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Abstract: Pax6 is a sequence-specific DNA binding transcription factor that positively and negatively
regulates transcription and is expressed in multiple cell types in the developing and adult central ner-
vous system (CNS). As indicated by the morphological and functional abnormalities in spontaneous
Pax6 mutant rodents, Pax6 plays pivotal roles in various biological processes in the CNS. At the initial
stage of CNS development, Pax6 is responsible for brain patterning along the anteroposterior and
dorsoventral axes of the telencephalon. Regarding the anteroposterior axis, Pax6 is expressed in-
versely to Emx2 and Coup-TF1, and Pax6 mutant mice exhibit a rostral shift, resulting in an alteration
of the size of certain cortical areas. Pax6 and its downstream genes play important roles in balancing
the proliferation and differentiation of neural stem cells. The Pax6 gene was originally identified in
mice and humans 30 years ago via genetic analyses of the eye phenotypes. The human PAX6 gene
was discovered in patients who suffer from WAGR syndrome (i.e., Wilms tumor, aniridia, genital
ridge defects, mental retardation). Mutations of the human PAX6 gene have also been reported to be
associated with autism spectrum disorder (ASD) and intellectual disability. Rodents that lack the
Pax6 gene exhibit diverse neural phenotypes, which might lead to a better understanding of human
pathology and neurodevelopmental disorders. This review describes the expression and function of
Pax6 during brain development, and their implications for neuropathology.

Keywords: Pax6; central nervous system; brain patterning; neural stem cells; cell proliferation; neural
differentiation; Sey mutant; autism spectrum disorder; mouse; rat

1. Introduction

It has been 30 years since Pax6/PAX6 was identified as a gene responsible for congenital
anomalies of the eye in mice and humans [1,2]. The gene turned out to be a member
of a paired box (Pax) family encoding transcriptional factors that also work in brain
development [3]. Regarding structure, Pax proteins share a common DNA-binding domain
called the paired domain (PD) [4]. Some members of the Pax family, including Pax6, have a
homeodomain (HD), i.e., another DNA-binding domain (Figure 1A) [5,6]. The molecular
structure and function of Pax6 are well preserved from Drosophila to mammals [7,8]. It has
been reported that the PD is necessary for the regulation of embryonic neurogenesis, in
which a mutant lacking the HD of Pax6 showed only subtle defects [9]. Therefore, the PD
exerts a key role during brain development [9].

Pax6 first garnered attention due to its role in eye development. Spontaneous Small eye
(Sey) mutant mice were identified from the phenotype of microphthalmia as a heterozygous
phenotype, while Pax6 homozygous mutant (Sey/Sey) mice completely lacked the formation
of the eyes and nose and died soon after birth [10]. The Pax6 gene mutated in Sey/Sey
contains a stop codon in the coding region before the homeodomain (Figure 1A) [1]. The
Pax6 gene was also identified in spontaneous mutant mice (Sey/Sey) and rats (rSey2/rSey2)
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showing similar ocular phenotypes [11–13]. The gene responsible for the eyeless mutant in
Drosophila was found to be a Pax6 homolog [14]. The ectopic expression of eyeless induced
the formation of compound eyes outside the head region [7]. Thus, Pax6 is required and
sufficient for eye formation.

Further study has revealed that Pax6 is expressed in various regions in the developing
central nervous system (CNS) from the initial stage when the neural plate is induced [15].
In the developing CNS, Pax6 is expressed in the telencephalon [16], diencephalon [17,18],
rhombomeres [19,20], and spinal cord [20–22]. At early stages, Pax6 is expressed in the
ventricular zone (VZ), where neural stem cells (NSCs) are located (see “Pax6 in neurogene-
sis”) [23,24]. At later stages, Pax6 is expressed in the neurons of specific brain regions such
as the olfactory bulb [20,25], amygdala [13,26], thalamus [13,27], and cerebellum [13,20,28].
rSey2/rSey2 rats lack the olfactory bulb, yet they have an olfactory bulb-like structure at the
lateral position in the neocortex [20]. Sey/Sey mice and rSey2/rSey2 rats exhibit a reduction
in the size of the forebrain and the cortical thickness (Figure 1B,C) [29].

