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The 14-3-3 gene family members play key roles in various cellular processes. However,
little is known about the numbers and roles of 14-3-3 genes in wheat. The aims of this
study were to identify TaGF14 numbers in wheat by searching its whole genome through
blast, to study the phylogenetic relationships with other plant species and to discuss the
functions of TaGF14s. The results showed that common wheat harbored 20 TaGF14
genes, located on wheat chromosome groups 2, 3, 4, and 7. Out of them, eighteen
TaGF14s are non-ε proteins, and two wheat TaGF14 genes, TaGF14i and TaGF14f, are
ε proteins. Phylogenetic analysis indicated that these genes were divided into six
clusters: cluster 1 (TaGF14d, TaGF14g, TaGF14j, TaGF14h, TaGF14c, and TaGF14n);
cluster 2 (TaGF14k); cluster 3 (TaGF14b, TaGF14l, TaGF14m, and TaGF14s); cluster
4 (TaGF14a, TaGF14e, and TaGF14r); cluster 5 (TaGF14i and TaGF14f ); and cluster
6 (TaGF14o, TaGF14p, TaGF14q, and TaGF14t). Tissue-specific gene expressions
suggested that all TaGF14s were likely constitutively expressed, except two genes, i.e.,
TaGF14p and TaGF14f. And the highest amount of TaGF14 transcripts were observed in
developing grains at 20 days post anthesis (DPA), especially for TaGF14j and TaGF14l.
After drought stress, five genes, i.e., TaGF14c, TaGF14d, TaGF14g, TaGF14h, and
TaGF14j, were up-regulated expression under drought stress for both 1 and 6 h,
suggesting these genes played vital role in combating against drought stress. However,
all the TaGF14s were down-regulated expression under heat stress for both 1 and
6 h, indicating TaGF14s may be negatively associated with heat stress by reducing the
expression to combat heat stress or through other pathways. These results suggested
that cluster 1, e.g., TaGF14j, may participate in the whole wheat developing stages, e.g.,
grain-filling (starch biosynthesis) and may also participate in combating against drought
stress. Subsequently, a homolog of TaGF14j, TaGF14-JM22, were cloned by RACE and
used to validate its function. Immunoblotting results showed that TaGF14-JM22 protein,
closely related to TaGF14d, TaGF14g, and TaGF14j, can interact with AGP-L, SSI, SSII,
SBEIIa, and SBEIIb in developing grains, suggesting that TaGF14s located on group 4
may be involved in starch biosynthesis. Therefore, it is possible to develop starch-rich
wheat cultivars by modifying TaGF14s.
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INTRODUCTION

The ubiquitous 14-3-3 proteins, as one of the families of
regulatory proteins, have been found in all eukaryotic organisms
and tissues. The family consists of dimeric α-helical pSer/Thr
binding proteins that play key roles in various cellular processes,
such as signal transduction, biotic and abiotic stress responses,
and carbon and nitrogen metabolism, by mediating protein–
protein interactions (Aitken et al., 1992; Fulgosi et al., 2002).
However, little is known about the numbers and roles of 14-3-3
genes (TaGF14s) in wheat. Therefore, it is necessary to develop
elite wheat cultivars to explore the numbers and to study the
functions of TaGF14s.

