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INTRODUCTION

Glutamate ionotropic receptor kainate type subunit 2 (GRIK2) 
and neuroligin-1 (NLGN1) could play a part in the function of 
the ionotropic glutamate receptors (iGluRs) and thus, influ-
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ence glutamate signaling and neuronal growth.1-4 NLGN1 are 
specific to excitatory synapses with the capacity to enhance 
excitatory synapses depending on Ca2+/calmodulin kinase II 
(CaMKII), which robustly phosphorylates the T739 domain 
of NLGN1.1 While GRIK2 acts presynaptically to decrease glu-
tamatergic transmission in the hippocampus.2 Animal stud-
ies showed that the GluK2 receptor, one of the kainite recep-
tors encoded by the GRIK2 gene, regulates the maturation of 
synaptic circuits involved in learning and memory.5 Family-
based association study in the Korean trios found preferential 
transmission of the C allele at the rs3213607 of GRIK2 in ASD.6 
For the European population, there was also a family-based 
association study identifying the GRIK2 as an ASD candidate 
gene.7 However, the family-based association study, combined 
with case-control study, based on an Indian population failed 
to find an association between GRIK2 and ASD.8 A NLGN1 
Pro89Leu (P89L) missense variant was found in ASD patients 
in the USA. Moreover, in knock-in P89L mice, the model mice 
showed abnormal social behavior.9 Previous studies showed 
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altered expression of NLGN1 in the brain was observed in sev-
eral mouse models for ASD, such as Fmr1 and Eif4ebp2 knock-
out mice.10,11 However, there is little research focusing on the 
association between ASD and GRIK2 and NLGN1 among the 
Chinese population. Based on the roles of GRIK2 and NLGN1 
in iGluRs and their inconsistent results, we think it is worth-
while to verify the association between ASD and GRIK2 and 
NLGN1 in the Chinese Han population. 

Accumulating evidence suggests that ASD is likely a neuro-
developmental disorder.12-14 Yuen et al.15 found 61 ASD-risk 
genes with sequence-level mutations, which were enriched 
in synaptic transmission, transcriptional regulation and RNA 
processing functions. The genes associated with transcrip-
tional regulation and RNA processing are more often expressed 
in the brain prenatally, while synaptic-function-related genes 
are expressed in brain throughout development. Based on the 
neurodevelopmental hypothesis, if the GRIK2 and NLGN1 
genes are involved in brain development they may be ex-
pressed in developing human brain and fluctuate with brain 
development. We, therefore, explored the spatio-temporal ex-
pression pattern in the developing prefrontal cortex using 
publicly available expression data from Brainspan.16 Further-
more, if the genes are true risk genes for ASD, the expression 
of the genes should be dysregulated in ASD. We obtained the 
publicly available expression data set GSE3832217 and per-
formed Student’s t-test. Finally, in our case-control study, we 
investigated whether the GRIK2 and NLGN1 genes were asso-
ciated with ASD risk in a Chinese population including 504 
ASD patients and 1923 healthy controls.

METHODS

Spatio-temporal expression pattern analysis of risk 
genes

To explore the spatio-temporal expression of GRIK2 and 
NLGN1 genes in developing human brain, we downloaded the 
expression data (based on RNA sequencing) from the Allen 
Institute for Brain Science16 (http://www.brain-map.org/) (ac-
cess date: 10/16/2016) (n=42 individuals). We divided the pre-
frontal cortex into four sub-regions, including dorsolateral pre-
frontal cortex (DFC), ventrolateral prefrontal cortex (VFC), 
medial prefrontal cortex (MFC) and orbital prefrontal cortex 
(OFC).18 The original expression values were linearly trans-
formed using a min-max standardization method with the 
following function: x=(x-min)/(max-min), where x repre-
sents the original expression value.

Expression analysis in ASD cases and controls
To explore whether GRIK2 and NLGN1 genes are differen-

tially expressed in ASD cases compared with controls, we ob-

tained the publicly available expression data set GSE38322.17 
GSE38322 contains brain transcriptional [including cerebel-
lum and occipital (BA19)] data of 18 ASD cases and 18 con-
trols. We downloaded the raw expression values from GEO 
(https://www.ncbi.nlm.nih.gov/gds/) and performed Stu-
dent’s t-test. 

