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Abstract

Introduction: The purpose of this study was to determine the reliability and validity of a new non-invasive ultrasound
technique to measure gastrocnemius muscle atrophy after nerve denervation in an animal model.

Methods: In sixteen rodents an eight mm sciatic nerve gap was created. In the following 8 weeks, each week, two rodents
were euthanized and the gastrocnemius muscle was examined using two different ultrasound systems and two
investigators. The standardized ultrasound measurement protocol consisted of identifying pre-defined anatomical
landmarks: 1) the fibula, 2) the fibular nerve, and 3) the junction between the most distal point of the semitendinosus
muscle and gastrocnemius muscle. Consequently, we measured the muscle thickness as the length of the line between the
fibula and the junction between the two muscles, perpendicular to the fibular nerve. After the ultrasound recording, the
muscle mass was determined.

Results: A steep decline of muscle weight of 24% was observed after one week. In the following weeks, the weight further
decreased and then remained stable from 6 weeks onwards, resulting in a maximal muscle weight decrease of 82%. The
correlation coefficient was .0.96 between muscle diameter and weight using both ultrasound systems. The inter-rater
reliability was excellent for both devices on the operated side (ICC of 0.99 for both ultrasound systems) and good for the
non-operated site (ICC’s: 0.84 & 0.89). The difference between the muscle mass ratio and the muscle thickness ratio was not
more than 5% with two outliers of approximately 13%.

Discussion: We have developed an innovative, highly reliable technique for quantifying muscle atrophy after nerve injury.
This technique allows serial measurements in the same animal over time. This is a significant advantage compared to the
conventional technique for quantifying muscle atrophy, which requires sacrificing the animal.
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Introduction

The preferred treatment of a peripheral nerve injury is a direct

tension-free end-to-end repair. [1] However, in large nerve

defects, an interposition graft is required, as tension on the nerve

repair is detrimental to neural regeneration. [2,3] A nerve

autograft is considered the ‘‘Gold Standard’’ for these large

defects, although full functional recovery is rarely achieved. [4]

Therefore, innovative and more effective nerve reconstruction

techniques are still sought [5,6].

As a first step in the development of reconstruction techniques,

in vivo animal experiments are widely used. [7] In these

experiments, a number of different techniques are used to evaluate

both functional and histological regeneration. One measure of

motor outcome is the gastrocnemius muscle index (GMI), which is

a standardized measure of gastrocnemius muscle weight, normal-

ized to the contralateral gastrocnemius muscle weight. The

rationale for quantifying muscle weight is that the weight decreases

after denervation due to atrophy followed by an increase after re-

innervation. As such, the GMI is an indirect measure for muscle

force and thus nerve regeneration [8].

The GMI is calculated by dividing the wet gastrocnemius

muscle weight of the operated leg with the contralateral side.

Calculation of the GMI is a sacrificial procedure and does not

allow serial assessment of nerve re-innervation of the gastrocne-

mius muscle. A significant disadvantage of the GMI calculation is

therefore that a separate group of animals must be sacrificed for

each specific time point to determine the pattern of atrophy and

the regain of muscle weight over time. [9] As a result, a relatively

lager number animals is required when the GMI is used to assess
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motor recovery. Repeated measurement of muscle atrophy and

regeneration in the same animal would be highly desirable to

reduce the number of animals in experimental studies on

peripheral nerve regeneration and yet have an adequate statistical

power.

Ultrasound has already been implemented at large as a clinical

imaging tool for the musculoskeletal system. In experimental

research it is also a widely used tool; an example is the assessment

of muscle after denervation in a rabbit model. [10] Additionally,

clinical studies have been published describing the ultrasono-

graphic measurement of atrophy and muscle cross sectional area

with a high reliability and with a strong correlation to MRI

findings (i.e., ICC=0.74–0.94) [11,12].

Hence, the purpose of this study was to examine the reliability

and validity of ultrasonographic measurement of gastrocnemius

muscle size after denervation as an alternative to the GMI index.

The following questions were investigated: (1) Is ultrasonography

a valid measure of muscle atrophy when compared to muscle mass

and (2) what is the interrater and intrarater reliability of

ultrasonographic measurement of muscle atrophy. Our hypothesis

is that non-invasive ultrasound assessment of the gastrocnemius

muscle over time could be a reliable and valid alternative to the

GMI that will allow repeated measurements in the same animal at

different points in time without having to sacrifice the animal.