Different species may have different numbers of GF14s. For
example, humans have seven 14-3-3 genes (Iwata et al., 2000),
while Arabidopsis, rice and maize have thirteen GF14s and
two pseudogenes, eight GF14s and twelve GF14s, respectively
(Wu et al., 1997; Rosenquist et al., 2001; Lai et al., 2004;
Sehnke et al., 2006; Yao et al., 2007; Alexandrov et al.,
2009), which suggested that plants maybe have more GF14s
than animal. 14-3-3 proteins, binding a range of transcription
factors and signaling proteins, have roles in regulating carbon
and nitrogen metabolism, plant development, and biotic and
abiotic stress responses (Roberts, 2000, 2003; Fulgosi et al.,
2002; Maraschin et al., 2003). For example, BdGF14f were
associated Cr and cold stresses in Brachypodium distachyon
(Cao et al., 2016). Different 14-3-3 protein isoforms have
different roles. For example, 14-3-3A processing and 14-3-3C
isoform tissue specific expression are closely related to cell fate
and initiation of specific cell type differentiation (Maraschin
et al., 2003). And 14-3-3 proteins were also reported to be
involved in starch biosynthesis in plants. For example, Alexander
and Morris (2006) identified 54 14-3-3 binding proteins by
MALDI-TOF MS, and the largest category was for carbohydrate
metabolism, including plastidic enzymes for starch synthesis
and modification. Out of them, four enzymes, i.e., GSBSI, SSI,
SSII and SBEIIa were involved in starch biosynthesis. Presently,
only four GF14s have been reported in common wheat (Ikeda
et al., 2000; Yao et al., 2005; Wang et al., 2008). It is unknown
whether there are more GF14s in common wheat than rice
and maize. Due to the roles of GF14 reported previously, it
is necessary to study the 14-3-3 genes and their functions in
wheat.

The allohexaploid bread wheat (Triticum aestivum,
2n = 6x = 42; genome AABBDD) is one of the largest crop
worldwide. Due to two times of heterologous hybridization and
two times of chromosome self-doubling, modern common wheat
have a larger genome size (17 gigabase) than rice (466 megabases)
and maize (2.3 gigabase) (Yu et al., 2002; Schnable et al., 2009;
International Wheat Genome Sequencing Consortium [IWGSC],
2014). Because of its genome complexity and its big genome
size, wheat chromosome sequencing is not possible in the
last decade. However, with the advances of technologies, e.g.,
chromosome follow sorting and sequencing technology (next
generation sequence/de novo assemble and pacbio), a reference
genome of common wheat version TGACv1 is obtained by next
generation sequence/de novo assembly (International Wheat

Genome Sequencing Consortium [IWGSC], 2014), which is very
attractive to wheat geneticists and breeders and highlights wheat
genetic improvement.

In this study, we are aimed to identify TaGF14 numbers in
wheat by searching the wheat whole genome through blast, to
study the phylogenetic relationships with other plant species and
to discuss the functions of TaGF14s.

MATERIALS AND METHODS

Plant Materials
The hard white winter wheat cultivar Jimai 22, released by
our lab, was used in this study and was sown in a field at
the Experimental Station of Shandong Academy of Agricultural
Sciences (SAAS), Jinan, Shandong Province, China. The plot
size was 12 m2. Soil fertility was high. Weeds and diseases were
controlled. Developing wheat ears were tagged at the onset of
anthesis. Endosperm tissue was obtained from developing wheat
grains (at Z71 and Z75) taken from the mid-ear region of the head
(Zadoks et al., 1974).

RNA Extraction and Cloning of
TaGF14-JM22
The total RNA was isolated from the developing grains or
kernels at Zadok scale 71 according to the instructions of
an RNeasy Plant Mini Kit (Qiagen, Germany). RNase-free
DNase I (Promega, United States) was used to remove any
contaminating genomic DNA. Quality and integrity of the total
RNA were determined by running the appropriate amount
of RNA in a formamide denaturing gel. TaGF14-JM22 was
cloned from wheat according to the methods described in the
Supplementary Material. The cDNA sequence of TaGF14-JM22
obtained was submitted to GenBank, and the accession number
is GenBank JF957590. The 3D structure of TaGF14-JM22 was
predicted using the ExPASy proteomics online server and Swiss-
Model1.