Outside the CNS, PAX6/Pax6 is expressed in the lens [20,30,31], corneal epithe-
lium [32,33], retinal neuroepithelium [34,35], and olfactory placodes/epithelium [25,36,37].
Pax6 is also involved in the development of other tissues such as the pancreas, pituitary
gland, and even in the testes [21,38–40] (reviewed in [13,20,37,41–44]). In this review article,
we would like to focus on the role of Pax6 in brain development, taking neurodevelopmen-
tal disorders into account.
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PST site, thereby resulting in the truncated Pax6Sey protein. The canonical PD binds via its N-termi-
nal PAI domain to the DNA; the insertion of the 14 amino acids from exon 5a into the PAI domain 
leads to the mutant PD(5a) [45]. PD: paired domain, HD: homeodomain, PST: Pro-Ser-Thr rich re-
gion. (B) Schematic illustration of the head of WT and Sey/Sey mice. Pax6 shows a gradient of ex-
pression in the AP axis in WT. Sey/Sey mice cause a failure of eye and olfactory bulb formation and 
rostralization in the telencephalon. OB: olfactory bulb, Tel: telencephalon, M1: motor, S1: sensory, 

Figure 1. Schematic structure of Pax6 protein and cortical phenotypes in the Pax6 spontaneous
homozygous mutant (Sey/Sey) and Pax6 splice variant (Pax6(5a)) mice. (A) Schematic structure of
the Pax6 protein in the wild-type (WT), Sey/Sey, and Pax6(5a) mice. One base-pair substitution in
exon 8 of the Pax6 gene causes a Gly194Stop nonsense mutation, causing a stop codon downstream
at the PST site, thereby resulting in the truncated Pax6Sey protein. The canonical PD binds via its
N-terminal PAI domain to the DNA; the insertion of the 14 amino acids from exon 5a into the PAI
domain leads to the mutant PD(5a) [45]. PD: paired domain, HD: homeodomain, PST: Pro-Ser-Thr
rich region. (B) Schematic illustration of the head of WT and Sey/Sey mice. Pax6 shows a gradient of
expression in the AP axis in WT. Sey/Sey mice cause a failure of eye and olfactory bulb formation and
rostralization in the telencephalon. OB: olfactory bulb, Tel: telencephalon, M1: motor, S1: sensory, A1:
auditory and V1: visual areas. (C) Schematic illustration of a WT and Sey/Sey mouse telencephalon.
Sey/Sey mice cause dorsalization in the telencephalon. Cx: cortex, BG: basal ganglia. The graphical
diagram has been redrawn from [9,20,46].



Int. J. Mol. Sci. 2022, 23, 6115 3 of 19

2. Pax6 in Cortical Patterning

As mentioned above, Pax6 is considered to be expressed from the initial developmental
stage of the CNS, when it plays key roles in the regionalization of the neuroectoderm and
neural tube, i.e., the primordium of the CNS [47]. Each region of the CNS is specialized
before and during neurogenesis [48]. Although Pax6 is involved in the patterning of the
ventral regions of the brain stem and spinal cord [20,49,50], we focus here on the cortical
patterning. As described later, the initial patterning can also influence the ontology of
neurodevelopmental disorders.

2.1. Anteroposterior Axis

The telencephalon is a highly regionalized organ, which is functionally and morpho-
logically diverse. In early brain development, the telencephalon is patterned along the
anteroposterior (AP) and dorsoventral (DV) axes, resulting in the formation of various
cortical and subcortical areas [51].

This patterning is first attributed to the action of secreted signaling factors such as Wnt,
bone morphogenetic protein (BMP), and FGF8, and secondarily to the transcription factors
such as Pax6, Emx2, Coup-TFI, and Sp8 [52–56]. It is of note that these key transcription
factors are expressed in a gradient (Figure 2A). Pax6 and Sp8 are expressed in a rostro-
lateralhigh to caudo-mediallow manner along the AP axis. Emx2 and Coup-TF1 are expressed
inversely to Pax6 and Sp8 [55,57–59]. Changes in the expression of these transcription
factors affect brain patterning. For example, the overall cortical regions in Sey/Sey mice shift
to rostral, resulting in a reduction in the motor (M1) and sensory (S1) cortical areas, and
conversely an enlargement of the auditory (A1) and visual (V1) areas (Figure 2B) [57,60]. In
contrast, the cortical areas in Emx2 mutant mice shift to caudal, resulting in enlarged M1
and S1 areas and reduced A1 and V1 areas [57,60,61]. Yac-Pax6 Tg mice, in which Pax6 is
overexpressed, show a slight decrease in the S1 area but no major changes in other brain
areas (Figure 2C) [62,63]. These results suggest that the proper amount of Pax6 regulates
the arealization of the cortex. Furthermore, Pax6 is regulated by Emx2 and Coup-TF1,
which determine the caudal area of the cortex (Figure 2B–D) (see [51] and the references
therein), indicating that regulatory networks including Pax6 and other transcriptional
factors contribute to the AP patterning of the telencephalon.