Experiment in Chinese population

Subjects
Our study included 504 ASD patients and 1923 healthy 

controls. The ASD patients were recruited from the Maternal 
and Child Care Service Centre in Shenzhen city, Zhuhai city 
and Luohu district in China, Wuhan Mental Health Center in 
China and Special Children’s Education Agency in Suzhou, 
Guangzhou and Wuhan in China between July 2010 and July 
2016. ASD patients were diagnosed by professional neurolo-
gists based on the Diagnostic and Statistical Manual of Men-
tal Disorders Fourth Edition (DSM-IV). The control data were 
selected from GWAS data for a healthy population without 
ASD, attention-deficit/hyperactivity disorder, mental retarda-
tion or other neurodevelopmental disorders in a Chinese pop-
ulation, and they were matched with ASD patients in gender. 
This case-control study was approved by the Ethics Commit-
tee of Tongji Medical College of Huazhong University of Sci-
ence and Technology, China.

Identification of Candidate SNPs and Genotyping
The procedure for screening candidate SNPs that might be 

functional in GRIK2 gene and NLGN1 gene was as follows. 
First, we extracted the SNPs having possible functional effects 
of protein coding, splicing regulation, transcriptional regula-
tion or post-translation from the F-SNP database (http://comp-
bio.cs.queensu.ca/F-SNP). Second, these SNPs whose minor 
allele frequency (MAF) of Han Chinese in Beijing (CHB) are 
more than 5% were filtered from the HapMap database (http:// 
hapmap.ncbi.nlm.nih.gov/). Third, we assessed the linkage 
disequilibrium (LD) among these SNPs using SNAP Pairwise 
(http://www.broadinstitute.org/mpg/snap/ldsearchpw.php); 
if the SNPs were in strong LD with each other (r2≥0.80), we con-
sidered reserving only one to analyze any further. As a result, 
there were two SNPs, which could be used to further selection, 
in GRIK2 gene (rs6922753) and NLGN1 gene (rs9855544).

Genomic DNA was extracted from oral swabs sample us-
ing TIANamp Swab DNA Kit DP080714 (Tiangen, Beijing, 
China) by reference to the manufacturer’s instructions. DNA 
concentration and optical density were tested by a NanoDrop 
1000 spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA). Genotyping was performed at the BIO MIAOBI-
OLOGICAL Corporation (Beijing, China) with the Seque-
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nomMassARRAY platform (San Diego, CA, USA) according 
to the manufacturer’s protocol. The MassARRAY Assay De-
signer software (v3.1) was used to design PCR primers and 
termination mixes for multiplexed assays. The mass of extend-
ed primer was determined using a MALDI-TOF mass spec-
trometer and we analyzed the resulting genotype spectra us-
ing Mass ARRAY Type4.0 software.

Statistical analysis
The ggplot2 package (http://ggplot2.org/) in R (v3.2.5) was 

used to plot the spatial-temporal expression patterns of the 
risk genes. GEOquery (http://geoquery.org/) and ggplot2 pack-
age were used to analyze the expression pattern in ASD cases 
and controls from GED dataset. SPSS software v22.0 was used 
for statistical analyses in experiment of Chinese population. 
The Hardy-Weinberg equilibrium (HWE) for genotypes was 
analyzed by Goodness-of-fit χ2 test in the healthy controls. Un-
conditional logistic regression (LR) using dominant, recessive 
and genotype models for each SNP were executed in associa-
tion analysis. Odds ratios (OR) and 95% confidence intervals 
(95% CI) were adopted to assess the relative risk conferred by 
a possibly risk allele and genotype. To control for the false dis-
covery rate (FDR), the Benjamin-Hochberg method was used 
to adjust the p values for multiple tests within the univariate 
LR analysis. The statistical power to detect the effects of the 
SNPs was calculated by Power v3.0.0. For example, for SNPs 
with minor allele frequency (MAF) of 0.312, and the preva-
lence of ASD in China was 2.00%, the power of the sample size 
to detect an OR of 1.50 was 88.4%. All p values were two-tailed 
with a statistical significant level set at 0.05.