Methods

Animals and Anesthesia
Animals were cared for under the guidelines of our center and

the experiment was approved by the Animal Experiments

Committee of the Erasmus MC, University Medical Center

(Permit number: DEC#133-11-03) according to the National

Experiments on Animals Act and conducted following this law that

serves the implementation of Directive 86/609/EC of the Council

of Europe.

Sixteen male Wistar rats, weighing 250–300 gr, were studied.

All animals were operated under general anesthesia (Isoflurane

administered continuously via nose cone, 1–2% in O2). During the

procedures, the animals were monitored by visual inspection (i.e.,

breathing) and the temperature was maintained by means of

a computer-regulated heating pad (37uCelcius).

Surgical Technique
The surgical procedure was performed by a single surgeon using

standard aseptic techniques and an operating microscope (Zeiss

OP-MI 6-SD; Carl Zeiss, Goettingen, Germany) on the sciatic

nerve of the left hind limb. The non-operated right limb sciatic

nerve served as pairwise control. The sciatic nerve was exposed

through an oblique skin incision over the gluteal region. A muscle

splitting approach was utilized to reach the nerve. An 8 mm

segment of the nerve was isolated, placing sutures on both the

proximal and distal nerve stumps before excising. After removing

the nerve segment, the muscle was closed using 1 6/0 Vicryl

Rapide suture, followed by closing the skin using 6/0 Vicryl

Figure 1. Experimental set-up. The experimental set-up of the ultrasound recording using the Philips L15-7io probe. (A) Position of the ultrasound
probe in relation to the rodent, (B) illustration of the position of the tibial bone relative to the probe, (C) angulation of the probe (20 degrees in both
the Z-Y axis) and (D) the position of the probe from above.
doi:10.1371/journal.pone.0054041.g001
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Rapide Sutures (Ethicon, Johnson & Johnson, Amersfoort, the

Netherlands).

Experimental Set-up
The rodents were examined at regular intervals for 2 months

after the index procedure of creating the nerve defect in all sixteen

rodents. During a 2 month period after creating the nerve defect in

all sixteen rodents, each week, the gastrocnemius muscle in two

animals was assessed by ultrasound and consequently the

gastrocnemius muscle index was determined. For the ultrasound

evaluation, the leg of the animal was placed in a stainless steel

emesis basin that was filled with water as a substitute for

Figure 2. Anatomy. An overview of the anatomy of the rat hind limb. (A) Depicts the anatomy of the muscles, (B) shows the skeletal system and (C)
illustrates the major nerves.
doi:10.1371/journal.pone.0054041.g002
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conductivity gel and to standardize the pressure on the gastroc-

nemius muscle during the procedure. The rodent was kept warm

using the heating pad and placed at the same level as the top of the

emesis basin. The leg of the rodent was positioned at an angle of

20u to the basin side, with the toes on the floor of the emesis basin.

The leg was positioned in such a way that the iliac crest of the leg

was located on top of the basin edge. A detailed illustration of our

experimental set-up is depicted in Figure 1.

Ultrasound Recordings
Two investigators blinded to each other’s results performed the

ultrasonographic examinations in the same session, both using two

different ultrasound systems. The ultrasound recordings were

performed with the SonoSite Titan Ultrasound (SonoSite Inc.,

Bothell, USA) and the Philips iU22, NZE 737 ultrasound system

(Philips Healthcare – Ultrasound, Eindhoven, the Netherlands).

The Titan SonoSite had a L38 probe (5–10 MHz) and the Philips

system a L15-7io probe (7–15 MHz). The gastrocnemius thickness

and cross-sectional area were determined by scanning in the

sagittal plane of the muscle. In each measurement, the ultrasound

probe was placed transversely on the gastrocnemius muscle at an

approximate 20u angle from the water surface.

The location used to measure muscle thickness was standard-

ized to find the most reproducible measure of the gastrocnemius

muscle at, or close to, it’s thickest point (i.e., the maximum

diameter). The standardized protocol consisted of identifying pre-

determined landmarks: 1) the fibula, 2) the fibular nerve, and 3)

the junction between the most distal point of the semitendinosus

muscle and gastrocnemius muscle in the ultrasound image. An

overview of the anatomy essential for identifying the landmarks is

depicted in Figure 2. After identifying these three anatomical

landmarks in the same ultrasound image, we measured the muscle

thickness as the diameter of a line starting from the third

anatomical point, perpendicular to the fibular nerve and the fibula

bone. This procedure was repeated three times by each in-

vestigator and then averaged for further analysis. Figure 3 depicts

typical examples of the gastrocnemius ultrasound recording and

the anatomical points that were selected.

