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Pharmacological Inactivation of Medial Prefrontal
Cortex Does Not Support Dichotomous “Go/Stop”
Roles for Dorsal and Ventral Subdivisions in Natural
Reward Seeking in Rats
Rosalind S.E. Carney, DPhil

Brain regions that evolved to respond to natural rewards,
such as food, are also stimulated by drugs of abuse result-
ing in addiction and relapse, conditions which are uniquely
human (Kelley and Berridge, 2002). Identification of the
neural substrates of addiction and relapse in humans is
limited by feasible experimental approaches and con-
founding variables such as polysubstance drug use, unreli-
able reporting of drug use, interindividual variation in the
amount, frequency, type of drug use, and periods of absti-
nence. Non-invasive imaging studies have shown height-
ened neural activity in the prefrontal cortex (PFC) of human
subjects viewing drug-related cues (videos or images) or in
response to intravenous drug administration after a brief
period of abstinence (Garavan et al., 2000; Kufahl et al.,
2005, 2008; Heinz et al., 2007). It is hard to think of a brain
region with more complexity and contention in anatomical
and functional homology and nomenclature use between
rodents and humans than the PFC (Laubach et al., 2018).
In rodents, the medial PFC (mPFC), which is part of the
mesocorticolimbic system, contains dorsal and ventral
subdivisions (dmPFC and vmPFC) that have been analyzed
separately for their respective roles in fear learning, drug
seeking, and natural reward seeking. Within the dmPFC,
the prelimbic cortex (PL) is thought to promote behavioral
responses whereas the infralimbic cortex (IL), located with-
in the vmPFC, is thought to suppress behavioral responses
(Peters et al., 2009; Gass and Chandler, 2013; Gourley and
Taylor, 2016). These opposing behavioral responses form
the basis of the “Go(PL)/Stop(IL)” model for mPFC execu-
tive function, which would support differential targeting of
the dmPFC and vmPFC for potential therapeutic options
for addiction and relapse. In a simplified scenario based on
the Go/Stop model, inhibiting dmPFC activity may mitigate
the likelihood that maladaptive behaviors become habitual,

and both inhibiting dmPFC activity and enhancing vmPFC
activity may decrease susceptibly to relapse. The Go/Stop
model appears to be more consistently valid for fear condi-
tioning and for some aspects of heroin and cocaine
drug seeking in rodents (McFarland and Kalivas, 2001;
McLaughlin and See, 2003; Fuchs et al., 2005; LaLumiere
and Kalivas, 2008; Peters et al., 2008; Muller Ewald and
LaLumiere, 2018). Other addiction studies have shown that
the dichotomous Go/Stop model of mPFC executive func-
tion is not universally applicable across species or experi-
mental contexts (such as the timing of experimental
manipulation relative to extinction) in relation to reward-
seeking behaviors (McFarland et al., 2003; Jonkman et al.,
2009; Bossert et al., 2011; Chen et al., 2013; Willcocks and
McNally, 2013; Martín-García et al., 2014; Moorman and
Aston-Jones, 2015; Moorman et al., 2015; McGlinchey et
al., 2016; Gutman et al., 2017). As many prior studies have
focused on drug of abuse, in their eNeuro publication,
Caballero and colleagues used pharmacological inactiva-
tion to investigate further the separate roles for the dmPFC
and vmPFC in motivated behavioral responses to sucrose,
a natural reward.
Rodents can be trained to self-administer drugs or nat-

ural rewards via defined operant behavioral responses
that serve as a measure of motivation with respect to
reward-seeking behavior. Drug exposure positively rein-
forces the rodents’ behavior such that further efforts to
self-administer are a direct consequence of the stimulat-
ing effects of the drug on the brain’s reward system
(Lynch et al., 2010). Manipulation of this behavioral para-
digm to include extinction and cue-induced reinstatement
can produce a measure of drug relapse (Epstein et al.,
2006). To determine the separate roles of the dmPFC and
vmPFC in different aspects of reward-seeking behaviors,
adults rats were bilaterally implanted with cannulae to admin-
ister artificial cerebrospinal fluid (aCSF; control) or a mixture
of baclofen andmuscimol (BM; GABA-A and GABA-B recep-
tor agonists dissolved in aCSF) immediately before experi-
mentation. The experimental approaches and main findings
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of Caballero and colleagues are described separately for mo-
tivation, extinction, and cue-induced reinstatement, which
were examined in distinct cohorts of rats to eliminate con-
founding factors.