Informed consent and confidentiality
The experiments of the article was approved by the Ethics 

Committee of Tongji Medical College of Huazhong Universi-
ty of Science and Technology, China. Informed consent was 
acquired from the participants or participants’ guardians. The 
patient’s information was confidential. An ID was given to each 
participant. There were no real names, initials, or disclose in-
formation that might identify a particular person. 

Ethical approval
All procedures performed in studies involving human par-

ticipants were in accordance with the 1964 Helsinki declara-
tion and its later amendments.

RESULTS

Spatio-temporal expression pattern analysis of risk 
genes

The NLGN1 gene showed higher expression levels at em-

bryonic and fetal stages [8 pcw (post conception weeks) to 4 
mos] compared with childhood and adulthood stages (8 yrs 
to 40 yrs) (Figure 1), suggesting this gene may have a role in 
neurodevelopment.19 The GRIK2 gene showed a trend of down-
regulated expression levels across age (Figure 1).

Expression analysis in ASD cases and controls
mRNA expression of NLGN1 in ASD was significantly up-

regulated in the cerebellum (p<0.001). There was no signifi-
cant change in the occipital (p=0.145) (Figure 2). mRNA ex-
pression of GRIK2 did not show significant changes in the 
cerebellum (p=0.088) or occipital (p=0.712) in the GSE38322 
data set (Figure 2). Considering that the trend of GRIK2 ex-
pression level was downregulated across age in developing hu-
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Figure 1. Expression patterns of the GRIK2, NLGN1 genes in hu-
man frontal cortex. Expression level of the genes across the entire 
developing stages [from 8 post-conception weeks (pcw) to 40 years 
(yrs)] were depicted in the frontal cortex, which was divided into DFC, 
MFC, OFC and VFC. The expression data were downloaded from 
Brainspan. DFC: dorsolateral prefrontal cortex, VFC: ventrolateral 
prefrontal cortex, MFC: medial prefrontal cortex, OFC: orbital pre-
frontal cortex.

Figure 2. Dysregulation of GRIK2, NLGN1 genes in ASD cases vs 
cases controls. The vertical axis represented the mRNA expres-
sion of NLGN1 and GRIK2 genes in the cerebellum and occipital 
in GSE38322 data set.
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man brain from Brainspan16 and Webster’s study showed the 
same trend in schizophrenia,20 we still included the GRIK2 
gene in the subsequent validation study in the Chinese Han 
population.

Experiment in Chinese population

Subjects’ characteristics
In this case-control study, there were 504 ASD patients (441 

males and 63 females, 8.23±3.15 years) and 1923 healthy con-
trols (1683 males and 240 females, 61.38±8.51 years) for anal-
ysis. There was no statistically significant difference in the dis-
tribution of gender (χ2=0.000, p=0.991) between cases and 
controls. The ASD and controls were matched according gen-
der (male:female ratio of 7:1).

Association analysis between individual SNPs and ASD 
risk

The two SNPs conformed to Hardy-Weinberg equilibrium 
(p>0.05). The MAFs of the two SNPs were similar to those in 
the 1000 Genomes Project of Han Chinese in Beijing, China. 
The statistical power for detecting the effects of the SNPs were 
88.4% and 90.8% (Table 1). As shown in Table 2, the two SNPs 

were significantly associated with ASD risk. The T allele and 
the TC genotype of the rs6922753 polymorphism in GRIK2 
were significantly associated with decreased risk of ASD (re-
spectively: OR=0.840, 95% CI=0.722–0.976, p=0.023; OR= 
0.802, 95% CI=0.651–0.988, p=0.038), as was the dominant 
model (OR=0.791, 95% CI=0.649–0.963, p=0.020). The NLGN1 
rs9855544 polymorphism for the G allele and GG genotype 
played a significant protective role in ASD susceptibility (re-
spectively: OR=0.844, 95% CI=0.732–0.973, p=0.019; OR=0.717, 
95% CI=0.539-0.954, p=0.022). However, after adjusting p val-
ues, the statistical significance was lost (p>0.05).

