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Abstract
Characterizing how the brain responds to stimuli has been a goal of sensory neuroscience for decades. One key
approach has been to fit linear models to describe the relationship between sensory inputs and neural responses.
This has included models aimed at predicting spike trains, local field potentials, BOLD responses, and EEG/MEG.
In the case of EEG/MEG, one explicit use of this linear modeling approach has been the fitting of so-called
temporal response functions (TRFs). TRFs have been used to study how auditory cortex tracks the amplitude
envelope of acoustic stimuli, including continuous speech. However, such linear models typically assume that
variations in the amplitude of the stimulus feature (i.e., the envelope) produce variations in the magnitude but not
the latency or morphology of the resulting neural response. Here, we show that by amplitude binning the stimulus
envelope, and then using it to fit a multivariate TRF, we can better account for these amplitude-dependent
changes, and that this leads to a significant improvement in model performance for both amplitude-modulated
noise and continuous speech in humans. We also show that this performance can be further improved through
the inclusion of an additional envelope representation that emphasizes onsets and positive changes in the
stimulus, consistent with the idea that while some neurons track the entire envelope, others respond preferentially
to onsets in the stimulus. We contend that these results have practical implications for researchers interested in
modeling brain responses to amplitude modulated sounds.

Key words: auditory evoked potential; deconvolution; electroencephalography; encoding model; envelope
tracking; speech

Introduction
Characterizing how the brain responds to stimuli has

been a major goal of sensory neuroscience for decades

(Hubel and Wiesel, 1962). One key approach to this prob-
lem has been to fit models to describe the relationship
between sensory inputs and neural responses (Wu et al.,
2006). Our understanding of the sensory system can then
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Significance Statement

A key approach in sensory neuroscience has been to fit linear models to describe the relationship between
stimulus features and neural responses. However, these linear models often assume that the response to
a stimulus feature will be consistent across its time course, but just scaled linearly as a function of the
stimulus feature’s intensity. Here, using EEG in humans, we show that allowing a linear model to vary as a
function of the stimulus feature’s intensity leads to improved prediction of unseen neural data. We do so
using both amplitude modulated noise stimuli as well as continuous natural speech. This approach provides
more robust measures of envelope tracking and facilitates the study of its underlying mechanisms.
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be assessed by quantifying how well such models predict
neural responses to novel stimuli (Carandini et al., 2005).

A central feature of such models has been a “linear
receptive field” stage that seeks to account for some of
the neural response as a linear weighted sum (i.e., a linear
filter) of particular features of the sensory input (e.g., the
contrast of a visual stimulus across space or the ampli-
tude of an acoustic stimulus across time and frequency).
In neural spiking models, this linear filtering stage is typ-
ically just one of several stages (e.g., linear, nonlinear, and
Poisson) that seek to capture how stimulus variations are
reflected in spike trains (Chichilnisky, 2001). However,
with macroscopic data like fMRI (Boynton et al., 1996) or
EEG/MEG (Crosse et al., 2016), this linear filtering stage
often represents the entirety of the model. Implicitly (or
explicitly), these linear models assume that responses to
a stimulus feature will be temporally and morphologically
consistent across its time course, but just scaled linearly
as a function of the stimulus feature’s intensity. In other
words, they assume that responses to a particular stim-
ulus feature can be modeled by a linear impulse response
function.

In auditory neuroscience these filters have been viewed
as representing the spectrotemporal receptive fields
(STRFs) of auditory cortical neurons (Aertsen and Johan-
nesma, 1981). They are often fit using audio stimuli with
broad spectrotemporal statistics so as to characterize
how neurons might respond to any sound (Depireux et al.,
2001), although there has been increasing interest in the
use of more naturalistic stimuli such as animal vocaliza-
tions (Theunissen et al., 2001; Machens et al., 2004) and
human speech. The latter has included efforts to fit linear
response functions between various speech features
(e.g., envelope, spectrogram, phonemes, or phonetic fea-
tures) and population responses in animals (David et al.,
2007; Mesgarani et al., 2008), as well as macroscopic
measures in humans (Lalor and Foxe, 2010; Ding and
Simon, 2012; Di Liberto et al., 2015).

