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Abstract: The structural evolution of multiblock thermoplastic polyurethane ureas based on two
polydiols, poly(1,4-butylene adipate (PBA) and poly-ε-caprolactone (PCL), as soft blocks and two
diisocyanites, 2,4-toluylene diisocyanate (TDI) and 1,6-hexamethylene diisocyanate (HMDI), as hard
blocks is monitored during in situ deformation by small- and wide-angle X-ray scattering. It was
shown that the urethane environment determines the crystal structure of the soft block. Consequently,
two populations of crystalline domains of polydiols are formed. Aromatic TDI forms rigid domains
and imposes constrains on the crystallization of bounded polydiol. During stretching, the TDI–
polydiol domains reveal limited elastic deformation without reorganization of the crystalline phase.
The constrained lamellae of polydiol form an additional physical network that contributes to the
elastic modulus and strength of the material. In contrast, polydiols connected to the linear semi-
flexible HMDI have a higher crystallization rate and exhibit a more regular lamellar morphology.
During deformation, the HMDI-PBA domains show a typical thermoplastic behavior with plastic
flow and necking because of the high degree of crystallinity of PBA at room temperature. Materials
with HMDI-PCL bonding exhibit elastic deformation due to the low degree of crystallinity of the
PCL block in the isotropic state. At higher strain, hardening of the material is observed due to the
stress-induced crystallization of PCL.

Keywords: thermoplastic polyurethane ureas; shape memory materials; synchrotron SAXS/WAXS;
polymer deformation; lamellar morphology; poly-ε-caprolactone; poly(1,4-butylene adipate)

1. Introduction

Recently, a new class of materials adaptive to external factors has started to rapidly
develop. They can be exemplified by thermoplastic elastomers based on semi-crystalline
polyurethanes (TPU) and polyurethane-ureas (TPUU). Such materials combining elas-
ticity and strength have been already actively used in medicine for the engineering of
tissues, plasters, sutures, implants, as well as in other areas [1–3]. TPU and TPUU are
linear block copolymers consisting of thermodynamically incompatible soft (SB) and
hard (HB) blocks that undergo a microphase separation. The soft segment is formed by
polyester or polyether diols such as poly-ε-caprolactone (PCL) [4,5], poly(1,4-butylene
adipate) (PBA), and their mixtures [6,7], poly-L-lactide [8], poly(ethylene glycol) [9], etc.
The hard blocks are diol-urethane or urea fragments synthesized from aromatic diiso-
cyanates (2,4-toluene diisocyanate), cycloaliphatic (isophoron diisocyanate), and aliphatic
(1,6-hexamethylenediisocyanate) compounds and chain extenders (1,4-butanediol, diamine,
and 2-aminoethanol).
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Apart from chemical composition, the mechanical, thermal, and relaxation proper-
ties of TPU and TPUU depend on the thermal history [10–12]. Thus, semi-crystalline
polyurethanes are able to fix their temporary shape during deformation and further restore
the original shape after heating above a switching temperature, i.e., they show the shape
memory effect (SME) [13,14]. In a previous publication, it was shown that SME is deter-
mined by transition of the TPUU between three morphological states: (1) semi-crystalline
lamellar morphology of isotropic film in a permanent shape, (2) fibrillar morphology with
extended-chain crystals of the soft block after film stretching to a temporary shape, and
(3) phase-separated state of the block copolymer in the amorphous state after shape recov-
ery above the switching temperature [15]. At present, the attention of researchers is directed
to studies of thermomechanical properties of adaptive TPUU [16–19]. However, the rela-
tionship between the chemical composition, nanoscale morphology, and thermomechanical
characteristics is far from being fully understood.

Synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS) is a powerful
technique for analysis of polymer structure. The high brilliance of the X-ray source allows
monitoring structural and morphological evolution with adequate time resolution. In
particular, a combination of SAXS/WAXS with DSC [20–25], FTIR [26], and relaxome-
try [27] is capable of providing important information about structural evolution under
external factors.