DISCUSSION

In our study, we explored the spatio-temporal expression 
pattern in the developing prefrontal cortex and mRNA ex-
pression in ASD cases compared with controls of GRIK2 and 
NLGN1 genes using the publicly available expression data. 
The results suggested that the genes may have a role in the 
human brain and contribute to the risk of ASD.19 In the sub-
sequent validation study in the Chinese Han population, we 
found that rs6922753 in GRIK2 and NLGN1 rs9855544 poly-
morphisms were unlikely to be associated with ASD. The sta-

Table 1. Basic information of SNPs in study

Gene SNP MA MAF* MAF† MAF‡ p§ Power (%)
GRIK2/GLUR6 rs6922753 T 0.342 0.312 0.385 0.851 88.4
NLGN1 rs9855544 G 0.458 0.418 0.462 0.082 90.8
*the minimum allele frequency of the SNPs in the control group, †the minimum allele frequency of the SNPs in the 1000 Genomes Project in 
the Han Chinese in Beijing, China, ‡the minimum allele frequency of the SNPs in the 1000 Genomes Project in the Japanese in Tokyo, Japan, 
§Hardy-Weinberg equilibrium test. MA: minor allele, MAF: minor allele frequency

Table 2. Association analysis between individual SNP and ASD risk

SNP Genotype Case (%) Control (%) OR (95%CI) p* FDR-P
rs6922753 C 696 (69.6) 2530 (65.8) 1.00

T 304 (30.4) 1316 (34.2) 0.840 (0.722–0.976) 0.023 0.058
CC 246 (49.2) 834 (43.4) 1.00
TC 204 (40.8) 862 (44.8) 0.802 (0.651–0.988) 0.038 0.076
TT 50 (10.0) 227 (11.8) 0.747 (0.533–1.046) 0.090 0.113
Dominant model 0.791 (0.649–0.963) 0.020 0.100
Recessive model 0.830 (0.601–1.147) 0.259 0.259

rs9855544 A 574 (58.3) 2083 (54.2) 1.00
G 410 (41.7) 1763 (45.8) 0.844 (0.732–0.973) 0.019 0.190
AA 171 (34.8) 583 (30.3) 1.00
GA 232 (47.2) 917 (47.7) 0.863 (0.690–1.078) 0.194 0.216
GG 89 (18.1) 423 (22.0) 0.717 (0.539–0.954) 0.022 0.073
Dominant model 0.817 (0.662–1.007) 0.058 0.097
Recessive model 0.783 (0.608–1.009) 0.059 0.084

*p values were calculated by binary logistic regression, adjusted by gender. OR: odds ratio, CI: confidence interval, FDR: false discovery rate
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tistical significance was lost after controlling for the false dis-
covery rate (FDR). Studies with larger sample sizes are needed.

Synaptic transmission underlies every aspect of brain func-
tion. Excitatory synapses, which release the neurotransmitter 
glutamate, are the most numerous type of synapse in the brain. 
Furthermore, the trafficking of glutamate receptors to and 
from these synapses controls the strength of excitatory synap-
tic transmission.21 Glutamate receptors and synapses are shown 
to be related to disrupted synapse development and homeo-
stasis in ASD. iGluRs are integral membrane proteins com-
posed of four large subunits that form a central ion channel 
pore. Disruption in synaptic transmission often implicates re-
duced AMPA- and NMDA-dependent glutamatergic trans-
mission.22 Weak NMDA antagonists may be effective in treat-
ing ASD, predicting that NMDA hyperfunction has a role in 
ASD.23 Downregulation of AMPARs is related to the reduction 
of plasticity and post-synaptic excitatory potentials, which are 
strongly associated with learning and memory, and disrup-
tion of these may underlie intellectual disabilities in ASD.22