One explicit use of this linear modeling approach has
been the fitting of so-called temporal response functions
(TRFs) to describe how EEG is affected by variations in
visual (Gonçalves et al., 2014) or auditory (Lalor et al.,
2009) stimuli. This includes univariate TRFs that model
how EEG changes based on a single stimulus feature
(e.g., an envelope), and multivariate TRFs that simultane-
ously model responses to multiple features (e.g., a spec-
trogram; Ding and Simon, 2012; Di Liberto et al., 2015). In
both cases, however, it is typically assumed that changes

in the intensity of the stimulus feature produce variations
in the magnitude but not the latency or morphology of the
responses. While this assumption may be reasonable for
certain brain responses in certain brain areas to certain
stimulus features (Boynton et al., 1996), there is definitive
evidence that it is imperfect for EEG-based TRFs.

One such piece of evidence is the long-known relation-
ship between auditory stimulus amplitude and response
latency (Beagley and Knight, 1967). Specifically, while
there is a monotonic (although not necessarily linear)
relationship between auditory stimulus amplitude and re-
sponse magnitude, there is also an inverse relationship
between stimulus amplitude and response latency. There-
fore, modeling neural responses to an ongoing auditory
stimulus using a linear univariate TRF is likely to be sub-
optimal given that it ignores the dependence of response
latency (and morphology) on stimulus amplitude.

Here, we aim to demonstrate that by allowing the
stimulus-response model to vary as a function of the
stimulus amplitude, we can improve the modeling of re-
sponses to continuous auditory stimuli. To do so, we
propose a simple extension to the standard linear TRF
estimation approach that involves amplitude binning a
single feature, namely the envelope, and then using it to fit
a multivariate TRF. This should allow the TRF to vary
across the different amplitude ranges, thus enabling it to
account for associated changes in response magnitude,
latency, and morphology. We aim to validate that this
represents an improved model by comparing how well it
predicts EEG data relative to more standard univariate
models and discuss other methods that can be used to
improve model performance.

Materials and Methods
EEG data from two experiments were used in this

study: one acquired in response to amplitude-modulated
broadband noise (AM BBN), the other in response to
continuous natural speech (Natural Speech Dataset from
https://doi.org/10.5061/dryad.070jc, including amplitude
envelopes; Broderick et al., 2018).

Subjects
A total of 13 subjects participated in the AM BBN

experiment; five male, aged 23–35 years; 19 subjects
participated in the speech experiment; 13 male, aged
19–38 years, although data from two subjects were later
excluded because of uncertainties in response timing due
to differences in their data acquisition setup. All subjects
had self-reported normal hearing. The protocol for both
studies was approved by the Ethics Committee of the
Health Sciences Faculty at Trinity College Dublin, Ireland,
and all subjects gave written informed consent.

Stimuli
As mentioned, this study involved experiments using

two different types of stimuli, AM BBN and continuous
natural speech.

The carrier signal for the AM BBN stimulus was uniform
broadband noise with energy limited to a bandwidth of
0–24,000 Hz. Its modulating signal (envelope) had a log-
uniform amplitude distribution (by design, although less
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so after envelope extraction, please see below) and a
bottom-heavy (right-skewed) frequency (modulation rate)
distribution (Fig. 1), so chosen as it has been shown that
auditory cortical areas tend to be most sensitive to AM
BBN presented at lower modulation frequencies (Liégeois-
Chauvel et al., 2004). The envelope was created by first
generating a signal with discrete amplitude values with
the desired statistical properties, and then interpolating
between those discrete points to provide a smooth tran-
sition from one modulation amplitude to the next.

The speech stimulus had a bottom-heavy (right-skewed)
frequency distribution with energy limited to a bandwidth of
0–22,050 Hz. Its envelope had a log-top-heavy (left-skewed)
amplitude distribution, and a bottom-heavy (right-skewed) fre-
quency (modulation rate) distribution, similar to that of the
AM BBN stimulus (Fig. 1). It comprised extracts from a
professional audio-book version of a popular mid-20th
century American work of fiction (i.e., The Old Man and
the Sea by Ernest Hemingway) written in an economical
and understated style and read by a single male American
speaker.

Experimental procedure
In the AM BBN experiment, subjects were presented

with 80 repetitions of the same 60-s long AM BBN stim-
ulus as they reclined in a comfortable chair, in a quiet,
darkened room, and watched a silent animated cartoon
presented on a tablet computer. They were asked not to
attend to the auditory stimuli, which were presented mon-
aurally to their right ear at a peak level equivalent to that of a
1-kHz pure-tone at 80-dB SPL, using a Sound Blaster X-Fi
Surround 5.1 Pro external sound card, a TPA3118D2EVM
amplifier, and electromagnetically shielded Etymotic Re-
search ER-2 earphones, via VLC Media Player from Vide-
oLan (http://www.videolan.org). Compensation for the 1-ms
sound-tube delay introduced by the ER-2 earphones was
applied post hoc.

