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Do results obtained with RNA-sequencing require independent verification?
Measuring the expression of genes on a genome-wide scale has
become an essential part of many biofilm studies. Historically this was
done using microarrays (e.g. Refs. [1,2]), but currently ‘next-generation
RNA sequencing’ (RNA-seq) (mostly using the Illumina sequencing
technology) has become the method of choice for transcriptome studies
(e.g. Refs. [3–5]). Besides these techniques that provide information
about gene expression at the genome-scale level (i.e. quantify the
expression level of all genes), other approaches can be used to measure
the expression levels of a smaller subset of genes. This includes quanti-
tative real-time PCR (qPCR) (e.g. Refs. [6,7]) and the construction of
translational fusion reporters in which the gene coding for the transcript
of interest is coupled to a reporter gene like eGFP (e.g. Ref. [8]) or lacZ
(e.g. Ref. [9]). Historically the latter approaches (most often qPCR) have
been used to confirm data obtained in large-scale transcriptomics studies,
but whether this is necessary and/or provides an added value is not al-
ways clear. Authors, reviewers and editors often struggle with this
question and the aim of this editorial is to provide a balanced overview of
the issue and provide some guidance.

The main question in this debate comes down to: how reliable is RNA-
seq to identify differentially expressed genes and to estimate how much
their expression differs between different conditions? And is qPCR
needed to validate such expression differences? The focus on validation
of genome-scale expression studies likely stems from prior work with
microarrays. While microarrays allowed to carry out gene expression
studies on a scale not seen before, and despite their overall high level of
performance, some concerns were raised about reproducibility and bias
(e.g. Refs. [10,11]). Because of this, many researchers felt the need to
validate microarray results with qPCR. However, RNA-seq does not suffer
from the same issues as (some) microarrays did and there are a number of
studies that have specifically addressed the correlation between results
obtained with RNA-seq and qPCR. A comprehensive analysis was pub-
lished by Everaert et al. [12], in which five RNA-seq analysis pipelines
are compared to wet-lab qPCR results and this for >18.000
protein-coding genes. While this study is based on RNA samples from
human origin, there is nothing that suggests the outcome of this study
would be different for studies with microorganisms. One of the main
conclusion from this study is that depending on the analysis workflow
15–20% of genes are considered as ‘non-concordant’ when results ob-
tained with RNA-seq are compared to results obtained with qPCR (with
‘non-concordant’ defined as both approaches yielding differential
expression in opposing directions, or one of the methods showing dif-
ferential expression while the other does not). However, of the genes
showing non-concordant results, 93% show a fold change lower than 2
and approx. 80% show a fold change lower than 1.5. In addition, of the
non-concordant genes with a fold change > 2, the vast majority are
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expressed at very low levels. Overall, the conclusion was that there ap-
pears to be a very small fraction (approx. 1.8%) of genes that are severely
non-concordant, and these genes are typically lower expressed and
shorter. Examples of other studies that show good correlations between
results obtained with qPCR and with RNA-seq include [13–16]. A more
general reflection on the value of validation in genome-scale studies can
be found in Ref. [17].

A second important aspect in this discussion is feasibility. It is not a
priori known for which genes RNA-seq potentially yields non-concordant
results in a particular study set up and as such it could be suggested to
determine expression levels of all genes with qPCR or, alternatively,
randomly select some genes for follow-up with qPCR. The former option
is obviously not realistic in terms of cost and workload (and defeats the
purpose of doing RNA-seq in the first place). The latter option could be an
alternative, but how many genes need to be confirmed with another
approach? As some genes are concordant and others are non-concordant,
obtaining concordant results for a random selection of genes is no
guarantee that other genes have been correctly identified as differentially
expressed by RNA-seq and seems unlikely to provide much added value
in most cases.

If all experimental steps and data analyses are carried out according to
the state-of-the-art, results from RNA-seq are expected to be reliable and
if they are based on a sufficient number of biological replicates, the added
value of validating themwith qPCR (or any other approach) is likely to be
low. However, the situation is different when an entire story is based on
differential expression of only a few genes, especially if expression levels
of these genes are low and/or differences in expression are small. In such
a case, orthogonal method validation (e.g. by qPCR or reporter fusions)
seems appropriate, as one wants to make sure that the observed differ-
ences in expression for these genes on which the story is based are real
and can be independently verified. In addition, qPCR would be valuable
to measure expression of selected genes in additional samples. E.g. when
RNA-seq identifies differential expression of gene X in a particular strain
and/or condition, qPCR could be used to confirm this differential
expression in additional strains and/or conditions.

While not the main topic of this editorial, I would like to point out
that it is important to follow the minimum information guidelines that
have been developed for different techniques and biological experiments;
an overview of these can be found at https://fairsharing.org/collectio
n/MIBBI. Of particular relevance in this context are the MIQE guide-
lines for qPCR (https://fairsharing.org/FAIRsharing.mxz4jy) [18] and
the MINSEQE guidelines for high-throughput sequencing (https://fairsh
aring.org/FAIRsharing.a55z32). In addition, it is worth emphasizing that
also for biofilm experiments such minimal guidelines are available
(MIABiE, https://fairsharing.org/FAIRsharing.6mk8xz) [19] and that
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there is a specific minimum information guideline for biofilm experi-
ments in microtiter plates [20].

In conclusion, the data available suggest that RNA-seq methods and
data analysis approaches are robust enough to not always require vali-
dation by qPCR and/or other approaches, although there are situations
where this may be of added value. While this editorial by no means
presents a comprehensive overview of this topic, the hope is that it will
provide some guidance to scientists struggling with the question whether
RNA-seq data obtained in biofilm studies need independent verification.
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