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Abstract: Stress granules are ribonucleoprotein assemblies that form in response to cellular stress.
Many of the RNA-binding proteins found in stress granule proteomes contain prion-like domains
(PrLDs), which are low-complexity sequences that compositionally resemble yeast prion domains.
Mutations in some of these PrLDs have been implicated in neurodegenerative diseases, including
amyotrophic lateral sclerosis and frontotemporal dementia, and are associated with persistent
stress granule accumulation. While both stress granules and prions are macromolecular assemblies,
they differ in both their physical properties and complexity. Prion aggregates are highly stable
homopolymeric solids, while stress granules are complex dynamic biomolecular condensates driven
by multivalent homotypic and heterotypic interactions. Here, we use stress granules and yeast prions
as a paradigm to examine how distinct sequence and compositional features of PrLDs contribute to
different types of PrLD-containing assemblies.
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1. Introduction

Prions are protein-based transmissible agents. Most known prions result from the
structural conversion of proteins from a soluble form into insoluble amyloid aggregates [1].
Prions were initially identified as the agents responsible for mammalian transmissible
spongiform encephalopathies [2], but potential prions have subsequently been identified
in a range of organisms, including yeast [3], other fungi [4], plants [5], and bacteria [6].

Yeast prions in particular have emerged as a powerful model system for studying the
causes and consequences of this type of protein aggregation. Approximately 10 amyloid-
based prions have been identified in yeast [7,8]. For most prion proteins, only a limited
portion of the protein, termed the prion domain, is necessary for prion formation [9]. The
majority of yeast prion domains share similar amino acid compositions, including a striking
enrichment of glutamine and asparagine residues [9]. Various prediction algorithms
have been developed to identify proteins with prion-like domains (PrLDs), defined as
domains that are compositionally similar to these yeast prion domains [10-15]. PrLDs
are surprisingly common in eukaryotic proteomes. PLAAC [14], a widely used prion
prediction method, identifies approximately 240 and 200 PrLD-containing proteins in the
human and yeast proteomes, respectively [10,16].

Only a small fraction of PrLDs have thus far been demonstrated to form bona fide
prions [10]. However, PrLDs have been linked to various other types of macromolecular
assemblies. In vitro, PrLDs can adopt a variety of phase-separated states that include
liquid-like assemblies, gels, glasses, and amyloid aggregates. Likewise, in vivo, various
PrLDs have been implicated in the formation of assemblies ranging from mnemons, which
are nontransmissible amyloid assemblies that act as a form of cellular memory [17-20], to
complex, dynamic biomolecular condensates, such as stress granules [21,22].
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Stress granules have attracted particular attention due to their links to amyotrophic
lateral sclerosis (ALS) and other degenerative diseases. Stress granules are dynamic, re-
versible ribonucleoprotein (RNP) assemblies that are formed in response to various cellular
stresses, including heat and oxidative stresses, oxygen starvation, and viral infection [23,24].
Many PrLDs are found in RNA-binding proteins that localize to stress granules [25]. Some
of these PrLDs appear to directly promote the recruitment of their respective proteins
to stress granules [22,26], while others seem to act as modulators of recruitment, poten-
tially helping to maintain solubility and prevent irreversible phase transitions [27,28].
Disease-associated mutations within PrLDs of stress granule proteins, such as FUS [29,30],
TDP-43 [31,32], hnRNPA1 [33], and hnRNPA2BI1 [33], are associated with the formation of
persistent cytoplasmic inclusions that overlap in composition with stress granules. Based
on these observations, it has been proposed that PrLDs promote stress granule formation
and/or modulate stress granule dynamics, while disease-associated mutations perturb
stress granule dynamics, leading to altered function [16,34].

Although both prions and stress granules are macromolecular assemblies, the physical
properties and complexity of these assemblies differ substantially. The material state of an
assembly is dependent on the valence, strength, and duration of underlying interactions.
Amyloid fibrils are homopolymeric solids involving highly stable interactions between
identical or nearly identical proteins (Figure 1A). By contrast, stress granules contain a
complex mixture of RNAs and proteins and are thought to involve dynamic multivalent
interactions among the protein and RNA constituents (Figure 1B).
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Figure 1. Potential PrLD interactions in amyloid fibers or within stress granules. (A) Upon prion
formation, PrLDs assemble in an in-register cross-f structure involving homotypic interactions
between identical monomers. (B) In stress granules, PrLDs have been proposed to engage in a
variety of interactions, including homotypic interactions with other PrLDs, interactions with their
corresponding RNA-binding domains, interactions with other stress granule proteins and RNA, and
cross-f3 low-complexity aromatic-rich kinked segments (LARKS).

Because the interactions underlying stress granule recruitment and prion formation
by PrLDs are fundamentally different, the amino acid sequence requirements for these two
activities should likewise differ. Studies of the sequence and compositional determinants
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of prion propensity have provided insight into the mechanisms of formation and the
structure of prions, and vice versa. Similar studies have begun to define how the sequence
and composition of stress granule-associated PrLDs affect stress granule recruitment and
dynamics. In this review, we use yeast prion proteins and stress granule-associated PrLDs
as paradigms to examine how the sequence and composition of PrLDs affect the physical
properties and phase behavior of protein assemblies. Understanding this relationship
between PrLD sequence and phase behavior will be valuable in defining how cells form
and regulate beneficial protein assemblies while preventing pathological aggregation.