In the speech experiment, subjects were presented with
28 trials of �155-s long audiobook extracts. The trials
preserved the storyline, with neither repetitions nor dis-
continuities. Subjects sat in a comfortable chair, in a
quiet, darkened room, and were instructed to maintain
visual fixation on a crosshair centered on a computer
monitor, and to minimize eye blinking and all other motor
activities for the duration of each trial. They were asked to
attend to the auditory stimuli, which were presented di-
otically at a comfortable listening level, using Sennheiser
HD 650 headphones, via Presentation software from Neu-
robehavioral Systems. For the purposes of analysis, all
trials were truncated to 150 s, and a peak level of 80-dB
SPL was estimated (as the original presentation level was
not available).

EEG acquisition
In the AM BBN experiment, 40 channels of EEG data

were recorded at 16,384 Hz (analog –3-dB point of 3276.8
Hz), using a BioSemi ActiveTwo system. A total of 32
cephalic electrodes were positioned according to the
standard 10–20 system. A further eight non-cephalic
electrodes were also collected although only two, those
over the left and right mastoids, were used in the analysis.

Triggers indicating the start of each 60-s trial were en-
coded in a separate channel in the stimulus WAV file as
three cycles of a 16-kHz tone burst. These triggers were
interpreted by custom hardware before being fed into the
acquisition laptop for synchronous recording along with
the EEG.

In the speech experiment, 130 channels of EEG data
were recorded at 512 Hz (analog –3-dB point of 409.6 Hz),
using a BioSemi ActiveTwo system. 128 cephalic elec-
trodes were positioned according to the BioSemi Equira-
dial system, with another two electrodes located over the
left and right mastoids. Triggers indicating the start of
each �155-s trial were presented using Neurobehavioral
Systems Presentation software for synchronous record-
ing along with the EEG.

EEG preprocessing
The EEG data were first resampled to 128 Hz using the

decimate function in MATLAB (MathWorks). The decimate
function incorporates an 8th order low-pass Chebyshev
Type I infinite impulse response (IIR) anti-aliasing filter.
This filter was applied with a cutoff frequency of 64 Hz and
was implemented using the filtfilt function, ensuring zero
phase distortion and in effect doubling the order of the
filter. A 1st order high-pass Butterworth filter was then
applied with a cutoff frequency of 1 Hz, also using the
filtfilt function. Bad channels were determined as those
whose variance was either less than half or greater than
twice that of the surrounding two to four channels for the
AM BBN dataset, and three to seven channels for the
speech dataset (depending on location). These were then
replaced through spherical spline interpolation using EE-
GLAB (Delorme and Makeig, 2004). Finally, the data were
rereferenced to the average of the mastoids, separated
into trials based on the triggers provided, and z-scored.

TRF estimation
The models were fit using TRF estimation implemented

via the mTRF Toolbox (Crosse et al., 2016). With TRF
estimation, the assumption is that the output EEG, y�t�
consists of the convolution of a particular input stimulus
feature, x�t� with an unknown system response w��� (i.e.,
the TRF), plus noise (Lalor et al., 2009), i.e.,

y�t� � w��� � x�t� � noise

where � represents the range of time-lags over which the
TRF is estimated. Given the known stimulus feature and
the measured EEG, the TRF can be derived (in this case)
by performing regularized linear (ridge) regression (for
details, see Crosse et al., 2016 ). Baseline correction was
performed on each subject’s average TRF (by subtracting
the mean value between –20 and 0 ms) before being
combined to form the grand average.

Amplitude binned envelope
The choice of stimulus feature can have a significant

influence on the resulting model. Such features could
include the envelope (Lalor et al., 2009) or spectrogram
(Ding and Simon, 2012; Di Liberto et al., 2015), or in the
case of speech, phonemes, phonetic features (Di Liberto
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Figure 1. A, B, Example segments of AM BBN and speech stimuli, respectively. C, D, Power spectral densities (PSDs) of AM BBN
and speech stimuli, respectively. The AM BBN had a broadband frequency distribution by design, while the male speaker had a
frequency distribution that was dominated by frequencies below 5000 Hz. E, F, Amplitude histograms of AM BBN and speech
envelopes, respectively. Both envelopes had quite broadly distributed amplitude distributions. Please note that the amplitude
distribution of the AM BBN envelope was uniform by design, but after extracting the envelope from the AM BBN signal using the
Hilbert transform, it was less so. Also note that the amplitude distribution of the speech envelope was more skewed, with a higher
percentage of samples in the higher amplitude bins. G, H, PSDs of AM BBN and speech envelopes, respectively. Both signals had
envelopes with a bottom-heavy (right-skewed) frequency distribution indicating that their modulation rates were dominated by low
frequencies.
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et al., 2015), or its semantic content (Broderick et al.,
2018). The envelope (time � amplitude) however is prob-
ably the most commonly used stimulus feature and is the
one chosen for use in this study. For both the AM BBN
and speech stimuli the envelopes were calculated by
taking the absolute value of their Hilbert transforms, and
then resampling them to 128 Hz using the decimate func-
tion in MATLAB.