The expression of the transcription factors is induced by specific secreted molecules
(Figure 2D). For example, BMP and Wnt, being released from the dorso-medial telen-
cephalon, increase the expression of Emx2 [52], while Fgf15 from the rostral side induces
that of Coup-TF1 [64]. In contrast, Fgf8 from the rostral side induces Sp8 [55,59]. A mathe-
matical analysis of gene regulatory networks using Boolean and computational models has
revealed an underpinning expression gradient in the mammalian cortex [65,66]. Although
upstream secretary molecules that can induce the expression of Pax6 have not been identi-
fied yet, it is of interest that Pax6 controls the responsiveness to secreted molecules such as
sonic hedgehog and BMP in the cortex [67]. Future analyses may reveal more about the
relationship between Pax6 and secreted molecules.
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pression patterns of the major transcription factors Pax6, Emx2, Coup-TFI, Sp8, Fgf8, and Emx1 
along the anteroposterior (AP) and lateromedial (LM); anterolateral (AL) and posteromedial (PM) 
axes. Pax6 is highly expressed along the AL axis, and weakly along the PM axis. Emx2 is expressed 
inversely to Pax6. (B,C) Summary of loss-of-function (B) and gain-of-function (C) by the alteration 
of transcription factor expression in regard to cortical patterning. Analyses of brain formation indi-
cate that Sey/Sey mice show a reduction in the M1 and S1 areas, as well as enlargement of the A1 
and V1 areas. Embryonic analyses imply that Emx2 mutants show an inverse relationship to Sey/Sey 
mice. The overexpression of Emx2 under the control of a Nestin promoter increases the size of the 
V1 area. In contrast, the overexpression of Pax6 slightly reduces the size of the S1 area. (D) The 
regulatory network of transcription factors and secreted molecules. The BMP and Wnt gradients 
increase the expression of Emx2. Fgf15 enhances the expression of Coup-TF1. Fgf8 inhibits the ex-
pression of Emx2 and Coup-TF1. TF: transcriptional factor. The graphical diagram has been redrawn 
from [51,54–56,60,61,63,66,68–70]. 
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in the basal ganglia, shifts dorsally, while that expressing Neurogenin1/2 (Neurog1/2), 
which is originally localized in the dorsal cortex, shifts dorsomedially [74]. In Gsh2-defi-
cient mice, conversely, the region expressing Ascl1/Dlx and Neurog1/2 shifts ventrally (Fig-
ure 1C) [74,75]. It has been indicated that Gsh2 is required for repressing Pax6 and vice 
versa, and Pax6 is required for maintaining Neurog1/2, which means, in turn, Pax6 is re-
sponsible for the repression of Ascl1/Dlx [74,76]. These results indicate that Pax6 defines 
the DV boundary region and contributes to DV progenitor identity acquisition. 

Figure 2. Gradient expression of key transcription factors in cortical patterning. (A) Gradient
expression patterns of the major transcription factors Pax6, Emx2, Coup-TFI, Sp8, Fgf8, and Emx1
along the anteroposterior (AP) and lateromedial (LM); anterolateral (AL) and posteromedial (PM)
axes. Pax6 is highly expressed along the AL axis, and weakly along the PM axis. Emx2 is expressed
inversely to Pax6. (B,C) Summary of loss-of-function (B) and gain-of-function (C) by the alteration of
transcription factor expression in regard to cortical patterning. Analyses of brain formation indicate
that Sey/Sey mice show a reduction in the M1 and S1 areas, as well as enlargement of the A1 and
V1 areas. Embryonic analyses imply that Emx2 mutants show an inverse relationship to Sey/Sey
mice. The overexpression of Emx2 under the control of a Nestin promoter increases the size of the
V1 area. In contrast, the overexpression of Pax6 slightly reduces the size of the S1 area. (D) The
regulatory network of transcription factors and secreted molecules. The BMP and Wnt gradients
increase the expression of Emx2. Fgf15 enhances the expression of Coup-TF1. Fgf8 inhibits the
expression of Emx2 and Coup-TF1. TF: transcriptional factor. The graphical diagram has been
redrawn from [51,54–56,60,61,63,66,68–70].

2.2. Dorsoventral Axis

Dorsoventrally, the telencephalon is divided into two compartments: the dorsal cortex
and the ventral basal ganglia, each of which has specific molecular features [71]. For proper
patterning along the DV axis, the coordination of multiple transcription factors is required.
In this section, we will review that Pax6 also influences DV patterning in the telencephalon.