2. Yeast Prion Sequence and Structure

In 1994, Reed Wickner proposed that [PSI*] and [URE3], two previously identified
nonchromosomal genetic elements, were the prion forms of Ure2 and Sup35, respec-
tively [3]. Sup35 and Ure2 each contain an N-terminal prion domain that is responsible for
prion formation [35,36]. These prion domains share similar compositional features, includ-
ing enrichment in glutamine and asparagine, and relatively few charged and hydrophobic
amino acids (Figure 2) [37]. In subsequent years, a number of other yeast prion proteins con-
taining prion domains with similar compositional features have been identified [10,38-43].
However, it should be noted that not all amyloid-based prion proteins contain a PrLD: the
mammalian prion protein PrP [2], the HETs prion protein from Podospora anserina [4], and
the yeast prion protein Mod5 [44] each lack a glutamine/asparagine-rich PrLD. Likewise,
not all prions are amyloid based [45—-48].

Shortly after the discovery of the prion nature of [PSI*] and [URE3], it was recognized
that the Ure2 and Sup35 prion domains could form amyloid fibrils [49,50], suggesting a
likely mechanism for prion formation. Amyloid fibrils are filamentous cross-f3 structures,
meaning that the 3-strands run perpendicular to the fibril axis (Figure 1A). The individual
-strands within an amyloid fibril can arrange in a parallel or antiparallel manner, or the
peptides can assemble as a (3-helix. Studies demonstrating that prion formation by Ure2
and Sup35 is insensitive to prion domain scrambling [51,52] provided a first hint as to
which architecture the proteins are adopting. Both antiparallel and (3-helical structures are
stabilized by complementary interactions between distinct residues in the sequence, so
these interactions should be highly sensitive to scrambling. By contrast, in an in-register
parallel B-sheet, the primary interactions are between identical residues among distinct
protein monomers; thus, the same interactions are maintained after scrambling. Therefore,
based on scrambling experiments, it was proposed that Ure2 and Sup35 adopt an in-
register parallel 3-sheet structure in their prion forms (Figure 1A) [53]. This prediction was
subsequently supported by solid-state NMR experiments [54,55].

An in-register parallel 3-sheet structure helps explain other compositional features
that are associated with the propensity of PrLDs to form prions. The addition of charged
residues into the core of a prion domain strongly inhibits prion formation [56-58], while
the addition of hydrophobic residues strongly enhances prion propensity [59]. Both of
these observations are consistent with an in-register parallel 3-sheet structure, as stacked
identical hydrophobic or charged residues will create stabilizing or repelling interactions,
respectively. Indeed, the aggregation propensity of each amino acid can be predicted with
reasonable accuracy based solely on hydrophobicity, charge, and (3-sheet propensity [58,60].

Although scrambled Ure2 and Sup35 prion domains maintain the ability to form
prions, they do so with efficiencies that are different from those of their wild-type coun-
terparts [51,52], suggesting that while composition is the dominant determinant of prion
propensity, primary sequence also plays a role. These modest primary sequence effects are
also consistent with an in-register structure. The widths of amyloid fibrils formed by Ure2
and Sup35 are too narrow for the entire prion domains to be accommodated in a single
long straight 3-strand [49,50]; instead, the prion domains likely adopt a serpentine struc-
ture [61]. This structure may involve (3-arches consisting of multiple 3-strands separated
by turns, as has recently been reported for the PrLD Orb2 [62], or more complex serpentine
structures, analogous to the “Greek key” structure proposed for a-synuclein [63]. The
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sidechains from adjacent strands in these structures pack tightly to form a steric zipper [64],
and the efficiency of this packing should be sensitive to primary sequence. Indeed, while
prion propensity can be predicted with reasonable accuracy based solely on amino acid
composition [12,14,15,58], methods designed to predict prion propensity that incorporate
primary sequence [65], or explicitly model-predicted efficiency of packing between adjacent
B-strands [66,67], may modestly improve prion prediction accuracy.

Surprisingly, there appears to be little correlation between the aggregation propensity
of each of the amino acids and their prevalence in prion domains (Figure 2). Despite
strongly promoting prion formation [59], hydrophobic amino acids are rare in yeast prion
domains. By contrast, although yeast prion domains are dominated by polar amino acids,
insertions of individual polar amino acids has little effect on prion propensity [58,68].
Mechanistic and modeling studies have helped explain this apparent contradiction. Yeast
prion domains tend to be intrinsically disordered, and this disorder is thought to be
important for prion formation [69]. Because these domains are disordered, a stickers-and-
spacers model derived from the field of associative polymers [70,71], in which stickers
are sites of noncovalent interaction, while spacers are the segments between stickers, is
helpful in considering their assembly. Rare hydrophobic and aromatic amino acids act as
the stickers, generally acting as the primary drivers of assembly. Polar amino acids act
as disordered spacers and thus constitute the majority of the prion domains. However,
although hydrophobic and aromatic amino acids contribute more to prion propensity
on a per-residue basis, the spacers do also affect prion formation. While various polar
and charged amino acids promote intrinsic disorder to varying degrees, and could thus
act as disordered spacers, they have very different prion propensities; charged residues
strongly inhibit prion formation, while glutamines and asparagines modestly promote
prion formation [58]. Indeed, although individual glutamines or asparagines only weakly
contribute to prion propensity, when present at sufficient levels, they can collectively act as
significant contributors, as evidenced by the fact that extended polyglutamine tracts are
sufficient for protein aggregation. Thus, the prevalence of glutamine and asparagine in
prion domains is likely a result of their dual characteristics, promoting intrinsic disorder
while also contributing modestly to prion propensity.