Figure 3. Ultrasound recordings. Serial ultrasound recordings with both the Philips iU22 and the Titan SonoSite of the gastrocnemius muscle
after denervation. The thick interrupted line depicts the gastrocnemius muscle. The thin interrupted line depicts the peroneal nerve in the image of
the healthy muscle recorded with the Philips iU22. The thick interrupted line illustrates the circumference of the gastrocnemius muscle. The non-
interrupted line indicates the standardized muscle diameter measurement.
doi:10.1371/journal.pone.0054041.g003
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Gastrocnemius Muscle Index (GMI)
Following the ultrasonography evaluations, the animal was

euthanized by an overdosage of barbiturates administered in-

travenously. Consequently, the muscle was excised from the lower

leg and wet muscle weight was measured immediately using

a digital scale. The contralateral gastrocnemius was also harvested

and the GMI was calculated by dividing the muscle weight from

the operated side by that from the contralateral side.

Data Analysis
A Pearson correlation coefficient was used to determine the

relation between muscle weight and muscle thickness measured

with ultrasonography. The inter-rater reliability of the ultrasound

recordings was expressed for both ultrasound devices separately

using an interclass correlation coefficient (ICC) and its 95%

confidence interval (CI). To allow comparison of the ultrasonog-

raphy data with the GMI, which is expressed in percentages as the

ratio between the operated and the non-operated leg, we also

expressed the muscle thickness as a ratio between both legs. To

determine the difference between the GMI and the muscle

thickness ratio between both legs, we used a Bland-Altman plot

where the GMI was plotted on the x-axis and the difference

between the GMI and the muscle thickness ratio was plotted on

the y-axis. Significance was set at p,0.05.

Results

The fibula, fibular nerve and the connecting point of the

semitendinosus muscle fascia and gastrocnemius muscle could be

unambiguously identified in all animals after a short learning

curve. The average time for preparing the session was 5 minutes,

identifying the three anatomical landmarks in a single image and

measuring the diameter took about 10–15 min per leg.

Figure 4 illustrates the percentage of decrease of both muscle

weight (GMI) and muscle thickness (i.e., diameter measured with

ultrasound). A steep descent of muscle weight of 24% was

observed as early as one week after the nerve defect was created.

In the following weeks, the weight further decreased and then

remained stable from 6 weeks onwards. A maximal decrease of the

wet muscle weight of 82% was observed. Figure 4 illustrates the

percentage of decrease of muscle weight (GMI) and of muscle

thickness (i.e., diameter) measured with ultrasound. The ultra-

sound recordings had a highly similar curve of increasing muscle

atrophy over time as the curve of the GMI decreased.

Figure 5 illustrates the strong correlation between GMI and

muscle thickness from a single rater using the SonoSite Titan for

the operated leg, confirmed by a correlation coefficient of 0.97.

The same was found for the Philips ultrasound measurements of

the same rater, as well as for the measurements of the other

investigator with both ultrasound devices (0.96 for all).

The interobserver reliability was excellent for both devices on

the operated side (for both devices: ICC 0.99, 95% CI 0.98–.99)

for both devices) and good for the non-operated site (ICC 0.84,

95% CI 0.62–0.94) for the Titan Sonosite and good (ICC 0.89,

95% CI 0.66–0.95) for the Philips iU22. The high similarity

between GMI and ultrasound recordings was further confirmed by

the Bland Altman plots (Figure 6), showing that both methods

Figure 4. Decrease of muscle mass after denervation. The
weight-based GMI and ultrasound-based muscle diameter in the
operated leg expressed as a percentage of the non-operated side. To
show the pattern without averaging, only the weekly data of the first
animal are displayed.
doi:10.1371/journal.pone.0054041.g004

Figure 5. A scatter plot of the gastrocnemius muscle and the
measured muscle diameter with ultrasound. Scatter plot of the
gastrocnemius mass of the affected limb and the diameter of the
muscle measured with ultrasound. Correlation coefficients ranged
between 0,957 and 0.971 (p,0.001 for all) for both raters and both
ultrasound machines.
doi:10.1371/journal.pone.0054041.g005

Figure 6. The difference between muscle diameter and the
gastrocnemius muscle weight. A Bland Altman plot to visualize the
difference between the muscle diameter measured and the gastrocne-
mius muscle weight (GMI) in percentage of atrophy. The GMI is plotted
on the x-axis and the difference between the GMI and the muscle
thickness ratio on the y-axis.
doi:10.1371/journal.pone.0054041.g006
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generally did not differ more than 5%, with two outliers of

approximately 13%.