As mentioned, it has long been known that the magni-
tude and latency of auditory system responses vary di-
rectly and inversely with stimulus amplitude, respectively,
i.e., as the stimulus amplitude increases, the response
magnitude increases, and the response latency de-
creases (and vice versa). Univariate TRFs, like those mod-
eled using envelopes, cannot account for all these
amplitude-dependent changes. In fact, univariate TRFs
can only account for linear changes in magnitude and
cannot account for any changes in latency or morphology.
However, simply amplitude binning the envelope (time �
[amplitude] � amplitude), i.e., dividing the envelope up
into multiple sub-envelopes comprising the different am-
plitude ranges of the full envelope, normalizing the values
in each bin to be between 0 and 1, and then using it to fit
a multivariate TRF, should allow the TRF to vary across
the different amplitude ranges, potentially enabling it to
account for more of these amplitude-dependent changes
than its univariate counterpart.

The amplitude binned (AB) envelope was created by
logarithmically binning the envelope into 8 dB bins using
the histcounts function in MATLAB, and then normalizing

the values in each bin to between 0 and 1 (an important
step in ensuring the stability of the resulting TRF). This bin
size was chosen empirically after comparing the predic-
tion accuracies attained across a range of bin sizes, with
broader bins perhaps being less able to capture changes
in the response with amplitude, and narrower bins per-
haps suffering from the limited amount of data available
for training. The logarithmic bin edges were determined
by taking 10 to the power of the desired bin edges in dB
(i.e., 8, 16, 24, etc.) divided by 20, and then normalizing
the resulting range to between 0 and 1 (Fig. 2B).

Other stimulus representations
A number of other approaches have already been put

forward that attempt to modify the stimulus representa-
tion to account for certain properties of the auditory sys-
tem. So, rather than just comparing the AB envelope
model with the standard envelope model, we also chose
to compare it with two others, i.e., the SPL envelope and
onset envelope models. The SPL envelope model was fit
using an envelope that was transformed into its equivalent
logarithmic (SPL) representation, and the onset envelope
model was fit using an envelope that was modified to
place a greater emphasis on onsets and positive changes
in amplitude.

The motivation for using the SPL envelope model de-
rives from the well-known fact that electrophysiological
responses generally vary in proportion to the log of the
stimulus amplitude (Aiken and Picton, 2008). The SPL
envelope was generated by taking 20 times the base 10

Figure 2. A, Example segments of the envelope, SPL envelope, and onset envelope stimulus representations. B, Corresponding
segment of the AB envelope.
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logarithm of the envelope (Aiken and Picton, 2008; Fig.
2A), and it was hoped that this would help linearize the
amplitude to magnitude mapping between the stimulus
representation and the EEG. It was presumed that the AB
envelope model might outperform the SPL envelope model
however, given that they both attempt to account for non-
linearities in the relationship between stimulus amplitude
and response magnitude, but only the former accounts for
changes in response latency and morphology.

The motivation for using the onset envelope model
comes from the idea that many auditory neurons are
particularly sensitive to onsets, offsets, and changes in
the stimulus (Bieser and Müller-Preuss, 1996), and that
this approach has been used effectively in the past (Aiken
and Picton, 2008; Hertrich et al., 2012; Fiedler et al.,
2017). The onset envelope was explicitly designed to
reflect onsets and positive changes in the stimulus, and
was created by half-wave rectifying the first-derivative of
the envelope (Hertrich et al., 2012; Fig. 2A).

Experimental design and statistical analyses
To compare the different models tested as part of

this study, a nested “leave-one-out” cross-validation ap-
proach was employed. Specifically, for each stimulus rep-
resentation, a separate TRF (univariate for the envelope,
SPL envelope, and onset envelope, and multivariate for
the AB envelope) was fit for each of M trials across several
ridge parameters (usually denoted �) used to regularize
the models. One trial was then chosen to be “left out,” i.e.,
to be used as a “test set,” with the remaining M-1 trials to
be used for the inner cross-validation. Of these inner M-1
trials, one trial was again chosen to be left out, i.e., to be
used as a “validation set,” with the remaining M-2 trials to
be used as a “training set.”