Furthermore, while many yeast prions are glutamine rich, among PrLDs, glutamine
content is actually inversely correlated with prion propensity (Figure 2) [10,72]. This is
likely because the identity of the spacer residues can also affect the material properties of
the assemblies formed by PrLDs [71,72]. In particular, asparagine promotes the conversion
to an amyloid state, while glutamine tends to promote the formation of nonamyloid assem-
blies [72]. Thus, even though glutamine is capable of promoting aggregation, asparagine is
the preferred spacer residue among prion-prone PrLDs, likely because asparagine is more
conducive to amyloid formation.

Charged amino acids Glutamine
5 Prion activity Prion activity ——————
A Stress granule recruitment Stress granule recruitment g
‘ ‘ - | PrLDs |
Hydrophobic amino acids Asparagine
Prion activity Prion activity ——e——o""""1
4 Stress granule recruitment Stress granule recruitment g
PrLDs |
Depleted Enriched Depleted Enriched
Composition relative to the yeast proteome Composition relative to the yeast proteome

Figure 2. Compositional biases observed in PrLDs. PrLDs show strong compositional biases,
including an enrichment in glutamine and asparagine, and a relative lack of charged and hydrophobic
amino acids compared with the average of the yeast proteome. In yeast, screens of PrLDs have shown
that different compositional features of PrLDs are associated with prion propensity [10,58] versus
stress granule recruitment [73]. It is important to note that this figure represents general trends that
were observed in these screens and, therefore, may not reflect the behavior of all PrLDs.



Int. J. Mol. Sci. 2021, 22, 1251

50f19

3. Cellular Interactions Influence the Sequence Requirements for Prions

While many of the compositional and sequence features observed in yeast prion do-
mains can be rationalized based on intrinsic amyloid propensity, numerous chaperones and
other cellular proteins affect yeast prion formation and propagation [74,75], and interactions
with this cellular machinery also appear to impart sequence constraints on prion proteins.
One example of these constraints has emerged from studies of interactions between Sup35
and the chaperone Hsp104. Maintenance of prions over multiple rounds of cell division
requires the continual generation of new aggregate seeds (or propagons) to offset dilution
by cell division. In yeast, the chaperone Hsp104 facilitates prion maintenance by cleaving
prion aggregates into smaller fragments, thereby generating new propagons [76-80]. The
Sup35 prion domain contains two distinct subdomains: a nucleation domain that is pri-
marily responsible for the nucleation and growth of prion aggregates and an oligopeptide
repeat domain that is largely dispensable for nucleation but required for prion mainte-
nance [81]. These two subdomains have distinct compositional requirements. Specifically,
while both hydrophobic and aromatic residues promote prion formation, only aromatic
residues appear to promote prion maintenance [82]. Insertion of aromatic residues into
polyglutamine segments reduces the average aggregate size in yeast [83], suggesting that
aromatic residues promote chaperone-dependent aggregate cleavage. Interestingly, regions
outside of the Sup35 prion domain also appear to be involved in Hsp104 binding [84],
and the in-register parallel 3-sheet structure likewise extends beyond the prion domain to
varying degrees for different prion variants [85-87], highlighting that delineations between
prion domains and nonprion domains are not absolute. While similar domains promoting
chaperone-dependent prion propagation have not been as clearly defined in other prion
proteins, the importance of chaperone-dependent fiber cleavage may be one reason why
aromatic amino acids are more common than aliphatic amino acids in prion domains,
despite the fact that both promote prion aggregation.

Interactions with the cellular proteostasis degradation machinery may also impose
constraints on the sequences of yeast prion domains. Because protein aggregation is
frequently deleterious, cells possess extensive proteostasis machinery design to prevent
protein aggregation, including pathways to recognize and degrade aggregation-prone
proteins [88-90]. Thus, for a protein to act as a prion, it needs to evade this machinery. The
identities of both the stickers and the spacers in yeast prion domains appear to influence
PrLD degradation by the proteostasis machinery, with both high glutamine/asparagine
content and a paucity of aliphatic amino acids associated with lower rates of proteostatic
degradation [91]. Likewise, for Sup35, a proteolytic cleavage event in the prion domain
suppresses prion formation [92], highlighting that proteolysis can be used to regulate prion
formation and/or propagation and may therefore impose additional sequence constraints
on specific prion proteins.