Structural investigations of TPUs are focused on a combination of two main processes:
phase separation and ordering of HB [22,28]. The size and packing quality depend on the
type of diisocyanate, its content, and preparation conditions. Particularly, the growth of
HB content and annealing at elevated temperature stimulate an association process with
an increase of HB domain size and relaxation of internal stress [21,22].

The most efficient approach combines SAXS/WAXS with uniaxial strain at different
temperatures. Classical models of deformation of semi-crystalline polymers and block
copolymers consider the continuous increase of a long period during stretching [29]. As a
result of the specific chemical structure, polyurethanes possess fundamentally different
structural evolution during deformation [30–33]. Particularly, TPU diffractograms often
show a retardation of SAXS peak shift during film deformation, which indicates that the
morphology is not related to the sequence of hard and soft domains [34,35]. A detailed
study of TPU deformation was performed using in situ SAXS/WAXS experiments during
deformation [36–38].

In studies of TPU based on polytetrahydrofurane (PTHF1000), methylene diphenyl
diisocyanate (MDI), and 1,4-butanediol, Stribeck et al. explained a considerable retardation
of the SAXS peak with respect to deformation by “paracrystalline” morphology of the
HB. The authors suggested that a considerable fraction of the macroscopic strain must be
realized in “poorly arranged entities” that do not contribute to the SAXS maximum because
of absence of quasiperiodicity. In contrast, “well-arranged ensembles” are hardly deformed
during strain and give a main contribution to the SAXS peak. At high deformation, tie
polymer chains start to be pulled out from “well-arranged ensembles”, resulting in a release
of stress and shrinking of the long period (sacrifice-and-relief mechanism) [39,40].

It should be mentioned that despite numerous publications on structural evolution of
TPUs under strain, only a few of them discuss the crystallization of soft
block [41,42]. This can be explained by the low soft block content and small molecular
weight of polydiols, which are used in most of the studies. Thus, the impact of soft block
crystallinity, distribution of crystalline domains, and the size and kinetics of formation on
macroscopic properties has been not well studied yet.

In the present work, the structural evolution of multiblock thermoplastic polyurethane
urea based on two polydiols (poly(1,4-butylene adipate diol) and poly-ε-caprolactone diol)
and two diisocyanites (diisocyanates (2,4-toluylene diisocyanate and 1,6-hexamethylene
diisocyanate) is monitored as a function of temperature and strain during in-situ SAXS/
WAXS experiments.
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2. Materials and Methods
2.1. Materials

Poly(1,4-butylene adipate) diol (PBA) (Huakai Resin Co., Ltd., Shandong, China,
Mn = 2000 Da) and poly-ε-caprolactone diol (PCL) (Merck KGaA, Darmstadt, Germany,
Mn = 2000 Da) were dried in vacuum for 4 h at 80 ◦C. The OH groups content deter-
mined by chemical method [43] was 1.7 w/w%. Diisocyanates (2,4-toluylene diisocyanate
(TDI) and 1,6-hexamethylene diisocyanate (HMDI)) (Merck KGaA, Darmstadt, Germany)
were distilled in vacuum at 50–55 ◦C/12 mm Hg and stored in sealed ampoules. Chain
elongation agents (2-amino-1-ethanol (EA) and 1,4-butanediol (BD)) were distilled over
freshly powdered calcium hydride under a reduced pressure. Dibutyltin dilaurate (DBTDL)
catalyst purchased from Aldrich was used as received. The disappearance of OH and NCO
groups and the appearance of urethane groups were monitored by IR spectroscopy.