For each � value, an average model was obtained by
averaging over the single-trial models in the training set.
These were then convolved with the stimulus representa-
tion associated with the validation set to predict its neural
response. Model performance was assessed by quantify-
ing how accurately these predicted responses matched
the actual recorded response from the validation set,
using Pearson’s correlation coefficient. This process was
then repeated M-2 times such that each trial was left out
of the training set once. The overall model performance
was then determined by averaging over the individual
model performances for each trial, and the optimal � value
was chosen.

Using this optimal � value, another average model was
then obtained by averaging over the single-trial models in
both the training and validation sets. This was then con-
volved with the stimulus representation associated with
the test set to predict its neural response. Model perfor-
mance was then assessed by quantifying how accurately
the predicted response matched the actual recorded re-
sponse from the test set. This entire procedure was then
repeated M-1 times such that each trial was left out of the
inner cross-validation procedure once. The overall model
performance was then finally determined by averaging
over the individual model performances for each trial.
Importantly, the parameter optimization was done sepa-

rately for each stimulus representation and subject, so
that we were left comparing each model based on its
respective optimal performance.

Again, the performance of each model was assessed
by quantifying how accurately the predicted response
matched the actual recorded response, using Pearson’s
correlation coefficient. The normality of these perfor-
mance measures for each model was confirmed using the
Anderson Darling test, and model comparisons were con-
ducted using paired-sample t tests and Cohen’s d effect
size for paired-sample t tests. Cohen’s d effect size was
calculated by dividing each t value by the square-root of
the sample size. One potential concern when comparing
models with different numbers of parameters is that mod-
els with more parameters may perform better simply due
to their greater complexity. To account for this, supple-
mentary comparisons were also conducted using the
Akaike Information Criterion (AIC) which penalizes models
based on their complexity. As the results of these analy-
ses were not normal, model comparisons were conducted
using Wilcoxon signed-rank tests.

Permutation tests were also used to assess the null
distributions of the envelope models. For the AM BBN
dataset, as the stimulus was the same for each trial, a
pool of 80 circularly-shifted envelopes (i.e., the original
envelope plus 79 circularly-shifted envelopes, each itera-
tively shifted by 1/80 times the length of the envelope with
respect to the previously shifted envelope) were first cre-
ated. 80 envelopes from this pool were then chosen at
random with replacement for use in the cross-validation
procedure. This selection and cross-validation procedure
was repeated 100 times to determine the null-distribution
of the envelope model for each subject. For the speech
dataset, as the stimuli were different for each trial, enve-
lopes were simply chosen at random with replacement
from the original set of envelopes, for use in the cross-
validation procedure. This selection and cross-validation
procedure was also repeated 100 times to determine the
null-distribution of the envelope model for each subject.

Results
Channel selection

EEG prediction accuracies will vary across channels
depending on how related the data on those channels are
to the stimulus representation. For the AM BBN analyses,
the seven channels (of 32) with the highest prediction
accuracies for the envelope model were used. For the
speech analyses, the 42 channels (of 128) with the highest
prediction accuracies for the envelope model, plus three
other channels (to ensure symmetry) were used. In both
cases, these channels tended to reside over fronto-
central to temporal scalp (Di Liberto et al., 2015). The
overall prediction accuracy for each model was calculated
by averaging the prediction accuracies over these elec-
trodes.

Individual model comparisons
AM BBN

For the AM BBN dataset, prediction accuracies were
determined for each model, and each subject (Fig. 3). All
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four stimulus representations (i.e., envelope, SPL enve-
lope, onset envelope, and AB envelope) and their associ-
ated models were able to predict EEG responses with an
accuracy that was significantly above 0.0012, i.e., the null
hypothesis obtained using the permutation tests, for all
subjects (t(12), all p � 0.001), and greater than all values
obtained using the permutation tests. However, the AB
envelope model significantly outperformed all three of the
other models, in each case with a large to very large
positive effect size (t(12) � 5.471, p � 0.001, d � 1.518 vs
the envelope model; t(12) � 4.070, p � 0.01, d � 1.129 vs
the SPL envelope model; t(12) � 4.800, p � 0.001, d �

1.331 vs the onset envelope model). These results were
also seen when comparing the models using AIC (p �
0.001; Wilcoxon signed-rank test). Neither the SPL enve-
lope nor onset envelope models managed to outperform
the standard envelope model (t(12), both p � 0.05).