4. Stress Granules

Despite the growing number of prions identified in yeast, the majority of yeast PrLDs
do not appear to form prions [10]. Furthermore, it seems unlikely that most mammalian
PrLDs would have evolved to form solid-phase prion-like aggregates. The majority of
human PrLDs are found in RNA-binding proteins [16], and the aggregation of a number
of these has been linked to degenerative diseases [93]. A possible alternative function
for PrLDs has emerged from studies of RNP granules. Eukaryotic cells utilize compart-
mentalization strategies in order to maintain spatial control over biological processes. In
addition to traditional membrane-bound compartments, such as the nucleus, cells contain
membraneless compartments. These include various RNP granules, such as Cajal bod-
ies [94], nucleolus [95], processing bodies (P-bodies [96]), germ granules [97], and stress
granules [98]. These RNP granules vary in morphology, physical properties, localization,
and physiological functions, but each is involved in the control of mRNA metabolism
and localization.
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Stress granules in particular have emerged as a useful paradigm for understanding
the functions of nonprion PrLDs. During stress, eukaryotic cells undergo translational
reprogramming, where mRNAs stalled in translation initiation (together with RNA-binding
proteins and various other proteins and RNAs) are rapidly assembled into cytoplasmic
stress granules [99,100]. Stress granules are dynamic and reversible; after the stress is
relieved, stress granules disassemble, and mRNA can be returned into the translation pool
or be targeted for degradation [99].

Super-resolution microscopy and fluorescence in situ hybridization experiments sug-
gest that mammalian stress granules structurally consist of a dense inner core of mRNA-
protein complexes, surrounded by a less concentrated shell layer [101]. Fluorescence
recovery after photobleaching experiments suggests that the shell layer of stress granules
engages in the rapid transfer and exchange of the components with the cytoplasm or
P-bodies, while the core layer is significantly less dynamic [101]. However, the extent
of stress granule dynamics seems to vary among organisms. While mammalian stress
granules show liquid-like behavior, yeast stress granules have more viscous solid-like
properties [102]. The material properties of stress granules may also change over time,
becoming less liquid-like [103-105].

Core stress granule components can be purified biochemically; hundreds of proteins
and thousands of RNA molecules have been identified within human stress granules or
P-bodies to date [101,106]. Purification of the shell layer is more challenging, but proximity-
labeling experiments have recently been used to catalog shell components [107,108]. Several
RNA-binding proteins have been identified as primary components of stress granules,
including TIA1 [22], PRRC2C [109], CSDE1 [109], UBAP2L [108], G3BP1 [110-114], and
G3BP2 [110-114] in mammalian cells. Deletion or overexpression of these proteins signifi-
cantly affects the size, number, and persistence of stress granules [109]. Additionally, the
stress granule proteome includes translation initiation factors (elF2, elF3, elF4A, elF4B,
elF4G, and elF4E), small 40S ribosomal subunits, poly(A)-binding protein (PABP), mRNA-
degrading proteins, RNA helicases, and cell signaling factors [115,116].

Stress granules are thought to form in part through a process of liquid-liquid phase
separation (LLPS). It has long been recognized that under certain in vitro conditions, many
proteins will undergo liquid-liquid phase separation [117]. Moreover, RNA molecules
can undergo LLPS in vitro, even in the absence of protein [118,119]. A growing body
of evidence suggests that LLPS in vivo is involved in the formation of a wide variety of
membraneless organelles [120]. LLPS occurs when a solution de-mixes into two liquid
phases: one that is enriched for specific macromolecules and another that is depleted for
these macromolecules [121,122]. The formation of an RNP by LLPS results in dense-phase
droplets enriched in nucleic acids and proteins, surrounded by a diluted phase. The
material state of this dense phase is determined by the valence, strength, and duration of
underlying interactions, with weak and transient interactions allowing the dense phase
to maintain a liquid character, as well as a dynamic exchange with the surrounding
phase. Thus, stress granules can rapidly assemble in response to stress conditions; release
their protein or mRNA components into the cytoplasm; and undergo docking, fusion,
maturation, and exchange with other stress granules or RNP granules [99].

The biomolecular condensation of stress granules is promoted by a network of protein—
protein, protein-RNA, and RNA-RNA interactions [120,122]. Many stress granule proteins
are multivalent, allowing them to participate in multiple protein—protein and protein-RNA
interactions involved in the formation or stabilization of stress granules. Although many
protein—protein interactions occur between folded domains, intrinsically disordered regions
(IDRs), including PrLDs, provide sites for interaction in many stress granule proteins.

Multiple lines of evidence suggest that PrLDs contribute to stress granule assem-
bly or recruitment. The PrLD of the mammalian stress granule protein TIA-1 is re-
quired for efficient stress granule formation, and the prion domain of yeast Sup35 pro-
tein can substitute for the TIA-1 PrLD in supporting stress granule recruitment [22].
Other PrLDs have been similarly linked to the formation of various other membraneless
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organelles [123-125]. Additionally, in both yeast and mammalian cells, various PrLDs are
actually sufficient for recruitment to stress granules [26,73,126,127].

