Institutes for Health Research (MOP
86731, MOP 77903), Canadian Cancer Society (CCS20485),
NCI Early Detection Research Network (EDRN) (5U01
CA84971-10), and the Canary Foundation. C.E. Alvarez
was supported by the United States National Institutes of
Health (HG004663). R. Chari and I.F.L. Tsui were supported
by scholarships from the Canadian Institutes for Health
Research and the Michael Smith Foundation for Health
Research. E. Gibb and K. Enfield contributed equally.

References

[1] D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,”
Cell, vol. 100, no. 1, pp. 57–70, 2000.

[2] A. de Klein, “Oncogene activation by chromosomal rear-
rangement in chronic myelocytic leukemia,” Mutation
Research, vol. 186, no. 2, pp. 161–172, 1987.

[3] F. G. Haluska, Y. Tsujimoto, and C. M. Croce, “Oncogene
activation by chromosome translocation in human malig-
nancy,” Annual Review of Genetics, vol. 21, pp. 321–345, 1987.

[4] B. Dessars, L. E. de Raeve, H. E. Housni et al., “Chromosomal
translocations as a mechanism of BRAF activation in two
cases of large congenital melanocytic nevi,” Journal of

Investigative Dermatology, vol. 127, no. 6, pp. 1468–1470,
2007.

[5] W. W. Lockwood, R. Chari, B. P. Coe et al., “DNA amplifi-
cation is a ubiquitous mechanism of oncogene activation in
lung and other cancers,” Oncogene, vol. 27, no. 33, pp. 4615–
4624, 2008.

[6] D. G. Albertson, C. Collins, F. McCormick, and J. W. Gray,
“Chromosome aberrations in solid tumors,” Nature Genetics,
vol. 34, no. 4, pp. 369–376, 2003.

[7] J. T. Dong, “Chromosomal deletions and tumor suppressor
genes in prostate cancer,” Cancer and Metastasis Reviews, vol.
20, no. 3-4, pp. 173–193, 2001.
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