Exactly how the TRF changes as a function of stimulus
amplitude becomes more apparent on closer inspection
of the AB envelope TRF (Fig. 4A). As the stimulus ampli-
tude decreases, the TRF magnitude decreases, latency
increases, and morphology changes in accordance with
our hypothesis. The influence of stimulus amplitude on
TRF latency is perhaps better emphasized in Figure 4B.

Figure 3. A, Topographic plot displaying prediction accuracies for the envelope model for the AM BBN dataset and highlighting the
channels chosen for analysis. B, Prediction accuracies for each model and subject, including null hypotheses for the envelope model
as determined from the permutation tests (in black), and indications of significance as determined from the t tests. Top, middle and
bottom rows of asterisks indicate comparisons between AB Env and Env, SPL, and Ons, respectively. ���p � 0.001, ��p � 0.01,
�p � 0.05.

Figure 4. Analysis of amplitude-dependent changes at a single representative channel over left central scalp for the AM BBN dataset.
A, Group average AB envelope TRF, plotted to minimize the difference between adjacent traces. B, Image plot of group average AB
envelope TRF. C, N1 peak latencies across group average AB envelope TRF bins. D, P1-N1 peak-to-peak amplitudes across group
average AB envelope TRF bins.
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For example, the “N1”, which is quite large in magnitude
in the uppermost amplitude bin, decreases in magnitude
and increases in latency, with decreasing stimulus ampli-
tude. To quantify this relationship, the N1 peak in each bin
was determined as being the largest negative peak in the
TRF at lags between 70 and 210 ms (the corresponding
latencies can be seen in Fig. 4C). A line was then fit to the
data (R2 � 0.9143, p � 0.001), which showed that the N1
peak latency increases by �11 ms with every unit de-
crease in amplitude bin. A similar effort was made to
quantify the relationship between stimulus amplitude and
TRF magnitude, i.e., the “P1” peak in each bin was de-
termined as being the largest positive peak in the TRF at
lags between 0 and 130 ms (the corresponding P1-N1
peak-peak amplitudes can be seen in Fig. 4D). However,
while there does seem to be some relationship between
stimulus amplitude and TRF magnitude, it was not well fit
by a line (R2 � 0.597, p � 0.01).

Speech
For the speech dataset, prediction accuracies were

again determined for each model, and each subject, with
very similar results to before (Fig. 5). All four stimulus
representations and their associated models were able to
predict EEG responses with an accuracy that was signif-
icantly above 0.0015, i.e., the null-hypothesis obtained
using the permutation tests, for all subjects (t(16), all p �
0.001), and greater than all values obtained using the
permutation tests. The AB envelope model significantly
outperformed all three of the other models, in each case
with a large to very large positive effect size (t(16) � 5.472,
p � 0.001, d � 1.327 vs the envelope model; t(16) � 7.649,
p � 0.001, d � 1.855 vs the SPL envelope model; t(16) �
4.666, p � 0.001, d � 1.132 vs the onset envelope
model). These results were also seen when comparing the
models using AIC (p � 0.001; Wilcoxon signed-rank test).
Neither the SPL envelope nor onset envelope models
managed to outperform the standard envelope model
(t(16), both p � 0.05).

Again, exactly how the TRF changes as a function of
stimulus amplitude becomes more apparent on closer
inspection of the AB envelope TRF (Fig. 6A,B). While the
overall relationship between stimulus amplitude and TRF

magnitude, latency, and morphology appears similar to
before, in this case, the magnitude of the TRF for some of
the lower amplitude bins seems unexpectedly high. It is
not entirely clear why this would have been the case. The
P1 and N1 peaks were also determined in the same
manner as before (and the corresponding N1 latencies
and “P1-N1” peak-peak amplitudes can be seen in Fig.
6C,D, respectively). To quantify the relationship between
stimulus amplitude and TRF latency, a line was fit to the
N1 latency data (R2 � 0.5008, p � 0.05), which again
showed that the N1 peak latency increases by �11 ms
with every unit decrease in amplitude bin. However, there
was no simple relationship between stimulus amplitude
and TRF magnitude.

Combined model comparisons
The comparison between the AB envelope and onset

envelope models is not necessarily as straightforward as
one might expect. This is because each model is likely
reflecting different envelope tracking mechanisms in the
cortex (Bieser and Müller-Preuss, 1996). Specifically, the
onset envelope model likely reflects contributions from
neurons that track onsets and positive changes in am-
plitude while the AB envelope model likely reflects
contributions from neurons that track along with all of
the amplitude fluctuations (Bieser and Müller-Preuss,
1996).