5. Possible Mechanisms of PrLD Assembly in Stress Granules

A variety of mechanisms have been proposed by which PrLDs could contribute to
stress granule assembly (Figure 1B). At high concentrations, the PrLDs of both FUS and
hnRNPA2 form hydrogels [128]. While these gels are composed of cross-f amyloid-like
structures, they are far more labile than those formed by yeast prion proteins [128]. This led
Kato et al. to propose that these labile amyloid-like structures are key drivers of assembly
in vivo. One challenge with this hydrogel model is that despite the labile nature of these
hydrogels, they are less dynamic than mammalian stress granules. For example, in FRAP
experiments, hnRNPA1 in stress granules shows rapid exchange with the cytoplasm, with
fluorescence recovering in just a few seconds; by contrast, hnRNPA1 in hydrogels shows
little recovery over this timeframe [126]. However, it is possible that cross-f3 interactions
among a few molecules at a time could provide the more dynamic interactions that underlie
stress granule formation [129].

A potential alternative mechanism of assembly was suggested by the discovery that
many of the RNA-binding proteins found in stress granules can undergo LLPS [103,126,130].
In many cases, the PrLDs are sufficient for LLPS [103,126,130]. This LLPS is driven by a
network of weak interactions between PrLDs. However, while isolated PrLDs are able to
undergo LLPS in vitro, the relevance of this homotypic LLPS to stress granule formation
in vivo is still debated. In vitro phase separation by isolated PrLDs frequently requires
concentrations much higher than physiological concentrations. One possibility is that
PrLDs provide weak, promiscuous interactions that act synergistically with more specific
interactions to drive granule assembly [131]. Indeed, when the FUS PrLD is fused to light-
activated oligomerization domains, induction of oligomerization can create nucleation
centers with high local PrLD concentration, which can capture free PrLDs, resulting in
localized LLPS [132].

Alternatively, the homotypic interactions that drive LLPS by isolated PrLDs may not
be the principal driver of assembly for full-length proteins [133]. PrLDs could theoretically
provide a variety of interactions that may contribute to stress granule assembly (Figure 1B).
A study examining the FUS family of proteins showed that interactions between tyrosines
in the PrLD and arginines in the RNA-binding domain drive FUS phase separation [71].
PrLDs could also contribute to RNA binding [126] or provide short linear motifs (SLiMs)
that act as binding sites for interactions with other proteins [134].

Finally, in some cases, PrLDs may act as modulators of phase separation rather than
drivers [135]. For example, deletion of a PrLD in the yeast stress granule protein Pub1
accelerates Pub1l condensation in response to heat stress and slows dissolution after heat
stress, suggesting that the PrLD plays a role in protein solubilization [27]. Likewise, the
yeast stress granule protein Ded1 forms heat-induced condensates at lower temperatures
when its PrLD is deleted [28]. Finally, the yeast prion protein Sup35 undergoes pH-
dependent phase separation in response to stress but forms more stable aggregates when
the prion domain is deleted [135,136]. This suggests that some PrLDs may be involved
in modulating the material state of stress-induced assemblies, increasing solubility or
promoting reversible phase transitions, rather than driving assembly.

It is important to note that these possibilities are not mutually exclusive. The fact
that various PrLDs are necessary [22,137] and/or sufficient [73,126] for stress granule
recruitment suggests a direct role for some PrLDs in promoting the recruitment of their
respective proteins to stress granules. However, these studies do not indicate whether these
PrLDs engage in heterotypic or homotypic interactions within stress granules. Additionally,
many PrLDs are not efficiently recruited to stress granules [73]; this, combined with the fact
that in some cases PrLD deletion actually enhances stress granule recruitment, suggests
that these PrLDs may act more as modulators of phase behavior. Finally, some PrLDs
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may do both, promoting recruitment to stress granules while also helping to maintain a
liquid-like state.

6. Sequence and Compositional Features Promoting PrLD Recruitment to Stress
Granules

Extensive efforts have been made to dissect how the sequences of PrLDs contribute
to both LLPS and recruitment to membraneless organelles, such as stress granules. How-
ever, these efforts have been complicated by a lack of mechanistic understanding of how
PrLDs contribute to the formation of membraneless organelles. Thus, parallel efforts have
examined how PrLD sequence contributes to the cross-f3 interactions that underlie labile
amyloid-like gels, as well as to other homotypic and heterotypic interactions that can
promote LLPS.

Structural studies of gels formed by FUS [138-140] help explain the labile nature of
these cross-f3 structures. While amyloid fibrils are typically stabilized by the interdigitation
of extended p-strands to form a tight steric zipper [64,140], FUS amyloid-like assemblies
involve highly kinked [3-sheets; these kinks interfere with interdigitation, so instead, the
3-sheets interact more weakly through hydrogen bonding and van der Waals interactions
of polar and aromatic sidechains [138-140]. Stacking of aromatic amino acids appears
to provide stability to the 3-sheets [138]. This structural analysis has led to computa-
tional models to identify segments capable of forming kinked (-sheets, termed LARKS
(low-complexity aromatic-rich kinked segments); LARKS are enriched in PrLDs found in
membraneless organelles [138], suggesting a possible role for transient cross-f3 interactions
in stabilizing these organelles (Figure 1B). Many of these proteins contain multiple LARKS,
potentially providing multivalent interactions that could promote gel formation [138].

