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A B S T R A C T

Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of
Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD) and 7 cognitively normal
(NC) subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial
distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ), tau,
and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum
were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We
used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as
well as subfield pathology burden measures. As expected, we found significant correlations between
hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific
associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and
subiculum. These results provide further validation for the European Alzheimer's Disease Consortium
Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP).

1. Introduction

More than 5 million Americans are currently living with Alzheimer's
disease (AD). AD is the 6th leading cause of death in the United States
and the most common neurodegenerative disorder worldwide. As we
experience growing populations and increasing life expectancies, we
will soon see a dramatic spike in the prevalence of AD. In the hands of
highly trained dementia specialists, the accuracy of bedside clinical
diagnosis is still suboptimal, reaching 70.9% to 87.3% sensitivity and
44.3% to 70.8% specificity (Beach et al., 2012; Shim et al., 2013). Thus
post-mortem examination of brain abnormalities remains as the gold
standard for AD diagnosis.

The main pathologic indicators of AD are amyloid plaques and

neurofibrillary tangles. Amyloid plaques are crucial for the diagnosis of
AD and are made up of amyloid protein (Aβ). However, amyloid
plaques alone do not correlate with cognitive decline in dementia. Aβ in
AD tends to spread first through the neocortex and then the limbic
structures, such as the hippocampus (Thal et al., 2000). Neurofibrillary
tangles contain hyperphosphorylated tau protein and are commonly
seen in neurodegenerative disorders (Braak and Braak, 1991, 1997).
They have been associated with cortical and hippocampal atrophy in
AD (Nelson et al., 2012). Tau tends to collect first in entorhinal areas,
and then spread to the subiculum, CA1, CA2, and CA3 areas of the
hippocampus, followed by the neocortex (Arnold et al., 1991; Bobinski
et al., 1995; Schonheit et al., 2004).

The hippocampus is one of the first brain regions to show the effects
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of AD pathology and, consequently, atrophy of the hippocampal
structures is the most established neurodegenerative imaging biomar-
ker of AD (Apostolova et al. 2006b; Apostolova et al., 2006c;
Apostolova et al., 2010b; Hof et al., 1996; Jack et al., 2002). In most
imaging studies the average hippocampal volume, which can be
relatively easily extracted from magnetic resonance imaging (MRI)
data, is compared between study groups.

Recently, neuroimaging techniques have allowed for 3D modeling
of hippocampal changes and have been valuable for the longitudinal
study of neuropathologic changes in AD (Apostolova et al., 2006c;
Apostolova et al., 2010a; Duchesne et al., 2015). The present study uses
a computational anatomy shape-based method called hippocampal
radial distance in order to compare cross-sectional 3D hippocampal
maps of subjects diagnosed with dementia and normal controls. This
technique allows for detection of subtler hippocampal shape changes in
AD (Apostolova et al., 2006a; Apostolova et al., 2006c; Apostolova
et al., 2012; Apostolova et al., 2010b; Frisoni et al., 2006; Thompson
et al., 2004). The hippocampal radial distance approach relies on
manual or automated hippocampal segmentations, which are converted
into 3D anatomical mesh models for each subject. The distance from a
center core of the 3D structure to each surface point (i.e., the radial
distance) is computed and plotted onto the surface. As the disease
progresses and the hippocampus atrophies, the radial distance shrinks.
Compared to the conventional region of interest (ROI) technique, which
extracts hippocampal volumes - a single summary metric - from each
hippocampus, our technique allows for visualization of differences
between diagnostic groups in cross-sectional studies (Apostolova et al.,
2010a; Morra et al., 2009), or changes over time in longitudinal studies
(Apostolova et al., 2010a; Morra et al., 2009). The results presented
here provide further validation of the radial distance mapping techni-
que.

The European Alzheimer's Disease Consortium (EADC) and the
Alzheimer's Disease Neuroimaging Initiative (ADNI) developed the
EADC-ADNI Harmonized Hippocampal Segmentation Protocol (HarP)
(Frisoni and Jack, 2011) in order to reduce the significant variation in
hippocampal volumetric estimates among existing hippocampal seg-
mentation protocols (Boccardi et al., 2011). Investigators in the EADC-
ADNI HarP group examined, operationalized, and quantified the
differences in 12 different hippocampal segmentation protocols
(Boccardi et al., 2014), and reached a consensus among a group of
international hippocampal segmentation experts using an iterative
Delphi procedure, thereby establishing a final protocol (Boccardi
et al., 2015). Five expert tracers established a “gold standard” for
hippocampal traces used to train naïve tracers and validate the protocol
(Bocchetta et al., 2015; Frisoni et al., 2015).