To test the idea that these two models are capturing
complementary information on envelope tracking, we in-
vestigated whether there would be any advantage in com-
bining these two models (i.e., by combining the two
stimulus representations and then using that to fit a mul-
tivariate TRF). Indeed, the combined AB envelope plus
onset envelope model significantly outperformed the in-
dividual onset envelope and AB envelope models, for
both the AM BBN (t(12) � 5.717, p � 0.001, d � 1.586 vs
the onset envelope; t(12) � 4.184, p � 0.01, d � 1.161 vs
the AB envelope) and speech datasets (t(16) � 6.139, p �
0.001, d � 1.489 vs the onset envelope; t(16) � 3.312, p �
0.01, d � 0.8032 vs the AB envelope), suggesting that
they are capturing complementary information on enve-
lope tracking in the cortex (Fig. 7A,B). These results were

Figure 5. A, Topographic plot displaying prediction accuracies for the envelope model for the speech dataset and highlighting the channels
chosen for analysis. B, Prediction accuracies for each model and subject, including null hypotheses for the envelope model as determined
from the permutation tests (in black), and indications of significance as determined from the t tests. Top, middle and bottom rows of
asterisks indicate comparisons between AB Env and Env, SPL, and Ons, respectively. ���p � 0.001, ��p � 0.01, �p � 0.05.
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also seen when comparing the models using AIC (all p �
0.001; Wilcoxon signed-rank test).

One obvious extension to this approach then might be
to also amplitude bin the onset envelope representation,

Figure 6. Analysis of amplitude-dependent changes at a single representative channels over left central scalp for the speech dataset. A, Group
average AB envelope TRF, plotted to minimize the difference between adjacent traces. B, Image plot of group average AB envelope TRF. C, N1
peak latencies across group average AB envelope TRF bins. D, P1-N1 peak-to-peak amplitudes across group average AB envelope TRF bins.

Figure 7. A, Prediction accuracies for each model and subject for the AM BBN dataset. B, Prediction accuracies for each model and
subject for the speech dataset. Top and bottom rows of asterisks indicate comparisons between AB Env � Ons and AB Env, and Ons,
respectively. ���p � 0.001, ��p � 0.01. C, Group average AB onset envelope TRF for the AM BBN dataset, plotted to minimize the
difference between adjacent traces. D, Image plot of group average AB onset envelope TRF for the AM BBN dataset.
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producing an “AB onset envelope” model. However, while
this AB onset envelope TRF exhibits a similar dependence
on stimulus amplitude to the AB envelope TRF (Fig. 7C,D)
and significantly outperformed the onset envelope model
alone for the AM BBN dataset (t(12) � 3.887, p � 0.05, d
� 1.078) although not for the speech dataset (t(16), p �
0.05), the combined AB envelope plus AB onset envelope
model failed to outperform the combined AB envelope
plus onset envelope model for either the AM BBN or
speech datasets.

Discussion
Despite it long being known that the latency and mor-

phology (and not just the magnitude) of auditory system
responses are dependent on the stimulus amplitude, this
has been overlooked in previous efforts at linearly mod-
eling the auditory system. Here we have shown that by
allowing the stimulus-response model to vary as a func-
tion of the stimulus amplitude, we can improve the mod-
eling of responses to continuous auditory stimuli.

Specifically, we saw that by amplitude binning the en-
velope and then using that to fit a multivariate TRF, we
could improve the prediction accuracy over the standard
envelope model with a very large effect size for both the
AM BBN and speech datasets. This was not the case for
the SPL envelope or onset envelope models however,
which both failed to outperform the standard envelope
model. We also evaluated the offset envelope (created by
half-wave rectifying the negative portion of the first-
derivative of the envelope and then using that to fit a
univariate TRF) and derivative envelope models but again,
neither managed to outperform the envelope model for
either dataset and indeed mostly performed worse. Fi-
nally, we saw that by combining the AB envelope and
onset envelope models, we could further improve the
prediction accuracy over the AB envelope model with a
large effect size for both the AM BBN and speech data-
sets.

Interestingly, despite having lower prediction accura-
cies overall, the improvement in prediction accuracy was
greater for the AM BBN dataset. This is likely due to the
differences in amplitude distribution seen between the
two types of stimuli (Fig. 1E,F). While the speech stimuli
predominantly vary within a narrow amplitude range, the
wider “active” amplitude range of the AM BBN stimulus
may allow it to benefit more from taking amplitude-
dependent variations into account. The reason that the
prediction accuracies were higher for the speech dataset
overall is likely due to attention effects, e.g., as seen in
O’Sullivan et al. (2015), albeit it in that case with two
competing speech streams and reconstruction accuracy.