Discussion

The need for serial evaluation of muscle re-innervation in

a nerve injury model is imperative to determine short and long

term outcomes after nerve reconstruction. This study revealed (1)

a high correlation between muscle weight (GMI) and atrophy

evaluated using ultrasound and (2) a high intra-rater and inter-

rater reliability of the ultrasound measurements.

Previously, techniques available to evaluate serial nerve re-

generation over time were limited to the sciatic foot index and the

pinprick evaluation. [13] Other important measurements, such as

the evaluation of muscle atrophy and electrophysiology, require

invasive procedures that often necessitate sacrificing the animal

[14,15].

The rationale to use ultrasound in the examination of muscle

atrophy has already been discussed in several studies, all revealing

a successful visualization in both a non-pathological situation as

well as after a nerve injury. [16,17,18,19,20,21] In addition,

Severinsen et al. demonstrated the usefulness of ultrasound for

evaluating foot muscle atrophy in diabetic patients, suggesting that

ultrasound is a reliable method to assess muscle atrophy caused by

nerve injury. [12,22] The high reliability of the ultrasound

measurements reported in this study may largely be explained

by the standardized protocol. This protocol requires a predeter-

mined set of anatomical landmarks to enable the observers to

repeatedly measure the same section of the muscle. Another factor

contributing to the reliability of the method was measuring the

gastrocnemius diameter under water. The application of a water

bath surrounding the muscle creates an equal-pressure environ-

ment and allows an accurate assessment of the muscle, preventing

the muscle from compressing during different measurements.

We recommend practicing this method before implementation

in a study because of the learning curve of examiners. A number of

practice sessions was necessary to establish a reproducible

measurement protocol and also several sessions to teach the

second investigator to identify the anatomical landmarks and to

reproduce the measurements accurately. Our experience showed

an initial assessment of approximately 30 minutes per animal while

our final test recordings were completed within 15 minutes. We

therefore advise to have at least 5 extensive training sessions.

A limitation of the study is the discrepancy between the muscle

diameter measured using ultrasound and the GMI at weeks 4 and

5. While the ultrasound measurements did show a high correlation

between the two investigators and ultrasound systems, a difference

was found when compared to the GMI. A possible explanation

could be that our ultrasound recordings are 2D, while the muscle

weight more strongly correlates with the 3D shape of the muscle. It

could be that the muscle atrophy leads to a situation where the 2D

simplification is not as accurate as when there is no atrophy.

Another possible explanation could be the muscle density, since

the muscle diameter only gives an indication for muscle volume

and not for density. The density is defined as the ratio between the

cell volume of the muscle cells and the amount of collagen. As

atrophy develops, the muscle cell volume decreases and the

collagen deposit increases. In contrast, the GMI is calculated based

on wet muscle weight and therefore includes both density and

volume. Another limitation is that muscle volume is an indirect

measure of re-innervation. Naturally, muscle force is a more direct

measure of motor re-innervation. This limitation, however, applies

to the commonly used GMI method as well. Only studying the

muscle diameter and weight during the atrophic phase of the

muscle-weight curve could cause the third limitation. While similar

results may be anticipated, future studies are needed to establish if

the same method can measure changes in muscle diameter during

re-innervation.

These limitations notwithstanding, our data indicate the de-

velopment of a reliable and sensitive technique to evaluate muscle

diameter and thus to evaluate the amount of muscle atrophy.

Although we only tested the gastrocnemius muscle, we are

convinced that this method can be applied successfully for

assessing other muscle groups as well, including smaller muscles.

However, for each muscle, a well-defined protocol needs to be

developed to assure that the muscle is measured at a repeatable

location. This non-invasive technique is especially interesting since

it can add to other minimally invasively techniques. We have

recently demonstrated the possibility to record compound muscle

activation potentials (CMAPs) without sacrificing the animal,

allowing another measure of nerve function during regeneration in

the same animal over time. [23] Taken together, these techniques

allow reducing the number of sacrificed animals in future

experiments and allow recording repeated data over time in the

same animal when evaluating nerve regeneration.
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