Ex vivo high resolution MRI has allowed for in depth exploration of
brain structures such as the hippocampus. The hippocampus is com-
prised of several subfields including the dentate gyrus, subiculum, and
cornu ammonis subfields 1–4 (CA1, CA2, CA3, and CA4). Few studies
have investigated unique relationships of hippocampal subfields to the
progression of AD pathology in the brain. Some studies have reported
subregion-specific hippocampal atrophy related to the presence and
spread of neurofibrillary tangles in the hippocampal structures (Greene
and Killiany, 2012; Hara et al., 2013; Schonheit et al., 2004; West et al.,
2004).

We recently published a pathologic validation of the EADC-ADNI
HarP (Apostolova et al., 2015). Hippocampal volumes measured using
HarP, were significantly correlated with the severity of AD pathology
such as neuronal counts, tau and Aβ burden. We also found significant
associations between hippocampal volume and Aβ burden in the CA1
and subiculum, tau burden in CA2 and CA3 and neuronal counts in CA1
and CA4.

The present study extends our previous validation work using the
EADC-ADNI HarP by investigating the imaging-pathologic correlations
in 3D using hippocampal radial distance methodology. We predicted
that AD subjects would show greater atrophy of the hippocampus with

most significant involvement of the subiculum and CA1 subfields. We
hypothesized that neuronal count and tau burden will show stronger
associations with hippocampal radial distance relative to Aβ.

2. Material &methods

2.1. Subjects

The study cohort has been previously described (Apostolova et al.,
2015). The autopsy brains belonged to the University of California, Los
Angeles Alzheimer's Disease Research Center (ADRC) brain bank. The
ADRC neuropathology core was funded by the National Institute on
Aging (NIA) P50 grant (NIA P50 AG16570). Subjects were 10 AD (6
male, 4 female) and 7 NC (1 male, 6 female) adults without stroke or
other gross abnormalities in the temporal lobe and surrounding regions.
The Human Research Protection Program (HRPP) and Institutional
Review Board (IRB) at the University of California, Los Angeles
consider a human subject to be a living individual about whom an
investigator obtains data. The current study, which used postmortem
tissue, was therefore IRB exempt. All NC subjects died of non-
neurological causes and did not have any history of cognitive decline.
The autopsy brains were weighed immediately after removal and
placed in 10% neutral buffered formalin for at least 10 days. They
were then dissected and multiple cortical and subcortical sites sampled
and stained for pathologic diagnosis per our local autopsy protocol. One
temporal lobe, including the hippocampus, was excised for imaging.

2.2. Imaging analyses

The temporal lobes were scanned post-mortem using a 7 T Bruker
Biospec MRI scanner with the following protocol: rapid acquisition with
relaxation enhancement (RARE) time to repetition (TR) 1000 ms, time
to echo (TE) 80.3 ms, flip angle of 180°, NEX 24, matrix
1024 × 475 × 256, field of view (FOV) 10 × 6 × 5 cm. Three 20-h
acquisitions were averaged, resulting in a final resolution of
1.25 × 1.25 × 0.195 mm.

We selected one cognitively normal subject with optimal gray/white
matter signal-to-noise ratio as the reference and co-registered the
remaining hippocampal scans to this specimen using the Display and
Register software package (www.bic.mni.mcgill.ca/software/Display/
Display.html) as previously described (Apostolova et al., 2015). Hippo-
campal structures were manually traced by an expert following HarP
protocol and using MultiTracer software created by the Laboratory of
NeuroImaging (LONI) at the University of California, Los Angeles, Los
Angeles, CA, USA (air.bmap.ucla.edu/MultiTracer). The traces were
converted into 3D mesh models and the central core of each hippo-
campal structure was derived. The radial distance, or the distance from
the central core to each surface point, was calculated at each 3D
coordinate location of the hippocampal mesh models.

2.3. Pathology analyses

Pathologic diagnosis of AD was determined based on Braak and
Braak (Braak and Braak, 1991) and Consortium to Establish and
Registry for AD (CERAD) pathologic criteria (1991). The temporal
lobes were sectioned coronally into 5 mm slabs, embedded in paraffin
from which 6 sections were cut (Zarow et al., 2005). The tissue was
stained with cresyl violet, hematoxylin and eosin, Aβ1–40 antibody
(AB5074 P, EMD Millipore Corporation, Billerica, USA), and tau
antibody (MN1020, Thermo Fisher Scientific Pierce, Rockford, IL,
USA). To then visualize the immunostaining, horseradish peroxidase-
linked secondary antibodies (Vector MP7401 and MP7402, Vector
Laboratories, Burlingame, CA, USA) and 3,3′-diaminobenzidine Perox-
idase Substrate Kit (Vector SK-4100, Vector Laboratories, Burlingame,
CA, USA) were used as previously described.