Other studies have sought to define the sequence features that drive LLPS by PrLDs
and other IDRs. The driving force for LLPS is generally described using the stickers-
and-spacers model discussed previously [70,71]. The valence (number) of stickers, the
strength of the interactions between stickers, and the spacing between stickers can all
influence LLPS propensity [141]. Various studies have indicated that 7—m [142,143] and
cation—r [71,144,145] interactions act as stickers and are key drivers of LLPS. Tyr, Phe,
Trp, Asn, Glu, His, Gln, Asp, and Arg all have sidechains that can engage in 7=t bonds;
additionally, small amino acids, such as glycine, have exposed 7t orbitals in their peptide
backbone amide groups [142]. Residues that are prone to engaging in m—m interactions
are overrepresented in the PrLDs of stress granule-associated proteins [142]. In particular,
uniformly spaced aromatic amino acids in PrLDs have been proposed to promote LLPS,
while inhibiting the formation of solid-phase aggregates [141]. Additionally, the aromatic
and positively charged amino acids can engage in cation— interactions.

Charge—charge interactions have also been implicated in LLPS by IDRs. In particular,
asymmetric charge distribution, resulting in patches of like charge, has been shown to
promote phase separation by IDRs [146,147]. This may be a less significant driver of LLPS
by PrLDs, which tend to have fewer charged residues than other IDRs [10]. However, it
is worth noting that in a recent screen of PrLDs, higher content of charged residues was
positively correlated with recruitment to stress granules, although the degree of asymmetric
charge distribution did not show a significant correlation [73].

A recent examination of FUS highlighted how these different features can contribute
to LLPS [71]. Cation—m interactions between tyrosines in the PrLD and arginines in the
RNA-binding domain were found to be key drivers of LLPS [71], consistent with the
findings of previous studies [144]. Other pairs of aromatic and positively charged residues
could likewise promote LLPS, but less efficiently. Polar residues, such as serine, glutamine,
and glycine, in the FUS IDR acted as spacers, but glycine helped maintain the fluidity of
FUS assemblies, while glutamine and serine promoted hardening. Importantly, at least
some of these results seem to apply in a cellular context, as the numbers of arginines [71]
and tyrosines [71,132] in FUS affect LLPS propensity in cells. Interestingly, while tyrosine—
arginine interactions were the dominant driving force for the assembly of full-length FUS,
m—7 interactions between tyrosine residues seemed to drive LLPS by the isolated PrLDs,
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albeit at significantly higher concentrations. Additionally, insertion of negatively charged
residues into the PrLD promoted the phase separation of the PrLD with the RNA-binding
domain but inhibited the assembly of the isolated PrLDs.

Collectively, these studies have identified various features that promote the assembly
of some PrLD-containing proteins, leading to some progress in predicting the relationship
between sequence and phase separation [141-143]. However, they have not yet yielded
a generalizable set of rules that can accurately predict whether a given PrLD will be re-
cruited to stress granules or other membraneless organelles. Part of the problem may
be that because LLPS in cells is likely driven by a complex network of homotypic and
heterotypic interactions, the interactions that promote LLPS by isolated domains or pro-
teins in vitro may be different from the interactions that drive assembly in a complex
cellular environment.

As an alternative approach, in a recent study, a set of PrLDs was screened for recruit-
ment into yeast stress granules; the data set was then analyzed to identify common features
associated with stress granule recruitment [73]. About a third of the tested PrLDs were
sufficient to be recruited into granules. These PrLDs tended to be enriched in charged,
aromatic, and hydrophobic amino acids, while showing no significant bias in protein net
charge. The compositional biases observed among stress granule-recruited PrLDs were
sufficient to predict whether other PrLDs would localize to yeast stress granules and to en-
able the design of synthetic PrLDs that reversibly localized to stress granules; additionally,
scrambling of stress granule-recruited PrLDs did not block the recruitment, suggesting
that the amino acid composition of these domains is more important than the primary
sequence. PrLDs tended to respond similarly to heat stress, oxidative stress, and pH stress,
suggesting a common mechanism of recruitment.

While these types of screens have the advantage of examining diverse PrLDs in cells,
they have the limitation that they do not explain mechanistically how different sequence
features contribute to the assembly. However, the sequence features that were associated
with stress granule recruitment give some hints about the underlying interactions. The
fact that sequence scrambling did not block stress granule recruitment suggests that spe-
cific interactions with primary sequence motifs are not a dominant driver of recruitment.
This is consistent with the findings of a previous study showing that simple SYGQ re-
peats are sufficient to promote stress granule recruitment in mammalian cells [148], and
demonstrates that rather generic compositional features can nonetheless lead to specific
targeting. The strong enrichment of charged residues suggests that the formation of la-
bile amyloid-like gels is likely not a principal driver of recruitment for these PrLDs, as
charged residues should disrupt the in-register parallel 3-sheet interactions thought to un-
derlie these gels [138-140]. However, it remains possible that a subset of PrLDs may form
amyloid-like gels, or that while initial recruitment is driven by LLPS (thus explaining the
bias towards charged residues), gel-like interactions may form after recruitment, as stress
granules mature. Likewise, it is possible that only a small fraction of each PrLD engages in
cross-f3 interactions, and that charged residues are accommodated outside of this region.
Thus, additional experiments will be required to fully define the mechanistic basis for these
observations. Additionally, further experiments will be required to determine whether
similar features drive stress granule recruitment in mammalian cells.