The homeobox genes Pax6 and Gsh2 are expressed in the cortex and lateral gan-
glionic eminence (LGE), respectively. It is of note that these two transcriptional factors
play complementary roles in the DV patterning of the mammalian telencephalon [72,73].
In Pax6-deficient mice, the region expressing Ascl1 (Mash1) and Dlx, which is originally
localized in the basal ganglia, shifts dorsally, while that expressing Neurogenin1/2 (Neu-
rog1/2), which is originally localized in the dorsal cortex, shifts dorsomedially [74]. In
Gsh2-deficient mice, conversely, the region expressing Ascl1/Dlx and Neurog1/2 shifts ven-
trally (Figure 1C) [74,75]. It has been indicated that Gsh2 is required for repressing Pax6 and
vice versa, and Pax6 is required for maintaining Neurog1/2, which means, in turn, Pax6 is
responsible for the repression of Ascl1/Dlx [74,76]. These results indicate that Pax6 defines
the DV boundary region and contributes to DV progenitor identity acquisition.
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In addition to the dorsalization of the embryonic telencephalon, our group has found
another key transcription factor under the control of Pax6. From microarray analyses
using rSey2/rSey2 rat embryos, we have identified Dmrta1 (doublesex and mab-3-related
transcription factor-like family A1) as a Pax6 downstream target gene in the rat telen-
cephalon [77]. Dmrta1 is specifically expressed in the dorsal telencephalon and contributes
to DV patterning [77]. Dmrta1 overexpression in the rat ventral telencephalon induced
the mis-expression of the dorsal marker Neurog2 and repressed that of the ventral marker
Ascl1 [77]. These novel pathways, i.e., Pax6 → Dmrta1 → Ngn2-|Ascl1 and/or Pax6 →
Dmrta1-|Ascl1, could determine progenitor cell DV identity by repressing ventralization.
For more information on the roles of Dmrt family members in brain patterning, see the re-
view in [78]. As described in this section, Pax6 promotes brain development via numerous
downstream factors to maintain proper AP and DV patterning in the telencephalon.

3. Pax6 in Neurogenesis

During embryonic brain development, neuroepithelial cells initially expand their
population by symmetric cell division (Figure 3A, the proliferation phase) [79,80]. Later, the
neuroepithelial cells become thinner and longer and are called radial glial (RG) cells. The
RG cells divide symmetrically or asymmetrically to self-renew themselves or to produce
neurons, respectively (Figure 3A, the neurogenetic phase). After neural differentiation,
RG cells produce glial cells, i.e., first astrocytes and then oligodendrocytes, in the cortical
primordium (Figure 3A, the gliogenic phase). The neuroepithelial cells and RG cells
function as NSCs.

The relative proportion of Pax6-positive VZ in the telencephalon is largest at around
embryonic day (E) 12.5 [81], at the time of the transition between the proliferation of NSCs
and the induction of neurons (Figure 3B,C) [20,71,82]. Pax6-positive NSCs sequentially
differentiate into neurons via neural progenitor cells, so-called intermediate progenitors
(IPCs) (see below) [83].

Neurogenesis, i.e., production of neurons, occurs simultaneously with cortical pat-
terning, and these two phenomena are difficult to separate. It is currently believed that
neurogenesis continues throughout life in certain brain regions such as the hippocampus
dentate gyrus and the subventricular zone of the lateral ventricle [84–87]. Pax6 is expressed
in NSCs at all stages of embryonic, postnatal, and adult neurogenesis (see “Pax6 in neuro-
genesis” and “Pax6 in Relation to Neurodevelopmental Disorders”) (Figure 3B) [88–90]. In
addition, Pax6 is expressed in astrocytes [91,92], a type of glial cell sharing some features
with NSCs, maintaining a good balance between the maintenance and differentiation of
astrocyte progenitors [91]. The determination of the proper neuronal arrangement in the
telencephalon proceeds by the following two steps; (i) cell proliferation, and (ii) neural
differentiation. In this section, the two different steps regulated by the downstream genes
of Pax6 will be reviewed.
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stretching from the apical surface of the ventricular zone (VZ) to the basal tip (basal endfoot) at the 
pia surface; these cells are now called radial glial (RG) cells. They undergo asymmetrical cell divi-
sion and induce intermediate progenitor cells (IPCs), as well as neurons. Intermediate progenitors 
migrate to the subventricular zone and differentiate into neurons. Subsequently, these neurons mi-
grate towards the basal side. After producing neurons, RG cells produce glia, i.e., astrocytes and 
oligodendrocytes. The graphical diagram has been redrawn from [80]. (B) Expression of Pax6, Tbr2, 
Tuj1 in the developing cortex at E11.5, E14.5, and E17.5: Pax6 (red), Tbr2 (blue), and Tuj1 (green). 
These proteins are expressed in the VZ, subventricular zone (SVZ), intermediate zone (IZ), and cor-
tical plate (CP), respectively. Scale bar: 100 μm. (C) The transition of the relative volume of brain 
subdivisions in the developing cortex. The Pax6-positive VZ area gradually narrowed during de-
velopment. 
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neural differentiation proceeds (Figure 3A). The cell cycle consists of a series of intracel-
lular processes, i.e., promoting cell division and producing two daughter cells. Cyclin D2 
is essential for the transition from the G1 phase (when the cellular and extracellular envi-
ronment is checked) to the S phase (DNA synthesis phase). The daughter cells expressing 
cyclin D2 are maintained in an undifferentiated state with proliferative potential, whereas 
those that lack cyclin D2 exit the cell cycle and give rise to neurons [93]. Cyclin D2 might 
be negatively regulated by Pax6, since cyclin D2 expression is increased in the Sey/Sey 
telencephalon at E12.5 [94] and in the cortex at later stages (our unpublished data). These 
cyclin D2-expressing cells might promote cell cycle re-entry because of an increased S 