Hippocampal subfields (CA1, CA2, CA3, CA4, and subicular pyr-
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amidal cell layer) were manually outlined on each slice using the
Aperio ImageScope® CS as previously described (Apostolova et al.,
2015). Amyloid and tau burden in each subfield were determined with
Aperio Positive Pixel Count Algorithm. Neuronal counts were deter-
mined using the Aperio IHC Nuclear Image Analysis algorithm followed
by visual inspection and manual correction of mislabeled nuclei.

2.4. Statistical analyses

We calculated univariate statistics for imaging and pathologic
variables as previously described (Apostolova et al., 2015). We
removed subjects whose measures fell 2 standard deviations (SD) from

the group mean. Continuous variables were compared using Mann-
Whitney U test and categorical variables were compared using Fisher
exact test. Braak and Braak staging was compared with chi-square
testing. Subject demographics are displayed in Table 1.

Radial distance maps were used for statistical analyses with imaging
data (see Fig. 1). We used multiple linear regression, designating
hippocampal radial distance as the dependent variable, and diagnosis
and imaging outcomes (neuronal count, tau and Aβ immunohistochem-
istry) as independent variables. Independent point-wise regressions
were calculated for the 3D images and p-values were assigned at every
surface point. We conducted type I error correction by statistically
permuting the predictor variable (i.e., pathology index) while itera-
tively testing the global significance of the maps in each experiment.
We applied 100,000 permutations to each comparison and derived a
single global corrected p-value which reflected how often our results
might occur by chance alone.

3. Results

Analyses were done with 9 AD and 7 NC (Apostolova et al., 2015).
There were no significant differences in age or gender distributions
between AD and NC groups. As expected fresh brain weight and
hippocampal volume were significantly lower in AD subjects. We
excluded one outlier AD male subject from our analyses because his
hippocampal volume (4887 mm3) was 4.8 SD from the mean of the NC
group.

Statistical maps from the 3D hippocampal radial distance analyses

Fig. 1. Radial distance mapping technique.

Table 1
Subject demographics.

Variable Controls (N = 7) AD (N = 9) p-value

Age, years (SD) [Range] 63 (23) [23–85] 82 (8) [70–96] 0.101
Gender (M/F) 6/1 4/5 0.145
Braak and Braak stage 3 I–II

2 III
2 IV

2V
7 VI

0.01⁎

Fresh brain weight, g (SD)
[Range]

1286 (63)
[1210–1400]

1090 (155)
[920–1350]

0.039⁎

Hippocampal volume,
mm3 (SD) [Range]

2837 (427)
[2241–3405]

1867 (532)
[1081–2720]

0.007⁎

⁎ p-value< 0.05.
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are shown in Fig. 2 and Fig. 3. Hippocampal radial distance was
significantly associated with clinical (i.e., premortem) diagnosis
(p < 0.001). As expected, 3D statistical maps suggested greater
hippocampal atrophy in AD subjects than in the NC group. A significant
negative association between mean total hippocampal neuronal count
and hippocampal radial distance was observed; lower neuron count was
indicative of greater hippocampal atrophy (p = 0.005). The associa-
tions between mean total Abeta and tau burden and hippocampal radial
distance were not significant.

Next in our exploratory analyses we investigated how subfield
pathology burden estimates relate to hippocampal atrophy measured
with the radial distance method. We found a positive association
between subicular neuronal count and hippocampal radial distance
(i.e., the lower the neuronal counts the lower the radial distance;
p = 0.04). We also observed a positive association between CA1
neuronal count in CA1 and hippocampal atrophy (p= 0.07). There
was a negative association between hippocampal radial distance and
CA2 tau burden (i.e., the higher the tau burden the lower the radial
distance; p= 0.04). No associations with Aβ burden were found. Since
we do not have the ability to accurately disambiguate the individual

hippocampal subfields, even at 7 T with scanning time as long as 60 h,
we were not able to conduct within-subfield correlations of pathology
burden and mean radial distance. What we describe are significant
associations in the areas of surface projection of these subfields regional
associations, as we, and others, have done in the past (Apostolova et al.
2006a; Apostolova et al., 2006c; Apostolova et al., 2010a; Apostolova
et al., 2010b; Csernansky et al., 2005; Wang et al., 2003) and also
because these exploratory results would not survive correction for
multiple comparisons. To that end we have included a schematic

Fig. 2. Statistical maps showing the associations of diagnosis (middle row) and mean
neuronal count (bottom row) with hippocampal radial distance. The top row images show
a schematic representation of the hippocampal subfields mapped onto the hippocampal
surface. The subfield definitions are based on work by Duvernoy, Mai and West and
Gundersen (Duvernoy, 1988; Mai et al., 2003; West and Gundersen, 1990).