Construction of the Phylogenetic Tree
and Expression of the TaGF14-JM22
Genes in Developing Grains
To determine the 14-3-3 gene numbers in wheat and to
construct the phylogenetic tree of 14-3-3 genes from cereal
crops and Arabidopsis, the coding sequence of TaGF14-JM22,
cloned from wheat in this study, was used as the query to
search the NCBI database2 and the genome sequence databases of
Sorghum3, wheat4, and Brachypodium5 with a cut-off parameter
of E-value ≤ 1E−10 for homologous GF14s. The phylogenetic
tree was constructed using the maximum likelihood method
with a Poisson distribution model and 1000 bootstrap replicates

1https://swissmodel.expasy.org/
2https://www.ncbi.nlm.nih.gov/
3http://www.plantgdb.org/SbGDB/
4https://urgi.versailles.inra.fr/blast/
5http://www.brachypodium.org/
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by MEGA 6.0 (Tamura et al., 2013) based on the amino acid
sequences of 14-3-3 proteins with a cut-off value of 50% for the
condensed tree. In addition, the silicon expression profiles of
TaGF14 in Root_Z13, Stem_Z30, Leaf_Z23, Spike_Z65, and the
developing grains at 10, 20, and 30 days post anthesis (DPA) were
obtained through WheatExp (Pearce et al., 2015) and analyzed.
Data was analyzed with SAS software version 9.0. The mean
expression values of every gene in different tissues were compared
with each other, respectively. Duncan’s multiple range test was
used to test for significant differences.

Expression and Purification
For cloning in pET29c, the TaGF14-JM22 sequence was amplified
using the primers BamHI F and HindIII R. Amplicons were
digested together with the pET29c vector and BamHI and
HindIII enzymes at 37◦C for 3 h. The digested products were
purified and ligated together with T4 DNA ligase (Promega,
United States) at 4◦C overnight. The ligation mix was then
transformed into Escherichia coli BL21 (DE3) for protein
expression. The positive clones were screened for correct
insertion by colony PCR and sequencing. The successful
constructs were expected to express a TaGF14-JM22 fusion
protein with an S-tag at the N-terminus. The recombinant
proteins were purified using the S-tag rEK Purification Kit
(Novagen, United States) according to the manual’s protocol. For
more details, please see the Supplementary Material.

Amyloplast Isolation
The amyloplasts were isolated from the developing endosperm
obtained from wheat grains (at Zadok scale 75) taken from
the mid-ear region of the head as described by Tetlow et al.
(2008). Starch granules were washed, and the granule-associated
proteins, e.g., AGPase and GBSS, were extracted as described
by Denyer et al. (1995). The protein content was measured
using the Bio-Rad protein assay according to the manufacturer’s
instructions and using thyroglobulin as a standard (Bio-Rad Lab.,
Canada).

Preparation of Peptides and Antisera
Polyclonal antibodies of starch biosynthetic enzymes were
raised in rabbits against synthetic peptides, which were
derived from N-terminal sequences of wheat AGP-L
(CIIDMNARIGRDVVISN, Ainsworth et al., 1995), AGP-S
(AIIDKNARIGENVKIIN, Rösti and Denyer, 2007),
SSI (APAQSPAPTQPPLPDAG, Li et al., 1999), SSII
(ARVDDDAASARQPRARRG, Li et al., 1999), GBSSI
(QDLSWKGPAKNWEDV, Vrinten and Nakamura, 2000),
SBEI (VSAPRDYTMATAEDGV, Rahman et al., 2001),
SBEIIa (AASPGKVLVPDGESDDLAS, Rahman et al., 2001),
SBEIIb (AGGPSGEVMIPDGGSG, Regina et al., 2005), DE
(SVGVGEDLPEGYEQM, Bresolin et al., 2006), and SP
(NYDELMGSLEGNEGYGRADYFLV, Tickle et al., 2009). The
antigen was prepared by coupling the synthesized peptide
to keyhole limpet haemocyanin using the heterobifunctional
reagent m-maleimidobenzoyl-N-hydroxysuccinimide ester
(Tetlow et al., 2008).

SDS-PAGE and Immunoblotting
The methods of SDS-PAGE and immunoblotting were according
to Tetlow et al. (2008), for more detail, please see the
Supplementary Materials. Gels were stained with a colloidal
Coomassie Brilliant Blue G250 kit (Neuhoff et al., 1988).