2.2. Synthesis of Multiblock Thermoplastic Polyurethane Urea

The synthesis of multiblock copolymers was carried out by the three-reactor method
developed earlier by us [15]. At the first stage (reactor 1) of TPUU synthesis, a macrodiol
from polydiol (PBA or PCL) and TDI in the presence of two chain extenders (BD and
EA) was prepared. In the second stage (reactor 2), a macrodiol from polydiol (PBA or
PCL), HMDI, and chain extender (BD) were synthesized. Then, the reaction products
from the two reactors were mixed and linked by HMDI added in a stoichiometric ratio
[NCO]/[OH] = 1. In the result, four polymers have been synthesized, where PCL and
PBA are linked in different combinations with bulky aromatic TDI and more flexible
and elongated HMDI (Table 1). Upon reaching the degree of conversion of NCO groups
≈98%, the reaction mass was poured into a flat Teflon container and dried at 40 ◦C during
the day until constant weight. The control of the full course of the reaction was carried
out by infrared spectra on the complete disappearance of absorption bands of isocyanate
(νNCO = 2271 cm−1) and hydroxyl groups (νOH = 3620 cm−1). Molecular characteristics of
the TPUUs were determined by gel permeation chromatography (GPC) in tetrahydrofuran
using a Waters GPCV 2000 chromatograph equipped with refractometric and viscosimetric
detectors. The number and weight average molecular weight of all four polymers were
the following: Mn = 40,000 Da, Mw = 80,000 Da, Mw/Mn = 2. The scheme of synthesis of
TPUM is presented in Scheme 1.

The molar ratio of the reaction was determined from which HS content was estimated.
The hard segment (HS) was defined as:

HS =
m(TDI + HMDI) + m(AE + BD)

m(TDI + HMDI) + m(AE + BD) + mPolyols
.

Table 1 shows the composition and ratio of components in the synthesized TPUUs.

Table 1. Chemical composition of studied TPUUs.

Polymer
Polymer Composition Mass Fraction of Reagents, %

P1 P2 Polyol Diisocyanate Chain Extender SS/HS

TPUU-AA PBA PBA 69 23 8 2.2
TPUU-BB PCL PCL 69 23 8 2.2
TPUU-AB PBA PCL 69 23 8 2.2
TPUU-BA PCL PBA 68 23 8 2.2
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Scheme 1. General scheme of synthesis of macrodiol A (I stage), macroisocyanate B (II stage) and studied TPUUs (III stage).

2.3. Experimental Techniques

The structural investigation was performed at the BM26 beamline of the European Syn-
chrotron Radiation Facility (ESRF) in Grenoble, France. The beamline is equipped with Pilatus
1M (SAXS, s-range 0.002–0.04 Å−1) and Pilatus 300k (WAXS, s-range 0.08–0.5 Å−1) detectors.
The experiments used X-ray photons with a wavelength of 1.04 Å, and the spot size of
the beam on the sample was 0.65 × 0.65 mm. The central part of the dogbone-like test
bars for analysis had dimensions of 22 × 6 × 0.7 mm. The in situ strain experiments were
carried out in a Linkam TST350 tensile stage with a maximum force of 20N and strain rate
of 1 mm/min. The strain rate was decreased compared to tensile tests to minimize the
variation of deformation during SAXS/WAXS exposure (12 s). Shape recovery was mea-
sured during heating of stretched film at a heating rate 5 ◦C/min to a temperature above
the melting point of the soft block e.g., 80 ◦C, and rapid cooling to room temperature. The
two-dimensional diffraction patterns were analyzed using a program package developed
in Igor Pro Program package (Wavemetrics Ltd., Portland, OR, USA) [44–46].

The ex situ tensile tests were performed on a Zwick TC-FR010TH Material Testing
Machine at 50 mm/min stretching rate using the same samples as for SAXS/SAXS strain
experiments. This test was performed according to the ASTM-D638 Type IV.

3. Results and Discussions

The stress–strain curves of TPUU depending on the composition of the soft block are
shown in Figure 1. It can be seen that TPUU-BB with PCL as a soft block demonstrates the
stress–strain curve of a typical elastomer with low Young’s modulus (E) and the highest
elongation at break (εr) (cf. black curve in Figure 1). The elasticity in TPUU-BB is provided
by the connection of PCL with a more flexible linear urethane fragment. The mechanical
characteristics of TPUUs are summarized in Table 1. TPUU-AA and TPUU-BA containing
the PBA block linked with HMDI demonstrate the mechanical behavior typical of stiff
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thermoplastics: high Young’s modulus and plastic flow with the formation of a neck in the
strain range of 50–400% (green and blue curves in Figure 1). The stiffness of the materials
stems from a limited mobility of PBA chains bounded with bulky rigid TDI-based urethane
(Figure 1). This clearly indicates that the type of polydiol is important in the design of SME
polymers. The mechanical characteristics are summarized in Table 2.
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Figure 1. Stress–strain curves of the studied TPUUs.