Figure 3. Neural stem cell (NSC) differentiation in the embryonic cortex. (A) Neuroepithelial cells
undergo symmetrical cell division to increase the population of neural stem cells (NSCs, proliferation
phase). When brain development progresses, neuroepithelial cells elongate their processes stretching
from the apical surface of the ventricular zone (VZ) to the basal tip (basal endfoot) at the pia surface;
these cells are now called radial glial (RG) cells. They undergo asymmetrical cell division and induce
intermediate progenitor cells (IPCs), as well as neurons. Intermediate progenitors migrate to the
subventricular zone and differentiate into neurons. Subsequently, these neurons migrate towards the
basal side. After producing neurons, RG cells produce glia, i.e., astrocytes and oligodendrocytes. The
graphical diagram has been redrawn from [80]. (B) Expression of Pax6, Tbr2, Tuj1 in the developing
cortex at E11.5, E14.5, and E17.5: Pax6 (red), Tbr2 (blue), and Tuj1 (green). These proteins are
expressed in the VZ, subventricular zone (SVZ), intermediate zone (IZ), and cortical plate (CP),
respectively. Scale bar: 100 µm. (C) The transition of the relative volume of brain subdivisions in the
developing cortex. The Pax6-positive VZ area gradually narrowed during development.

3.1. Downstream Genes of Pax6 Contribute to Self-Renewal of NSCs

As previously mentioned in the introduction of this paper, NSCs proliferate before
neural differentiation proceeds (Figure 3A). The cell cycle consists of a series of intracellular
processes, i.e., promoting cell division and producing two daughter cells. Cyclin D2 is
essential for the transition from the G1 phase (when the cellular and extracellular envi-
ronment is checked) to the S phase (DNA synthesis phase). The daughter cells expressing
cyclin D2 are maintained in an undifferentiated state with proliferative potential, whereas
those that lack cyclin D2 exit the cell cycle and give rise to neurons [93]. Cyclin D2 might
be negatively regulated by Pax6, since cyclin D2 expression is increased in the Sey/Sey
telencephalon at E12.5 [94] and in the cortex at later stages (our unpublished data). These
cyclin D2-expressing cells might promote cell cycle re-entry because of an increased S phase
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population in the Sey/Sey telencephalon at E15.5 [95]. Interestingly, the S phase length
in Sey/Sey mice is reported to be shorter at E12.5 but longer at E15.5 [95]. Cyclin D2 is
also expressed in NSCs in the ganglionic eminence, and these cyclin D2-expressing cells
gradually migrate toward the dorsal cortex. Based on the information above, the effects
of cyclin D2 in the Sey/Sey cortex should be carefully examined regarding the embryonic
stages and radial versus tangential migration of neurons.

One unique phenomenon that occurs during cell proliferation in the cortex is called
interkinetic nuclear migration (INM), originally named as “elevator movement” by Fujita
et al. [96,97], in which the nucleus of the neuroepithelial/RG cell goes up and down, from
the apical to the basal side within the VZ according to the cell cycle [79,98]. rSey2/Sey2

rat cortexes shows ectopic INM, suggesting that Pax6 is involved in its regulation [20].
We also found that Ninein, which is a centrosome protein downstream of Pax6, regulates
the dynamics of INM by anchoring to microtubules (Figure 4A–C) [99]. Pax6 and its
downstream gene Ninein are involved in the regulation of INM, thereby serving to ensure
the proliferation of NSCs.

In addition to the cell cycle-related regulation described above, chromatin structures
are also key for maintaining NSCs in an undifferentiated state [100–103]. Pax6 is reported
to bind to chromatin remodeling complexes including the RE1 silencing transcription
factor (REST) and BRG1/BRM-associated factor (BAF) [104–106]. From chromatin im-
munoprecipitation (ChIP) analyses, it has been shown that the Baf170 subunit, a direct
Pax6-interacting protein, recruits the REST-corepressor complex, thereby regulating the
binding efficiency of target genes that induce IPCs and early-born neurons [105]. Since
REST is expressed in NSCs in the cortical primordia (Figure 4A) [107,108], the Pax6/REST
complex is responsible for the regulation of maintenance of NSCs and neural differentiation
at the appropriate time.