The GRIK2 gene codes for the kainate receptor subunit 2. 
It has been suggested as a candidate gene for ASD because of 
its localization in the autism specific region on chromosome 
6q21 and the involvement of the receptor protein in cognitive 
functions like learning and memory.8,24 Recently, a chromo-
somal microarray (CMA) analysis describing a 19-year old pa-
tient showed two de novo microdeletions that spanned 10 
genes including GRIK2.25 Mutation screening revealed sever-
al SNPs, including one nucleotide variation changing the pro-
tein (M867I) of GRIK2, which may be functionally relevant to 
the development of ASD.26 Shuang’s family-based association 
study in Chinese Han trios demonstrated that GRIK2 rs2227281 
and rs2227283 showed preferential transmission and revealed 
an association between the GluR6 locus and ASD.27 However, 
our study suggests that the rs6922753 in GRIK2 is unlikely to 
confer susceptibility to ASD in the Chinese population. Stud-
ies using larger samples, which are representative of all of the 
Chinese population, are needed. In addition, our study results 
are consistent with family-based studies in the Indian popu-
lation, which also failed to show evidence of genetic associa-
tion of GRIK2 with ASD.8 

Neuroligins are postsynaptic cell adhesion molecules that 
are important for synaptic function. NLGN1 is localized pre-
dominantly to excitatory synapses and plays a pivotal role in 
brain glutamatergic transmission and cognition.1 NMDARs 
are dispensable for synapse formation and connect to NLGN1 
in that both bind to PSD-95, which is proven to be associated 
with ASD in a previous study.28 NLGN1-mediated synaptic po-
tentiation is diminished after chronic blockade of NMDARs, 
suggesting that the function of NLGN1 is influenced by NM-
DAR signaling.29 Previous studies have indicated that NLGN1 

is associated with ASD,9 schizophrenia,30 Alzheimer’s disease,31 
depression32 and post-traumatic stress disorder.33 A novel 
NLGN1 Pro89Leu (P89L) missense variant was found in two 
ASD siblings, which led to the impairment of spine formation 
and changes in protein degradation and cellular localization. 
The results were validated in an experiment of knock-in P89L 
mice.9 Although it has been reported in previous studies, we 
found the significance was lost between NLGN1 and ASD af-
ter FDR. One of the reasons for this discrepancy may be the 
heterogeneity of ASD and the difference between Chinese and 
other races. Our inability to detect an association with the 
SNPs does not imply that NLGN1 is not a candidate gene for 
ASD in the Chinese population. It is necessary to explore the 
possibility that other polymorphic variants of NLGN1 gene 
act as risk alleles for ASD before coming to a conclusion on its 
involvement in ASD.

To the best of our knowledge, this is the first study to ex-
plore a correlation between polymorphisms in these two 
iGluRs-related genes and ASD in a Chinese Han population 
combined with the analysis of publicly available datasets. We 
got the negative findings about the two SNPs. As we known, 
the ASD is a polygenic complex disease. Genome-wide asso-
ciation studies have identified some important single nucleo-
tide polymorphisms, but none has a large enough effect to be 
deemed causal.34 However, up to 40% of simplex families and 
60% of multiplex families (in which more than one individu-
al has autism) could have several single nucleotide polymor-
phisms that, when combined, have an additive effect on risk.35 
These results demonstrate that a myriad of common variants 
of very small effect impacts ASD liability. In our study, the lo-
gistic regression showed the significant p value before FDR, 
which may show the minor effect of the two genes. The limi-
tations of this study were that we did not exactly match our 
controls to cases. We used public controls from an exon chip 
genotyping database for a healthy population. The studies were 
based on the hypothesis that human genotypes generally do 
not change with age, and the differences that come from age 
could be diluted by the large sample size of controls. For an-
other, there are many case-control studies in genetic studies.36-39 
The common application of case-control research proves its 
rationality to some extent. However, we could not ignore the 
advantages of other study designs, such as family-based and 
twin studies, as the ASD is high familial. Further analyses based 
on rigorous case-control studies or family-based studies along 
with substantially larger sample size are required.

In summary, the analysis of the publicly available datasets 
indicated that GRIK2 and NLGN1 may have a role in the de-
velopment of human brain and NLGN1 gene was dysregulat-
ed in the cerebellum of ASD cases. The following experiment 
in the Chinese Han population implied that the single poly-
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morphisms of rs6922753 in GRIK2 and rs9855544 in NLGN1 
were unlikely to demonstrate an association with the develop-
ment of ASD. 
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