RESULTS

Numbers of TaGF14 Genes and
Phylogenetic Tree Construction
To explore the chromosomal locations and numbers of TaGF14
in wheat, the complete coding sequence of TaGF14-JM22 was
used as the query to search the wheat whole-genome sequences
published by IWGSC6. In total, 20 genes were obtained through
Blast, and the coding sequences and chromosomal location of
these genes are listed in Supplementary Table S1. In addition,
these genes were located on wheat chromosome groups 2, 3, 4,
and 7 (Figure 1). However, the 14-3-3 genes were not equally
distributed on the wheat chromosome groups. In this study, eight
genes were located on the wheat chromosome group 4 and the
remaining 3 chromosome groups harbored equal numbers (four
genes per group) of TaGF14 genes.

To investigate the evolutionary relationship among TaGF14-
JM22 and other GF14 genes and proteins derived from
Oryza sativa, B. distachyon, Zea mays, Hordeum vulgare,
and Arabidopsis thaliana, phylogenetic trees were constructed
using the maximum likelihood method with a Poisson model
and with 1000 bootstrap replicates by MEGA 6.0 (Tamura
et al., 2013) based on the amino acid sequences of 14-3-3
proteins with a cut-off value of 50% for the condensed tree
(Figure 2). The results showed that the 20 wheat TaGF14s
could be divided into six clusters: cluster 1, including six
genes (TaGF14d, TaGF14g, TaGF14j, TaGF14h, TaGF14c, and
TaGF14n); cluster 2, including one gene (TaGF14k); cluster
3, including four genes (TaGF14b, TaGF14l, TaGF14m, and
TaGF14s); cluster 4, including three genes (TaGF14a, TaGF14e,
and TaGF14r); cluster 5, including two genes (TaGF14i and
TaGF14f ); and cluster 6, including four genes (TaGF14o,
TaGF14p, TaGF14q, and TaGF14t). The results also showed
that eighteen TaGF14s are non-ε proteins, except two wheat
GF14 genes, TaGF14i and TaGF14f, which are ε proteins
(Figure 2).

Expression of TaGF14s in Wheat
In order to investigate the gene expression levels of TaGF14
in the wheat root, stem, leaf, spike and developing grains
at 10, 20, and 30 DPA, the silicon expression dataset was
downloaded from WheatExp. As shown in Figure 3, it appeared
that all TaGF14s were constitutively expressed, except two
genes, i.e., TaGF14p, which was not observed, and TaGF14f,
which showed tissue-specific expression in the root (Figure 3H
and Supplementary Figure S6). In addition, TaGF14i was also
likely expressed in a tissue-specific manner in stem_z30, the

6https://urgi.versailles.inra.fr/blast/
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FIGURE 1 | Chromosome localization of TaGF14s based on the reference sequence (TGACv1.0) of wheat genome (International Wheat Genome Sequencing
Consortium [IWGSC], 2014). The text in red color presented that the genes were not physically mapped in the reference genome.

developing grains at 20 and 30 DPA. TaGF14o, TaGF14q,
and TaGF14t, which belong to cluster 6, were expressed
less in developing grains than in other investigated tissues
(Supplementary Figure S6). These results indicated that TaGF14j,
TaGF14l, and TaGF14i may play important role in the wheat
grain-filling stage.

In addition, the gene expressions of TaGF14s were also
determined in the wheat seedling stage treated with drought
stress and heat stress. The results showed that five genes, i.e.,
TaGF14c, TaGF14d, TaGF14g, TaGF14h, and TaGF14j, were up-
regulated expression under drought stress for both 1 and 6 h
(Figure 4), suggesting these genes played vital role in combating
against drought stress. However, all the TaGF14s were down-
regulated expression under heat stress for both 1 and 6 h, which
indicated that TaGF14s may be negatively associated with heat
stress by reducing the expression to combat heat stress or through
other pathways. Furthermore, the heatmap of TaGF14s were
also drawn based on the gene expression data of TaGF14s. The
results showed that TaGF14s in Root_Z13, Stem_Z30, Spike_Z65
and the developing grains at 20 DPA had the similar gene
expression, while the rest had the similar gene expression pattern