Table 2. Mechanical characteristics of TPUUs.

Polymer εr, % σr, MPa E, MPa

TPUU-AA 807 ± 78 22 ± 3 199 ± 4
TPUU-BB 1445 ± 27 15 ± 1 7 ± 1
TPUU-AB 1445 ± 52 16 ± 1 11 ± 1
TPUU-BA 1340 ± 84 13 ± 2 59 ± 2

The variation of mechanical properties is related to the specific morphology of the
films with different bonding of urethane of polydiol. In this paper, the reorganization
of the morphology was studied in situ by SAXS/WAXS analysis using a brilliant syn-
chrotron source.

Figure 2 shows changes in the film organization during stretching. Isotropic sample
TPUU-AA reveals a ring characteristic of PBA crystalline lamellar ordering with a long
period of LSB = 14.7 nm (Figure 2A). In addition, on the 1D-reduced curve, a broad peak
with a maximum at 9.7 nm can be identified (Figure 3A, black curve). This peak cannot be
attributed to the second order of the long period, and its origin can be understood using
the in situ film deformation experiment. Under small reversible strains, the isotropic ring
transforms into a four-spot pattern, indicating reorientation of the PBA lamellae along the
drawing direction [47]. An increase of half-width of the crystalline peaks in the WAXS
region indicates the fragmentation of large PBA lamellae under stress (Figure 4A, blue
curve). The d-spacing of the second peak increases to 10.4 nm, and it organizes in broad
“clouds” positioned along the direction of stretching (Figure 3A, blue curve). At further
strains, the four-spot lamellar peak disappears due to the lack of phase contrast during
plastic flowing of the material in the neck. Meantime, the equatorial orientation of the
second peak becomes more pronounced, and its position gradually increases to 12.9 nm for
ε = 300% (Figure 3A, dark blue curve). After release of stress, the film of TPUU-AA shows
high residual deformation—200% in the neck. The intensity of the second peak increases
because of enhanced phase contrast and the spacing decreases to LHB = 11.6 nm (Figure 3A,
green curve). Interestingly, this peak is preserved even after heating to above the melting
point of the PBA crystal phase (Figures 3A and 4A, yellow curves). Consequently, the
peak can be assigned to the phase-separated morphology of soft and hard segments rather
than to the stacking of PBA crystals [15]. We expect that this spacing reflects the distance
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between the rigid TDI domains that surround the PBA block (see Figure 5A, left). The PBA
chains bonded to TDI crystallize under hard geometric constraints [48,49]. The presence of
stressed tie chains in such domains prevents the constrained PBA lamellae from unfolding
during stretching with small elastic deformation of the amorphous phase (Figure 5A, right).
In contrast, the PBA lamellae surrounded by relatively flexible linear urethane fragments
are formed in soft confinement. During application of strain, these regions behave as
typical semi-crystalline flexible-chain polymers with plastic flow and the formation of
fibrillar crystals. The difference in crystallization conditions of PBA connected to aromatic
and linear urethanes can illustrate the appearance of SAXS maximum at 20.4 nm during
the deformation of amorphous TPUU-AA after heating to 80 ◦C (Table 3), indicating
crystallization of the HMDI-surrounded soft blocks before the TDI-surrounded ones. Two
populations of the PBA crystals generate two melting peaks in the DSC curve of the fresh
TPUU-AA sample [14].
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The replacement of well-crystallizable PBA soft block by PCL with a moderate crystal-
lization rate at room temperature changes the morphology and corresponding mechanical
characteristics of TPUU (Figure 2B). In the isotropic film, the lamellar SB peak is broader
and shifted to smaller angles (Figures 2B and 3B, red curve). During deformations up
to 50%, one can see an increase of both SB and HB periodicities (Figure 3B, black curve,
Table 3). The intensity of the SB peak is concentrated in the direction normal to drawing
(Figure 2B). On further stretching, the SB maximum from folded lamellae disappears
without plastic flow of PCL chains (Figures 2B and 3B, blue curve). At even higher de-
formations, WAXS reveals growing crystalline peaks corresponding to the stress-induced
formation of fibrillar PCL crystals (Figure 4B, blue curve). For ε = 300%, one observes a
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certain decrease of phase-separated LHB distance probably caused by “sacrifice-and-relief”
mechanism described by Stribeck for MDI-based polyurethanes [39].
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The same effect of decrease of LHB was detected during stretching of the amorphous
film preliminarily heated above the melting point of PCL (Table 3). The peak due to phase
separation is less pronounced probably because of the better miscibility of PCL with linear
urethanes (Figure 3B, yellow curve). Interestingly, stretching of the initially amorphous
film does not show any stress-induced crystallization (Figure 3B, brown curve). Generally,
TPUU-BB with a PCL soft block possesses less regular lamellar organization. Rubber-like
stress–strain curves and a higher increase of LSB and LHB indicate that both TDI-bounded
and HMDI-bounded PCL chains do not form regularly folded lamellae.
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have a low crystallization rate, resulting in the absence of correlation between PCL and 
PBA lamellae (Table 3). During deformation, the crystal fraction of PCL increases due to 
stress-induced crystallization and the weak SAXS maximum at LSB = 18.4 nm is visible up 
to ε = 100% (Figures 3c and 4c blue curves). PBA crystals surrounded by hard domains of 