Another interesting gene downstream of Pax6 is Fmr1, a causative gene for fragile
X syndrome, one of the neurodevelopmental disorders. A previous ChIP-chip analysis
suggested that Pax6 binds to the promoter of the Fmr1 gene [109]. Fmr1 encodes an RNA-
binding protein, FMRP, which maintains NSCs [110]. A knockdown of Fmr1 and Fmr1
knock-out mice resulted in a reduction in the size of the Pax6+ NSC pool due to an NSC-
to-IPC cell fate change [110]. A novel finding is that FMRP localized in the basal endfeet
of NSCs transports its target mRNAs, leading to the regulation of localized mRNAs (Fig-
ure 4A) [111]. Moreover, FMRP-target mRNAs during corticogenesis include various genes
related to neurodevelopmental disorders [112]; some of them could regulate the proper
maintenance of NSCs and might explain mental retardation, one of the symptoms of fragile
X syndrome. Since Pax6 is considered as an ASD risk gene (see “Pax6 in neurodevelop-
mental disorders” and [42]), the Pax6–Fmr1 regulation in corticogenesis may provide new
insights into the pathogenesis of ASD.

3.2. Downstream Genes of Pax6 Contribute to Neural Differentiation

The transition from cell proliferation to neural differentiation of NSCs is governed by
the expression of pro-neural genes [80,113–115]. Pax6 binds to the enhancer region of a
pro-neural gene, Neurog2, and directly induces its expression, which in turn downregulates
expression of Pax6 itself (Figure 4B) [116,117]. NSCs differentiate into IPCs with the up-
regulated expression of Tbr2 (EOMES), a T-domain transcription factor that is induced by
Pax6 [83]. Then, the induction of Tbr2 promotes the differentiation of IPs into postmitotic
projection neurons via up-regulation of Tbr1 expression [83]. These facts indicate that
a sequential molecular cascade of “Pax6 → Tbr2 → Tbr1” correlates with the cell type
change of “RGs → IPs → postmitotic projection neurons” according to differentiation [83].
Another group has reported that Tbr2 is a downstream gene of Neurog2 [118]. Pax6 thus
regulates multiple downstream genes, i.e., Pax6 → Tbr2 → Tbr1, Pax6 → Neurog2 →
Tbr2 → Tbr1, and Pax6 → Neurog2 → Insm1 → Neurod1 → Tbr1 (Figure 4D) [119,120].
Although further fate mapping analyses at the single cell level are needed, the molecular
machinery underlying Pax6 downstream cascades may regulate cell fate determination in
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the proper timing of neural development. It is of note that the transition of transcription
factor expression is also recapitulated in adult neurogenesis (Figure 5).

Neurogenesis proceeds through positive and negative regulation of multiple tran-
scription factors. One major signal that regulates many downstream transcriptomic factors
is Notch signaling, which is a widely conserved signaling pathway from Drosophila to
mammals [121]. Notch signaling is well known to determine cell fate choice, such as cell
proliferation versus differentiation, during the formation of various tissues including the
CNS [122–126]. Although Pax6 is conserved in both the chick and mouse telencephalons,
the mechanism of neural differentiation provided by Pax6 differs among species and devel-
opmental stages [127]. In chicks and in the early stage of the mouse cortex, Pax6 transiently
suppresses Notch signaling and induces neural differentiation (Figure 4D), while in the
mid/late stages of the mouse cortex, Pax6 maintains NSCs. Therefore, it is speculated that
a spatiotemporal dual function of Pax6 in the mouse cortex could lead to the generation of
the sophisticated mammalian brain architecture.

PAX6 is also expressed in human neuroectoderm (NE) tissue [128]. Interestingly,
PAX6 is uniformly expressed in the NE cells of human fetuses and those of differentiated
cells [128]. However, Pax6 is expressed in restricted mouse brain regions during later
development [128]. The human neocortex is enlarged compared to that of the mouse,
possibly due to the function of basal RG cells [129]. Pax6 is highly expressed in primate
but not mouse basal progenitors. Wong et al. demonstrated that sustained Pax6 expression
specifically in BP-producing apical RG cells induces primate-like progenitor cells, indicating
that sustained PAX6 expression in basal progenitors could be a key feature of subventricular
enlargement in the human brain [130].

PAX6 dysfunction is also involved in the pathogenesis of glioblastoma. Transcriptomic
and epigenomic analyses have revealed that PAX6/DLX6 promotes the differentiation of
WNT5A-mediated glioblastoma stem cells into endothelial-like cells, which serve as an
environmental niche supporting the growth of invasive glioma cells throughout the brain
parenchyma [131]. In a controversial study, PAX6-knock out human neuronal epithelioma
cells display increased proliferation and colony-forming abilities, indicating that PAX6
functions as a tumor suppressor [132]. Actually, there are case reports showing downregu-
lation of PAX6 in glioma samples (see reviews [133] and the references therein). In this way,
the formation/prevention of brain tumors is another example of the multiple functions of
PAX6 in cell fate determination.