Motivation
Rats were trained on an operant fixed ratio 1 (FR1) sched-

ule in which each response in the active nose poke hole was
rewarded with a single delivery of the sucrose reward in a
well beneath the nose poke hole. A poke in the inactive hole
did not elicit a reward. Temporal pairing of a discrete envi-
ronmental cue, an auditory tone, with the reward-linked op-
erant response was used to facilitate associative learning of
cue–reward memories. Therefore, the rats learned to expect
to receive the reward when they heard the tone following a
nose poke in the active hole. The rats were trained until a
consistent, rapid operant response to the reward was
achieved. Subsequent to BM administration, the number of
nose pokes and well entries was recorded when either the
dmPFC or vmPFC was inactivated, compared with the con-
trol (aCSF-administered) group in which these structures
functioned normally. An increase in the number of nose
pokes or well entries is positively correlated with heightened
motivation for the reward. The authors found that inactiva-
tion of the dmPFC, but not the vmPFC, resulted in an in-
creased number of nose pokes (Fig. 1). Similar findings were
observed for well entries. These observations indicate that
inactivation of the mPFC results in an increase in motivation-
al behavior.

Extinction
The rats were trained on the FR1 schedule as for the

motivation paradigm. Over multiple (early and late) extinc-
tion sessions, the strength of cue–reward memories
weakened as neither the reward nor the auditory tone fol-
lowed a nose poke in the active hole. The inactive nose
poke was inaccessible during all extinction sessions.

Memories are more stably encoded in late extinction
compared with early extinction. Bilateral infusion of aCSF
or BM only occurred during extinction sessions and not
during training to eliminate potential confounds and to
limit dmPFC/vmPFC inactivation to the extinction para-
digm only. Inactivation of the dmPFC resulted in a lower
total number of nose pokes during late extinction com-
pared with the aCSF group (Fig. 2). Inactivation of the
vmPFC led to a small decrease during late extinction in
the total number of nose pokes that was not statistically
significant from those emitted during the last extinction
session immediately before testing (Fig. 2). During late ex-
tinction, well entries were reduced by inactivation of either
the dmPFC or the vmPFC.

Cue-Induced Reinstatement
Rats were trained on the FR1 and extinction paradigms.

When the conditioned operant response was consistently
and satisfactorily extinguished in a separate cohort of
rats, cue-induced reinstatement was used to reintroduce
the environmental cue without reward delivery. In this
case, a renewed interest in the (unavailable) reward,
stimulated by the return of the auditory cue, served as a
measure of addiction relapse. Bilateral infusion of aCSF
or BM only occurred immediately before cue-induced re-
instatement testing and was not performed during FR1 or
extinction. Inactivation of the dmPFC did not significantly
affect the total number of nose pokes (Fig. 3). In contrast,
vmPFC inactivation lead to a significant decrease in the
total number of nose pokes (Fig. 3). No effect of dmPFC
or vmPFC inactivation was observed for well entries com-
pared with aCSF-administered control rats.
Nose pokes and well entries are only two highlighted vari-

ables that were examined during motivation, extinction, and
cue-induced reinstatement experiments. Collectively, the
findings of Caballero and colleagues exhibit the following

Figure 1. Bilateral inactivation of dmPFC, but not vmPFC, re-
duces the total number of nose pokes. A, There was a signifi-
cant increase in total number of nose pokes and when the
dorsal mPFC was bilaterally inactivated. B, In contrast, vmPFC
inactivation did not affect nose poking. aCSF, control infusion;
BM, baclofen and muscimol; pp, 0.05 (Adapted from Figure 1
in Caballero et al., 2019).