Finally, it is important to note that because different PrLDs are likely recruited to stress
granules by distinct mechanisms, the general trends that have emerged from screens of
stress granule-associated PrLDs, or from studies of individual PrLDs, may not apply to all
PrLDs. A recent study examining phase separation by components of hnRNPA2-containing
transport granules highlights this challenge [149]. In these experiments, hnRNPEF, a PrLD-
containing protein found in hnRNPA2 granules, did not efficiently phase-separate on
its own. However, it partitioned into droplets formed by the hnRNPA2 low-complexity
domain (LCD), but not the FUS LCD. Arginine residues in the hnRNPA2 LCD were critical
for its co-phase separation with hnRNPF. Interestingly, ch-TOG, another hnRNPA2 granule
component, also specifically phase-separated with the hnRNPA2 LCD but engaged in a
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distinct set of interactions with the hnRNPA2 LCD. While these results provide a nice
illustration of how the specificity of targeting to membraneless organelles can be achieved,
they also demonstrate the challenges of predicting targeting to complex organelles, such
as stress granules, where multiple interactions may contribute to the recruitment, and
where different proteins may be recruited by distinct mechanisms. PrLDs that act as
scaffolds for nucleating assembly likely have compositional requirements that are different
from client proteins that subsequently partition into these assemblies. Additionally, even
among scaffolds and clients, there are likely various potential mechanisms of assembly or
partitioning, each of which may have distinct compositional requirements.

7. Distinct Classes of Prion-Like Domains

Our current methods for identifying PrLDs were developed based on studies of yeast
prions, making it remarkable that these methods (particularly PLAAC) are so effective at
identifying mammalian disease-associated PrLDs. When the human proteome is scanned
with PLAAC, among the 10 highest scoring human proteins that contain an RNA recogni-
tion motif, mutations in more than half of these proteins have been linked to degenerative
diseases [25]. Additionally, methods derived from studies of yeast prion domains have been
effective at predicting the effects of some disease-associated mutations in PrLDs [33,150].
This suggests that at least in some cases, the sequence features driving prion formation
overlap with those associated with pathological assembly.

However, while these methods have aided in the identification of some disease-
associated PrLDs, they do not appear to be broadly effective at predicting whether a
PrLD will be recruited to stress granules. Among yeast PrLDs, stress granule recruitment
is actually inversely correlated with PLAAC scores [73]. This reflects differences in the
compositional features that promote prion formation versus stress granule recruitment
(Figure 2). For example, charged residues inhibit prion formation [57,58] but are positively
correlated with stress granule recruitment [73]. Likewise, high asparagine content [72]
is correlated with amyloid propensity for PrLDs, while it is negatively correlated with
stress granule recruitment [73]. Given that fundamentally different interactions drive prion
formation versus stress granule recruitment, it is unsurprising that different compositional
features would promote each form of assembly; however, these differences highlight
the limitations of using methods derived from the analysis of yeast prions to predict
nonprion assembly. Further refining our understanding of the compositional features that
promote different types of PrLD assemblies may aid in the development of more targeted
prediction methods.

This observation also suggests that it may be a mistake to view PrLDs as a single
homogenous class. The term “prion-like domain” is not a functional definition based
on actual prion-like activity; it is a descriptive term based on compositional similarity to
proteins with prion-like activity. Some PrLDs have clear amyloid or prion-like activity, but
many do not [10,151], just as some PrLDs promote recruitment to stress granules [22,26,73],
while others inhibit recruitment [27,28]. Furthermore, it is striking that many of the major
compositional biases that promote recruitment to yeast stress granules actually make the
domains less “prion-like” (Figure 2). While PrLDs are generally enriched in polar amino
acids, and depleted in charged and hydrophobic residues, PrLDs that are recruited to stress
granules tend to have less extreme versions of each of these biases, although they still have
higher polar content and lower charged and hydrophobic content than the average in the
yeast proteome [73]. It is unclear how far these trends can be extrapolated. Many IDRs
that are outside of the traditional definition of “prion-like” composition are also thought
to contribute to the assembly of stress granules and other membraneless organelles, so it
is likely that some of the lessons learned from the studies of PrLDs may extend to these
other IDRs.
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8. Stress Granule Regulation and Dysregulation

Studies of the interactions that facilitate PrLD recruitment to stress granules provide
some insight into possible mechanisms by which this recruitment may be regulated or
perturbed (Figure 3). A variety of molecular chaperones have been linked to proper control
of stress granule dynamics and to efficient dissolution or degradation of stress granules
after stress [99]. Intriguingly, studies of FUS suggest that nuclear import receptors can act
as a chaperone, preventing aberrant phase transitions by PrLD-containing RN A-binding
proteins [152-154], likely by binding to regions involved in LLPS. RNA can also both
positively and negatively affect assembly propensity. For example, low levels of RNA
promote FUS LLPS in vitro, while high levels inhibit LLPS; likewise, in vivo, reduction
of RNA levels promotes FUS LLPS, while an RNA known to have high binding affinity
to FUS promotes assembly [155]. Other interacting partners may likewise positively or
negatively modulate assembly propensity, by either masking assembly-prone domains or
providing a scaffold for assembly.