Previous work has shown that the use of other stimulus
representations can also improve modeling performance.
For example, for speech it has been shown that models
based on spectrograms, phonemes, and phonetic features,
outperform those based on the standard envelope (Di Lib-
erto et al., 2015). However, for each of these stimulus rep-
resentations, the same assumption of unchanging TRF
morphology applies. For categorical representations such
as those reflecting the phonemic/phonetic content of the

speech, this could be considered a strength, but for lower-
level representations such as the spectrogram, this could be
considered a weakness. In the same way as we have done
for the envelope in this study, an amplitude binning ap-
proach could also be applied to the spectrogram represen-
tation of speech by binning the stimulus in each frequency
band (time � [frequency � [amplitude]] � amplitude), and
then using it to fit a multivariate TRF. This could then poten-
tially account for both amplitude-dependent and frequency-
dependent changes in the response, which could lead to
improved model performance. Furthermore, as before, the
onset envelope could also be included to explain even more
of the variance. That said, it should be noted that this rep-
resentation would be high dimensional and so would come
with increased computational requirements as well as an
increased chance of overfitting.

Researchers interested in improving the performance of
their envelope tracking measures could benefit from using
the AB envelope approach and/or including the onset
envelope as part of their stimulus representation. The
sensitivity and robustness of such measures could be
further improved, however, if this work was adapted into
a “decoding” framework. Such approaches have become
quite popular in recent years and often involve mapping
backwards from the multivariate neural data to recon-
struct an estimate of the univariate speech envelope that
caused those data (O’Sullivan et al., 2015). This approach
takes advantage of the large increase in modeling perfor-
mance that comes with incorporating all of the neural data
simultaneously in one multivariate mapping. This stands
in contrast with the forward channel-by-channel modeling
approach we have used in the present study. As such, it
would be practically valuable to incorporate the AB enve-
lope approach into a multivariate-to-multivariate decod-
ing framework. While we have not done that here, such
frameworks have been implemented before for multivari-
ate auditory stimuli (Mesgarani et al., 2009), and there are
several flexible methods available that would be well
suited to such a task (de Cheveigné et al., 2018).

Finally, we suggest that the results of our study should
factor into theories on the generative mechanisms under-
lying the cortical tracking of acoustic envelopes. There are
at least two such theories. One proposes that intrinsic,
ongoing oscillatory brain rhythms “entrain” to the rhythms
of the speech signal by aligning their phase with the
stimulus in an anticipatory, behaviorally effective manner
(Giraud and Poeppel, 2012; Rimmele et al., 2018). An
alternative idea is that cortical tracking of speech (or any
auditory stimulus for that matter) occurs as a result of the
stimulus providing a driving input to auditory cortex that
evokes transient responses in neuronal populations that
are tuned to the features of that stimulus and that scale
with the strength of those features (Parker and Newsome,
1998). It is well known that sensory neurons are tuned to
certain features of the stimuli that they encounter – includ-
ing features such as frequency and intensity in the audi-
tory domain (Phillips and Irvine, 1981). As such,
researchers have explicitly modeled cortical tracking of
the speech envelope as a series of transient responses to
changes in that speech envelope (Aiken and Picton,
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2008). Indeed, this assumption is at the core of the TRF
analysis used in this paper. Moreover, in other work, we
have shown that EEG responses to continuous speech
are well modeled as a series of transient responses to
changes in frequency and phonetic features within the
speech (Di Liberto et al., 2015). While the present study
cannot definitively adjudicate between oscillatory entrain-
ment and transient evoked responses as the underlying
mechanism, and indeed maybe both are at play, we do
suggest that the relationship we have shown between
stimulus amplitude and response latency needs to be
considered when positing one or other of these mecha-
nisms. Do smaller amplitude changes evoke later and
slower transient responses? Or do they entrain slower
oscillations? Or some combination of the two? Work in
our lab has begun to look directly at this issue (Lalor,
2019) and will continue to do so.

In summary, here, we have shown that by allowing the
stimulus-response model to vary as a function of the
stimulus amplitude, we can improve the modeling of re-
sponses to continuous auditory stimuli, and that the in-
clusion of an onset stimulus representation can improve
this performance even further. This obviously has impli-
cations for how people model auditory processing in hu-
mans, but, more generally, points to the importance of
incorporating stimulus dependencies when modeling the
activity of sensory systems.
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