(Figure 5). And the TaGF14s clustered into three clusters based
on gene expression in different samples or tissues, i.e., CL1,
CL2, and CL3. And TaGF14h, TaGF14l, TaGF14m, and TaGF14s
belonged to CL1. TaGF14d and TaGF14j belonged to CL3, while
the rest belonged to CL2. These results suggested that TaGF14d
and TaGF14j, both constitutively expressed, may participate in
the whole wheat developing stages, e.g., grain-filling (starch
biosynthesis) and may also participate in combating against
drought stress.

Cloning and Sequence Analysis of
TaGF14-JM22
To validate the gene function of TaGF14j, a homologous gene,
TaGF14-JM22 was cloned and used for further analysis. The
full-length cDNA of TaGF14-JM22, containing 786 nucleotides,
was obtained using the RACE-PCR technique (Supplementary
Table S3 and Supplementary Figures S1, S2) and submitted to
GenBank (Accession number: JF957590). Multiple alignments
showed that this sequence shared high identity with 14-
3-3 proteins from other species ranging from 31 to 98%
(Supplementary Figure S3), e.g., 98% identity with Brachypodium
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FIGURE 2 | Phylogenetic analysis of TaGF14s in common wheat with 14-3-3 proteins in other plant species. A rooted phylogenetic tree based on the sequence
alignment using the MEGA 6.0 software from the CLUSTALW multiple sequence alignment. The scale represents estimated branch length. The TaGF14 genes from
common wheat were marked in blue color.

(BdGF14f ) and Oryza (OsGF14f ) and 31% identity with Oryza
(OsGF14h). TaGF14-JM22 was predicted to encode 261 amino
acids (AA), with a predicted molecular mass of 29.27 kDa and
an isoelectric point (pI) of 4.82. Structure analysis revealed
that the predicted TaGF14-JM22 protein contained two 14-3-
3 protein signatures and six functional motifs (Supplementary
Table S2), such as a cAMP- (or cGMP-) dependent protein kinase
phosphorylation site and a tyrosine kinase phosphorylation site,
which were highly conserved in 14-3-3 homologs. Based on
a WoLF PSORT analysis7, TaGF14-JM22 was located in the
plasma membrane or nuclear plasma membrane. In addition,
the three-dimensional (3D) structure prediction was analyzed
by comparative protein modeling. The coding sequence of
TaGF14-JM22 was submitted to the Swiss-Model online server8,
and six 14-3-3-like proteins with sequence similarities of
90.60, 90.34, 90.17, 85.83, 84.86, and 84.52% were selected

7https://www.genscript.com/wolf-psort.html
8https://swissmodel.expasy.org/

as templates to build models. Subsequently, nine models
were generated using the abovementioned 14-3-3 proteins as
models for the Swiss-Model homology modeling (Supplementary
Figure S5). In addition, the QMEAN Z-score evaluations
for the models were −1.12, −0.95, −1.50, −1.03, −0.50,
−0.97, −1.33, −1.39, and −1.75, respectively, showing that
the predicted models were of good quality. Furthermore, the
phylogenetic results indicated that TaGF14-JM22, cloned in
this study and belonging to non-ε protein, was closely related
to three wheat genes (TaGF14d, TaGF14g, and TaGF14j) as
well as OsGF14f and HvGF14f (Figure 2 and Supplementary
Figure S3).