Figure 2. Bilateral inactivation of dmPFC, but not vmPFC, re-
duces the total number of nose pokes during late extinction.
Rats were trained on FR1; bilateral infusions were only adminis-
tered during late extinction. A, Inactivation of dmPFC during
late extinction decreased nose pokes. B, There was no effect of
vmPFC inactivation for number of nose pokes during late ex-
tinction. The extinction condition refers to behavior on the last
day of extinction before testing with aCSF or BM occurred.
aCSF, control infusion; BM, baclofen and muscimol; pp, 0.05
(Adapted from Figure 2 in Caballero et al., 2019).
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similarities and differences with respect to the Go/Stop
model of dmPFC and vmPFC roles in reward-seeking
behavior:

• Motivation: the Go/Stop model predicts that dmPFC
and vmPFC inactivation would decrease and increase
sucrose seeking respectively during FR1 self-adminis-
tration. Caballero and colleagues found that inactiva-
tion of the dmPFC increased sucrose seeking while
vmPFC had no effect on FR1 self-administration.

• Extinction: the Go/Stop model predicts that dmPFC
inactivation would not affect extinction, whereas
vmPFC inactivation would increase sucrose seeking
during extinction. Caballero and colleagues found that
during extinction, inactivation of the dmPFC or vmPFC
both decreased reward seeking.

• Cue-induced reinstatement: the Go/Stop model pre-
dicts that vmPFC inactivation, but not dmPFC inacti-
vation, would result in a relapse phenotype. Caballero
and colleagues found that dmPFC inactivation did not
affect cue-induced reinstatement, while vmPFC inacti-
vation resulted in reduced sucrose seeking. Caballero
and colleagues found that reward seeking during cue-
induced reinstatement was reduced with vmPFC, but
not dmPFC, inactivation.

This eNeuro publication is an advance in the field be-
cause it provides further support that the dichotomous
Go/Stop role for the PL and IL does not universally apply
to motivated behaviors. Moreover, the results reveal fur-
ther insight into the contribution of the dmPFC and
vmPFC in reward seeking and relapse behavior in re-
sponse to a natural reward. Both drugs of abuse and
strongly palatable food rewards alter neuronal plasticity in
the reward circuit (Russo et al., 2010; Guegan et al.,
2013). Therefore, it is important to dissect differential

contributions of the dmPFC and vmPFC with the considera-
tion of structural alterations that arise from the pathological
damage manifested by addictive substances. For example,
marked changes in functional connectivity were observed
between separate baseline (preexposure) and short-term
periods of abstinence from cocaine exposure in rats (Orsini
et al., 2018). For human relevance, it is therefore crucial to
distinguish postaddiction alterations of neural substrates
from preexisting or comorbid anomalies that increase sus-
ceptibility to addiction. As the brain signaling pathways that
mediate addiction behaviors during initial and chronic drug
exposure may differ (Lynch et al., 2010), the reality of manip-
ulating mPFC function to combat substance abuse is ex-
ceptionally complex. As the mPFC is involved in multiple
brain processes, therapeutic treatments that target mPFC
activity may be clinically relevant to other neurological disor-
ders such as anxiety. However, the complexity of the mPFC
in terms of anatomical structure and interactions with other
brains regions challenge a broadly applicable therapeutic
manipulation of mPFC output (Xu et al., 2019).
Caballero and colleagues’ eNeuro publication highlights

that different experimental variables and contexts create both
caveats and increased potential to further knowledge of the
mPFC contribution to addiction and relapse. As addiction is a
human disorder, the translatability of results from rodent
models is somewhat limited. Fortunately, continuous im-
provement in experimental design provides new avenues to
understand the adverse effects of substance abuse in a con-
text more relevant to humans. A recent experimental advance
includes the incorporation of a social interaction component
of reward behavior in rodents (Venniro and Shaham, 2020).
Future directions in Professor David Moorman’s labora-

tory (University of Massachusetts Amherst, MA) include
two main directions. First, a chemogenetic inactivation
approach is currently being used to determine the conse-
quences of dmPFC and vmPFC inhibition at a neural cir-
cuitry level, for example, efferent projections from the
mPFC to the nucleus accumbens. Second, dmPFC and
vmPFC activity is being examined in individual neurons to
characterize single neuron firing patterns during distinct
aspects of motivational behaviors.
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