Factors affecting PrLD material state
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Figure 3. Some of the key factors that affect interactions and the material state of PrLDs in cells. Post-translational
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and cellular proteostasis machinery affect the concentration of proteins and modulate the dynamics of interactions.

Various post-translational modifications have also been shown to modulate LLPS by
PrLDs [156,157]. These post-translational modifications can alter molecular interactions
that regulate LLPS or can directly modify the ability of a PrLD to engage in the m—,
cation-m, and charge—charge interactions that are thought to drive PrLD LLPS. Arginine
methylation in FUS, Ddx4, and hnRNPA2 inhibits LLPS and decreases protein accumulation
inside stress granules due to a decrease in cation— interactions [137,146,154]. Phosphory-
lation of serine or tyrosine residues, which are enriched in PrLDs, alters protein charge and
changes protein steric and chemical properties. Depending on the context, these changes
can promote charge—charge interactions or can create charge or steric repulsion. Thus,
phosphorylation inhibits the LLPS of some PrLD-containing proteins, including FUS [158]
and TDP-43 [159], while promoting LLPS for others, including TIAR-2 [160]. Other modifi-
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cations, including lysine acetylation, citrullination, and O-linked GlcNAc modifications,
within intrinsically disordered regions influence phase separation [156,157].

Additionally, changes in environmental conditions can directly affect the assembly
properties of proteins containing PrLDs and other IDRs. For example, energy depletion in
yeast results in a drop in cytoplasmic pH [161]. Phase separation by Sup35 is regulated
by changes in the charge of its IDR in response to this pH change [136]. Likewise, heat-
induced assembly of the yeast Pab1 protein appears to be a direct response to both elevated
temperature and the resulting drop in cellular pH [162]. Interestingly, in both of these cases,
low-complexity domains in the proteins seem to be modulators, rather than drivers, of
assembly [163].

Finally, studies of PrLDs in stress granules have provided insight into how mutations
or aberrant post-translational modifications in PrLDs can contribute to disease. Many
disease-associated mutations are believed to alter the material state of stress granules, thus
contributing to a dysregulation of RNA metabolism. In some cases, mutations promote the
formation of stable, solid-phase amyloid-like aggregates by directly altering the assembly
propensity of PrLDs [103,126]; this formation of solid-phase assemblies could theoretically
occur either directly from dilute solution or within the context of LLPS assemblies. Indeed,
mutations rationally designed to increase the aggregation propensity of hnRNPA2B1 are
sufficient to cause pathology in a Drosophila model of multisystem proteinopathy [68].
PrLD mutations can also alter phase separation propensity [164] or modulate the dynamics
of biomolecular condensates, thus altering the material properties and functions of the
condensates [165].

Alternatively, rather than altering the intrinsic phase separation properties of a PrLD,
PrLD mutations can perturb heterotypic interactions that modulate assembly propensity.
The high local concentration of PrLDs in stress granules should increase the probability
of aggregation. However, heterotypic interactions with binding partners, such as RNA
or proteins, can compete with the homotypic interactions that nucleate aggregation; this
phenomenon has been referred to as heterotypic buffering [165]. Thus, mutations that
alter the relative concentrations of or interactions between stress granule components
can also contribute to the aberrant assembly of PrLD-containing proteins or change the
material properties of stress granules. Mislocalization can similarly contribute to aber-
rant assembly, in part by disrupting interactions that prevent assembly. For example,
many of the ALS-associated mutations in FUS are in its nuclear localization signal [166].
Since RNA is thought to inhibit FUS assembly, the lower concentration of RNA in the
cytoplasm may stimulate aberrant phase transitions [155]. Stress granules also contain
high concentrations of chaperones that can prevent PrLD aggregation [167-169], and the
autophagy [170] and ubiquitin—proteasome pathways [171,172] are linked to stress granule
dynamics and clearance. Mutations in these pathways are correlated with abnormal stress
granule dynamics.

9. Conclusions and Future Perspectives

Proteins containing PrLDs are capable of forming a variety of both functional and
pathogenic protein assemblies. While significant progress has been made in defining
sequence features that are responsible for prion formation, the sequence features driving
other types of PrLD assemblies, and how sequence changes affect the material state of these
assemblies, are less clear.

Likewise, many questions remain about the exact functions of PrLDs in stress granules
and other membraneless organelles. While some PrLDs are necessary or sufficient for
stress granule recruitment, others appear to act more as regulators of solubility, preventing
the formation of stable protein aggregates and maintaining the dynamic nature of RNP
assemblies. Preliminary progress has been made in defining the sequence features that
promote PrLD recruitment to stress granules. However, the key interactions that PrLDs
engage in within stress granules, the mechanisms by which assembly and disassembly
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are regulated, and the mechanisms by which PrLDs are targeted to specific membraneless
organelles are still not fully understood.

Answering these questions may provide insight into both the normal functions of PrLDs
and the mechanisms by which mutations in PrLDs lead to pathology, potentially leading to
new targeted therapies for various devastating human neurodegenerative disorders.
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