In this section, we have discussed that Pax6 and its downstream transcriptional
factors and signaling molecules are important for neural fate determination, where these
transcriptional factors have stage- and cell type-specific regulatory mechanisms. A recent
preprint article has reported that a conditional knock-out of Pax6 ectopically induces
GABAergic interneurons, as well as oligodendrocyte precursor cells in the cortex [67]. This
might be reasonable because cyclin D2 is upregulated in the Sey/Sey mouse cortex ([94,134]
and our unpublished data). Taken together, Pax6-regulated cell proliferation and neural
differentiation plays pivotal roles in proper timing during brain formation.
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Figure 4. The function of Pax6 and downstream genes. (A) Subcellular gene localization in radial
glial (RG) cells. Genes localized in the cell nucleus, cytoplasm, and apical and basal endfeet. The
graphical diagram has been redrawn from [135]. (B) Downstream genes regulated by Pax6 and their
roles. Pax6 regulates Fabp7, Ninein, and Lewis X, which are involved in stem cell self-renewal. Pax6
induces Ngn2, Tbr2, and Dmrta1, which induce neural differentiation. (C) The Pax6–Ninein network
regulates interkinetic nuclear migration (INM) during cell-cycle progression in neuroepithelial cells.
The microtubule cytoskeleton plays an important role in INM, in which the nuclei of neuroepithelial
cells move apically during G2 phase and basally during G1 phase. Ninein, downstream of Pax6,
anchors microtubules during elevator movements to control the dynamics of INM. The graphical
diagram has been redrawn from [99]. (D) Pax6–Notch interaction for neurogenic programs in the
developing mouse cortex. Pax6-dependent neural differentiation by Notch signaling inhibition
generates deeper layer (DL) neurons in the early neurogenic phase. Pax6-dependent self-renewal
of the RG cells which give rise to upper layer (UL) neurons occurs in the middle/late neurogenic
phase when Notch signaling is absent. In this way, the Pax6–Notch pathway coordinates the balance
between self-renewal and neural differentiation. The graphical diagram has been redrawn from [127].
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Figure 5. Linage and gene expression of NSCs in the adult hippocampal dentate gyrus. Pax6 is
expressed in quiescent and active NSCs and intermediate progenitor cells (IPCs). The graphical
diagram has been redrawn from [20,88,91,136–144].

4. Pax6 in Relation to Neurodevelopmental Disorders
4.1. Human PAX6 Gene Is Related to Neurodevelopmental Disorders

The human PAX6 gene was discovered during the search for the gene responsible
for WAGR (Wilms tumor, aniridia, genital ridge defects, mental retardation) syndrome;
patients with the syndrome often show a deletion in chromosome region 11p13 [145]. PAX6
was originally identified as AN2 (aniridia type II protein) [2] and found to be a homolog
of the causative gene in Sey/Sey mice [1], as mentioned above. Another aniridia gene AN1
was previously mapped to chromosome two, although this mapping was disproven in
1992 [146]. Therefore, AN2 is now designated AN1, and PAX6 is currently shown as AN1 in
the OMIN database ([147,148], https://omin.org/entry/106210 (accessed on 19 May 2022)).

A causative gene for a kidney disease (Wilms tumor), WT1, is located 0.7 Mb away
from PAX6 [149]. Interestingly, a case report has suggested that a 1.6 Mb region containing
PAX6, WT1, and PRRG4 is responsible for the severe developmental delays and autistic
behaviors seen in WAGR syndrome [150]. There is another report showing that WAGR
patients sometimes show symptoms of autism in addition to mental retardation [151].

Since aniridia is an obvious congenital disease, patients are often diagnosed genetically.
There are many clinical reports showing that aniridia patients with mutations in the PAX6
gene often exhibit neural phenotypes at the structural and functional level (see [152,153]
and the references therein). It has been reported, for example, that patients with a deficiency
in the PAX6 3′ region containing its enhancer confer ASD and moderate mental retardation,
indicating the role of PAX6 in neural phenotypes in addition to aniridia. Our group has
also reported 15 single nucleotide polymorphisms within the PAX6 locus in Japanese
autistic patients [154]. Currently, PAX6 is listed in the Simons Foundation Autism Research
Initiative (SFARI) database in the category of “syndromic” [155,156].

Additional evidence for the involvement of the human PAX6 gene in neurodevel-
opmental disorders comes from a genome-wide association study (GWAS) of ASD pa-
tients [157]. It is of note that the ASD subject group, consisting of both males and females,