Figure 4. One-dimensional (1D)-reduced WAXS curves of the studied films: (A) TPUU-AA; (B) TPUU-BB; (C) TPUU-AB;
(D) TPUU-BA, measured during deformation, recovered after release of stress, and after heating to 60 ◦C. Vertical dashed
lines point on positions of the (110) peaks of PBA and PCL.



Materials 2021, 14, 3009 9 of 13

Materials 2021, 14, x FOR PEER REVIEW 10 of 13 
 

 

and PCL crystals, HMDI-surrounded PBA chains rapidly crystallize with the reappear-
ance of maximum at 24.6 nm during the stretching of amorphous film (Figure 3d, yellow 
curve). This confirms that the crystallization of HMDI-surrounded PBA chains occurs 
faster than that of TDI-surrounded PBA with the formation of more regularly stacked la-
mellae. The presence of HMDI-surrounded PBA in TPUU provides relatively high resid-
ual deformation after the release of stress and a slow relaxation of strain that is important 
for the design of shape memory materials. 

 

 
Figure 5. Schematics of morphology of the TDI (green), HMDI (red), PBA (black), and PCL (blue) regions in isotropic (left)
and stretched to ε = 300% (right) films: (A) TPUU-AA; (B) TPUU-BB; (C) TPUU-AB; (D) TPUU-BA. Stretching direction
is vertical.

In the case of TPUUs with both PBA and PCL soft blocks, an important role is played
by the position of a particular polydiol in the multiblock chain. Isotropic sample TPUU-AB
reveals the presence of a mainly crystalline phase of TDI-bounded PBA (Figure 4C, red
curve). We suppose that PCL blocks surrounded by semi-flexible linear urethanes still
have a low crystallization rate, resulting in the absence of correlation between PCL and
PBA lamellae (Table 3). During deformation, the crystal fraction of PCL increases due to
stress-induced crystallization and the weak SAXS maximum at LSB = 18.4 nm is visible up
to ε = 100% (Figures 3C and 4C blue curves). PBA crystals surrounded by hard domains
of TDI show a relatively small increase of LHB on deformation and absence of the peak
orientation in the drawing direction (Figures 2C and 3C). After the release of stress, the
orientation of the phase-separated morphology almost completely disappears due to the
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high flexibility of the PCL blocks (Figure 3C, green curve). This sample demonstrates
mechanical behavior that is intermediate between rubber-like and thermoplastic without
necking but with orientational hardening (Figure 1, red curve and Figure 5C).

Table 3. Structural parameters of samples at different strain.