Validation the Function of TaGF14-JM22
in Developing Grains
To validate TaGF14-JM22 similar to TaGF14j participating in
starch biosynthesis in developing grains, the coding sequence
of TaGF14-JM22 was sub-cloned into pET29c. After induction
by 1 mM IPTG at 37◦C for 1, 3, 5, and 7 h, the highest
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FIGURE 3 | Detection of TaGF14 transcripts by silicon expression profiles. (A) Root_Z13. (B) Stem_Z30. (C) Leaf_Z23. (D) Spike_Z65. (E) Developing grains_10
DPA. (F) Developing grains_20 DPA. (G) Developing grains_30 DPA. Bar represents the standard error. (H) The expression of TaGF14f was displayed in different
tissues. ∗At the top of each column indicates significant difference at P = 0.05.

expression occurred with 1 mM IPTG in both 5 and 7 h
inductions at 37◦C. SDS-PAGE was used for induction and
purification of the TaGF14-JM22 protein. The protein with
the highest abundance was found in the E. coli extracts. The
molecular mass of the induced protein was about 29 kDa, which
was in accordance with the predicted amino acid sequence
(Supplementary Figure S4).

The purified recombinant TaGF14-JM22 protein was bound to
S-protein agarose as a biochemical bait and then incubated with
wheat amyloplast extract. Protein–protein interactions between
the TaGF14-JM22 protein and ten key starch biosynthetic
enzymes from amyloplasts, i.e., AGP-L, AGP-S, SSI, SSII,
GBSSI, SBEI, SBEIIa, DE, SBEIIb, and SP, were investigated
and analyzed by SDS-PAGE and western blotting. As shown
in Figure 6, BSA, as a control, could not bind any starch
biosynthetic enzymes, but protein–protein interactions between
the TaGF14-JM22 protein and starch biosynthetic enzymes were
observed. AGP-L, SSI, SSII, SBEIIa, and SBEIIb interacted
with the TaGF14-JM22 protein (Figure 6). However, AGP-S,

GBSSI, SBEI, DE, and SP could not interact with the TaGF14-
JM22 protein. These results suggested that TaGF14-JM22 indeed
participated in starch biosynthesis by binding to biosynthetic
enzymes.

DISCUSSION

The family of 14-3-3 proteins is one of the families of regulatory
proteins in plants (Aitken et al., 1992). Previous studies showed
that plants have more 14-3-3 genes than animals. For example,
human has seven 14-3-3 genes, while Arabidopsis and maize
have thirteen 14-3-3 genes and twelve 14-3-3 genes, respectively
(Wu et al., 1997; Iwata et al., 2000; Rosenquist et al., 2001).
However, the number of 14-3-3 genes in common wheat and
their relationships with other species are still unknown. In
the present study, it was determined by Blastn against the
whole genome sequences of Chinese Spring wheat released by
International Wheat Genome Sequencing Consortium [IWGSC],
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FIGURE 4 | Wheat TaGF14s expression induced by drought and heat. Red, green, blue, and purple column represent drought stress for 1 h, drought stress for 6 h,
heat stress for 1 h, and heat stress for 6 h. Bar represents the standard error. ∗At the top of each column indicates significant difference at P = 0.05.

FIGURE 5 | Heatmap of TaGF14s drawn with software R program (gplot) based on its expression data in different tissues or samples treated with drought and heat
stresses. St, Stem_Z30. Sp, Spike_Z65. R, Root_Z13. L, Leaf_Z23. DG10, Developing grains_10 DPA. DG20, Developing grains_20 DPA. DG30, Developing
grains_30 DPA.

2014. The results indicated that common wheat harbored 20
GF14s (Supplementary Table S1 and Figure 2), which was much
more than rice and Brachypodium (Wu et al., 1997; Iwata et al.,
2000; Rosenquist et al., 2001). Of all the genes, eight (40%)
were located on wheat chromosome group 4 (Supplementary

Table S1). In addition, the phylogenetic tree was constructed
based on 14-3-3 protein sequences, which revealed that most
of the TaGF14s, including five clusters (clusters 1–5), are non-
ε proteins, except cluster 6 (TaGF14f and TaGF14i) which are
ε proteins (Figure 2 and Supplementary Table S1).
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FIGURE 6 | Interaction between GF14-JM22 protein and starch biosynthetic enzymes revealed by immunoblotting assays. M, Protein markers. (A) Gel image of
SDS-PAGE. 1, Recombinant GF14-JM22 protein binding to S-protein agarose resin. 2, Blank control. 3, Recombinant GF14-JM22 protein through affinity
chromatography. 4, Wheat amyloplast extracts. (B–F), Gel images of SH2-antibody, SSI-antibody, SSII-antibody, SBEIIa-antibody and SBEIIb-antibody, respectively.
1, Blank control. 2, Recombinant GF14-JM22 protein immunoblotting through affinity chromatography. 3, Wheat amyloplast extracts immunoblotting.