Fig. 3. Statistical maps for subregional hippocampal radial distance associations. The top
row images show a schematic representation of the hippocampal subfields mapped onto
the hippocampal surface. The subfield definitions are based on work by Duvernoy, Mai
and West and Gundersen (Duvernoy, 1988; Mai et al., 2003; West and Gundersen, 1990).
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representation of the hippocampal subfields mapped onto the hippo-
campal surface in Fig. 3. These definitions are based on work by
Duvernoy, Mai and West and Gundersen (Duvernoy, 1988; Mai et al.,
2003; West and Gundersen, 1990). One can easily appreciate from
inspecting the maps in Fig. 3 that the subfield-specific pathologic
indices (i.e., subicular and CA1 neuronal count, and CA2 tau burden)
showed associations with hippocampal radial distance throughout the
hippocampus. This is not unexpected as in AD all hippocampal subfields
succumb to atrophy and should thus correlate with pathology severity.

4. Discussion

The development of hippocampal segmentation and morphology
analyses has been critically important for the progression of AD
research. Despite evidence that the hippocampal subregions uniquely
contribute to cognitive processes (Kesner et al., 2004), and are
differentially affected by AD pathology over time (Hara et al., 2013;
West et al., 2004), most dementia experts treat the hippocampus as a
single entity. Here we applied an advanced computational anatomy
surface-based approach to study the regional changes in hippocampal
shape in AD and validate the radial distance methodology.

As expected, hippocampal atrophy was strongly associated with AD
diagnosis (Fig. 2 middle) and neuronal loss (Fig. 2 bottom). The most
pronounced associations spanned the locations corresponding to the
CA1 and subiculum subfields, which are thought to be the earliest and
most severely affected subfields in AD (Schonheit et al., 2004; West
et al., 2004). Atrophy in these two subfields is most predictive of future
conversion from NC to MCI and from MCI to dementia (Apostolova
et al., 2006c; Apostolova et al., 2010a; Apostolova et al., 2010b).

In our previously published hippocampal volumetric analyses
(Apostolova et al., 2015) we reported significant associations between
CA1 and subicular neuronal counts and mean hippocampal volume.
Thus the associations of CA1 and subicular neuronal counts with
hippocampal radial distance are in line with our expectations. In our
volumetric study we also found significant associations CA2 and CA3
tau burden and hippocampal volume. Here we observe significant
association between hippocampal radial distance and tau burden in the
CA2 subfield only. Unlike our volumetric pathologic validation study,
we did not find significant associations between Aβ burden and
hippocampal radial distance. This is likely due to the fact that radial
distance reflects atrophy as a distributed thickness difference across the
full extent of the hippocampal structure, which could be more powerful
way to detect strong localized effects but not weak widely distributed
effects.

As mentioned in the results section, the subfield-specific pathologic
indices did not show circumscribed regional effect, but rather a
widespread association with hippocampal radial distance. This is not
unexpected as in AD all hippocampal subfields succumb to atrophy, and
would thus correlate with pathology severity measured from the whole
hippocampus or from a given subfield. In other words, AD subjects will
have higher global and regional pathology burden and widely distrib-
uted hippocampal atrophy and these measures will be expected to
correlate with each other.

There are several strengths and weaknesses of this study. The study
is limited by its small sample size. The autopsy cases at UCLA might not
adequately represent the US population. Regardless of that, we found
the expected associations of hippocampal AD pathology indices with
radial distance. Yet given the small sample size, the findings from our
study should be further validated in other cohorts. A major strength of
this study is the use of 7 T imaging on post mortem tissue. 7 T imaging
has the advantage of improved resolution and reduced signal-to-noise
ratio, which allows for greater precision and consistency in our
methodology and analyses when compared to the currently available
in vivo imaging techniques.

5. Conclusion

The associations shown here between hippocampal radial distance
and pathological variables using HarP as a hippocampal segmentation
tool provide support for the use of hippocampal surface mapping in AD
research. The findings reported here provide further pathological
validation for both the use of hippocampal radial distance as a measure
of neuropathologic effects of AD, and development of digital hippo-
campal segmentation using the HarP method in order to distinguish
specific hippocampal subfields and improve the current standards for
hippocampal segmentation.
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