Polymer ε, % LHB, nm LSB, nm

TPUU-AA

0 9.7 14.6
50 10.8 14.0
100 12.8 -
300 12.9 -

200, restored 11.6 -
20, after heating 9.7 -

300, after heating 9.4 20.4

TPUU-BB

0 9.6 15.6
50 10.3 17.8
100 14.7 -
300 14.3 -

140, restored 12.5 -
20, after heating 9.1 -

300, after heating 8.6 -

TPUU-AB

0 10.8 -
50 11.2 16.3
100 12.4 18.4
300 14.8 -

110, restored 12.3 -
20, after heating 10.1 -

300, after heating 9.9 -

PTUU-BA

0 10.0 20.6
50 11.7 24.8
100 13.6 -
300 13.0 -

180, restored 11.4 -
20, after heating 11.1 -

300, after heating 13.8 24.6

In contrast, WAXS patterns of TPUU-BA with HMDI-bounded PBA chains reveal a
high degree of crystallinity in the isotropic state with an approximately equal content of
PBA and PCL crystals (Figure 4D, red curve). Thus, PCL chains constrained by a neighbor
TDI hard domain show a better tendency to crystallize at room temperature than in the
more mobile HMDI domains (Figure 5D). However, regular lamellae of HMDI-surrounded
PBA blocks give high phase contrast, resulting in the enhanced SAXS maximum with
increased distance LSB = 20.6 nm (Figure 3D, red curve). This peak transforms to a four-
spot pattern at ε = 50% but further disappears due to the lack of phase contrast between HB
and extended-chain PBA crystals (Figures 2D and 3D, blue curve). Interestingly, PCL chains
in the TDI domain do not reveal significant deformation and stress-induced crystallization
(Figure 4D, dark blue curve). In contrast to TPUU-AA, the HB peak of TPUU-BA shows
very good azimuthal orientation in the drawing direction at high strain (Figure 2A,D). This
can be attributed to bigger chain tilt in constrained PBA lamellae compared to the lamellae
of PCL (Figure 5A,D). After heating above the melting point of PBA and PCL crystals,
HMDI-surrounded PBA chains rapidly crystallize with the reappearance of maximum at
24.6 nm during the stretching of amorphous film (Figure 3D, yellow curve). This confirms
that the crystallization of HMDI-surrounded PBA chains occurs faster than that of TDI-
surrounded PBA with the formation of more regularly stacked lamellae. The presence of
HMDI-surrounded PBA in TPUU provides relatively high residual deformation after the
release of stress and a slow relaxation of strain that is important for the design of shape
memory materials.
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4. Conclusions

In conclusion, the variation of chemical nature of polydiol and adjusted diisocyanates
allows tuning the mechanical properties of resulting TPUUs from soft elastomers to rigid
thermoplastics. Synchrotron SAXS/WAXS studies of a series of TPUUs reveal a complex
change in morphology during deformation related to the superposition of phase separation
of soft and hard blocks and crystallization of the polydiols. It was shown that TDI-bounded
polydiols are constrained in rigid domains which, on the one hand, decrease the crys-
tallization rate and regularity of lamellae but, on the other hand, preserve crystals from
plastic flow during strain. In this case, constrained crystals of soft block play the role of an
additional physical network imparting higher stiffness to the material. In the meantime,
HMDI-bounded polydiols reveal higher crystallinity and faster crystallization from the
melt. During deformation, these crystalline domains behave as typical semi-crystalline
flexible-chain polymers. The TPUUs with HMDI-bounded PBA show plastic flow with
the formation of extended-chain crystals, while HMDI-bounded PCL fragments reveal
stress-induced crystallization. Thus, HMDI-rich domains are responsible for the elastic
characteristics of the material: elongation at break, residual deformation, etc. Consequently,
rigid aromatic TDI or semi-rigid linear HMDI form a different interface for two popu-
lations of crystallites of polydiols. A significant difference in crystallization kinetics at
room temperature between PBA and PCL provides an additional tool for fine-tuning the
thermoplastic properties and shape memory behavior.

In situ investigation of the structure and morphology of TPUU at different external
stimuli allows finding the relationship between the structure and deformational properties
that helps optimizing the composition of the soft block for desired mechanical characteristics.
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