The 14-3-3 proteins play important roles in diverse cellular
processes by mediating protein-protein interactions in plants
(Fulgosi et al., 2002). Previous studies indicated that HvGF14a
was a protein induced by powdery mildew fungus, suggesting
that it was involved in plant resistance to fungus infection in
H. vulgare (Brandt et al., 1992). In Brachypodium, BdGF14f
was significantly induced by Cr and cold stress (Cao et al.,
2016). In addition, OsGF14f was constitutively expressed in
rice (Yao et al., 2007). Previous studies indicated that starch
was synthesized through the coordinated interactions of a
suite of biosynthetic enzymes in plants (Zeeman et al., 2010).
However, whether 14-3-3 as a regulatory protein involved in
starch biosynthesis was known in wheat. And very little was
also known about the functions of 14-3-3 proteins in wheat. In
this study, TaGF14-JM22, which is similar to TaGF14d, TaGF14g
and TaGF14j, the most highly expressed genes among the twenty
TaGF14s in developing wheat grains, was used to investigate the
protein-protein interactions between 14-3-3s and ten key starch
biosynthetic enzymes, i.e., AGP-L, AGP-S, SSI, SSII, GBSSI,
SBEI, SBEIIa, DE, SBEIIb, and SP, during grain filling by a
immunoblotting assay. The results showed that five enzymes,
i.e., AGP-L, SSI, SSII, SBEIIa, and SBEIIb, interacted with the

TaGF14-JM22 protein, while the rest of the enzymes did not
(Figure 6), suggesting that TaGF14d, TaGF14g, and TaGF14j
may be involved in starch biosynthesis through protein–protein
interactions. In barley, 14-3-3 proteins were reported to interact
with four starch biosynthetic enzymes, i.e., GSBSI, SSI, SSII and
SBEIIa in developing grains (Alexander and Morris, 2006), which
were also clearly detected in our study. In addition, two starch
biosynthetic enzymes, i.e., DE and SBEIIb, also interacted with
14-3-3 proteins in developing wheat grains, which was firstly
reported in this study and may be unique to wheat, considering
the fact that wheat harbors more 14-3-3s than other species
(Figures 2, 6). In addition, the results showed that TaGF14s in
Leaf_Z23, the developing grains at 10 and 30 DPA, drought stress
and heat stress had the similar gene expressions, which can be
explained by the fact that wheat production was usually affected
by heat and drought stress, especially in the grain-filling stages
(Skylas et al., 2002; Farooq et al., 2011). And in Figures 2, 3,
the results showed that TaGF14-JM22, TaGF14d, TaGF14g, and
TaGF14j were closely related to HvGF14a (a pathogen-related
protein), BdGF14f, induced by Cr and cold stress, and OsGF14f,
and were constitutively expressed in wheat (Yao et al., 2007; Cao
et al., 2016). Therefore, we speculated that TaGF14d, TaGF14g,
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and TaGF14j may also have the similar functions, e.g.,
resistance to pathogen and Cr stress, with other plant species.
Furthermore, Arabidopsis GRF6 was linked to the “stay green”
phenotype and drought tolerance by cotton transformation
experiments (Yan et al., 2004). Our results indicated that the
TaGF14s, closely related to GRF6, on group 7 that belong to
cluster 6 may also be linked to the “stay green” phenotype
(Figure 2). So, in our next project, the functions of TaGF14s,
especially TaGF14s located on group 4 and group 7 will be
further analyzed by gene overexpressing or gene silencing in
wheat.
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