https://omin.org/entry/106210
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showed a high odds ratio in the 11p13 region where PAX6 is localized, but a group con-
sisting of only males did not show a significant odds ratio in the same region. There are
not many genetic studies focusing on gender differences in ASD, but a missense muta-
tion of CTNND2 (δ-catenin) has been identified in female-enriched families containing
multiple patients [158]. Since δ-catenin is proven to be downstream of Pax6 in the em-
bryonic mouse [159], it is speculated that PAX6 and CTNND2 might be involved in the
neuropathology of a severe type of ASD often reported in girls. Our group has found that
the reduction in the brain regions of rSey2/+ rats is more severe in the female than the
male (Figure 6B,C) [160]. It is reasonable to assume that the functional impairment of Pax6,
as well as δ-catenin—both of which are expressed in NSCs in the initial stage of cortical
development—may cause a severe reduction in neurons in the cortex, resulting in mental
retardation or intellectual disability.
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Figure 6. Expression patterns of Pax6 in the mouse brain and the regional volume decrease in the
Pax6 heterozygous mutant (rSey2/+) rat brain. (A) Expression patterns of Pax6 in the adult mouse
brain have been redrawn from [25,88,160,161]. The nomenclature and subdivided brain regions are
based on previous literature [162]. (B,C) The sex differences in regional volume decrease in the
brain of the rSey2/+ rat compared to the WT using a deformation-based morphometry analysis of
MRI data [160]. Pink and blue represent the clusters of regional volume decreases in the brain of
female (B) and male (C) rSey2/+ rats compared to WT rats, respectively. The pink region is larger
than the blue region. The graphical diagram has been redrawn from [160]. Abbreviations; AMG:
amygdala, DG: dentate gyrus, HPC: hippocampus, ICx: isocortex, PrC: precommissural nucleus,
SVZ: subventricular zone.
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4.2. Pax6 Deficient Rodent Models for Neurodevelopmental Disorders

The responsibility of Pax6 in ASD-like phenotypes is modeled in rodents. Cortex-
specific Pax6 knock-out (Pax6fl/fl; Emx1-Cre) mice exhibit deficiencies in sensorimotor
information integration, as well as both hippocampus-dependent short-term and neocortex-
dependent long-term memory recalls [163]. We have identified that rSey2/+ rats show
impaired sensorimotor gating, abnormal social interaction, and impaired rearing activity,
fear-conditioning, memory, and vocal behavior in pups [164,165]. We have further analyzed
the behaviors of Sey/+ mice and found abnormal vocalization in Sey/+ pups derived from
young fathers and an increase in hyperactivity in those derived from aged fathers [166].
The fact that mice with a single genetic risk factor, Pax6, can develop different phenotypes
depending on paternal age has alerted basic researchers to the need for considering not only
genetic factors but also non-genetic factors in animal models. Researchers had been careful
about the age of female mice yet forgot about that of male mice. Another lesson learned
here is that non-genetic factors (e.g., paternal age) can mask causative genes in the genetic
analysis of neurodevelopmental disorders such as ASD and attention deficit/hyperactivity.

Another Pax6 mutant strain, Pax6Leca2, exhibits an impaired retinal structure [167],
alteration of circadian clock, and hyperactivity during the light period [168], which is partly
consistent with our study in Sey/+ mice derived from aged fathers [166]. Interestingly, a
core circadian clock gene, Clock, positively regulates Pax6 [169], and Pax6 mutants show an
altered expression of circadian clock genes [168]. Our group has also elucidated that Pax6
regulates expression of the Fabp7 gene [170], another candidate associated with circadian
rhythm [171] (also involved in the dataset by [172]). Sleep is regulated by circadian rhythm,
which is considered as a translationally relevant endpoint in studies of ASD [173]. Therefore,
Pax6-circadian clock gene regulation in the brain may influence the pathogenesis of ASD.
As supportive evidence, patients with PAX6 mutation who exhibit aniridia also have a
smaller pineal gland, where melatonin is produced, and are often diagnosed with sleep
disorders [174]. Analyses using Pax6 mutant mice suggest that the dysfunction of the eyes
might be the direct cause of the alteration of the circadian clock, rather than an impairment
of the pineal gland in the brain [168]. Detailed investigation of Pax6-circadian clock gene
regulation in the eyes and brain will shed further light on the pathogenesis of ASD and
comorbid sleep disorders.

5. Closing Remark

Pax6 is one of the key molecules from the initial stage of neural development. It
regulates brain patterning and the balance between cell proliferation and neural differen-
tiation in an appropriate manner to developmental timing. Multiple context-dependent
functions of Pax6 are governed by numerous downstream factors. Patients with mutations
in the PAX6 gene may exhibit symptoms of neurodevelopmental disorders, including ASD.
Since Pax6 mutant rodents exhibit diverse neurodevelopmental phenotypes, they could
be used as a tool to elucidate the human pathology of neurodevelopmental disorders. It
has also been reported that a Pax6 partner, REST, is expressed from the young to the aged
human brain and that the expression level of REST is proportionally related to cognitive
function [175]. Thus, the PAX6/REST complex might also be involved in neurodevelop-
mental and psychiatric disorders, possibly through the regulation of the cell fate decisions
of NSCs during embryonic, postnatal, and adult neurogenesis. Further studies on Pax6
and its partner/downstream molecules may lead to the elucidation of the basic molecular
mechanisms of neuropsychiatric disorders for future therapeutics.
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