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Abstract 

Background  This study investigated the oral microbiome signatures associated with upper gastrointestinal (GI) 
and pancreaticobiliary cancers.

Methods  Saliva samples from cancer patients and age- and sex-matched healthy controls were analyzed using 16S 
rRNA-targeted sequencing, followed by comprehensive bioinformatics analysis.

Results  Significant dissimilarities in microbial composition were observed between cancer patients and controls 
across esophageal cancer (EC), gastric cancer (GC), biliary tract cancer (BC), and pancreatic cancer (PC) groups 
(R2 = 0.067, = 0.075, = 0.068, and = 0.044; p = 0.001, = 0.001, = 0.002, and = 0.004, respectively). Additionally, the oral 
microbiome composition significantly differed by the four cancer sites (p = 0.001 for EC vs. GC, EC vs. BC, EC vs. PC, 
GC vs. BC, and GC vs. PC; p = 0.013 for BC vs. PC). We built oral metagenomic classifiers to predict cancer and selected 
specific microbial taxa with diagnostic properties. For EC, the classifier differentiated cancer patients and controls 
with good accuracy (area under the curve [AUC] = 0.791) and included three genera: Akkermansia, Escherichia-Shigella, 
and Subdoligranulum. For GC, the classifier exhibited high discriminative power (AUC = 0.961); it included five genera 
(Escherichia-Shigella, Gemella, Holdemanella, Actinomyces, and Stomatobaculum) and three species (Eubacterium sp. 
oral clone EI074, Ruminococcus sp. Marseille-P328, and Leptotrichia wadei F0279). However, microbial taxa with diagnos‑
tic features for BC and PC were not identified.

Conclusions  These findings suggested that the oral microbiome composition may serve as an indicator of tumori‑
genesis in upper GI and pancreaticobiliary cancers. The development of oral metagenomic classifiers for EC and GC 
demonstrates the potential value of microbial biomarkers in cancer screening.
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Introduction
Gastrointestinal (GI) tract cancers are present in over 
one-quarter of all cancer cases and cause over one-third 
of cancer-related deaths worldwide [1]. The five most 
common GI cancers include esophageal, gastric, colorec-
tal, liver, and pancreatic cancers (PCs), together consti-
tuting more than 90% of all GI cancers; more than 60% of 
the cases and deaths occur in Asia [2, 3]. Although biliary 
tract cancer (BC) is relatively rare compared with these 
common GI cancers, its incidence and mortality rate are 
steadily increasing. The Republic of Korea has the high-
est BC-related mortality rate and the second highest inci-
dence of BC [4, 5]. Previous studies have explored several 
risk factors and potential markers for GI cancers. How-
ever, a more precise and multifaceted understanding of 
GI cancers is required for improved disease prevention 
and treatment strategies.

The GI tract, extending from the oral cavity to the dis-
tal colon, is inhabited by an estimated 1014 microbial cells 
that outnumber human cells by at least tenfold [6]. The 
coding capacity of the microbes significantly exceeds 
that of the human genome. Consequently, human genetic 
features are now assumed to arise from the combination 
of microbial and human genomes [7]. The term “micro-
biome” refers to the cumulative genetic composition of 
microorganisms within various body habitats, which 
plays a crucial role in physiological processes ranging 
from host metabolism to immune reactions [8]. The fecal 
microbiome has been most widely investigated; the oral 
microbiome, the second largest and most diverse micro-
bial ecosystem (approximately 770 species), has also been 
associated with human health [9, 10]. Notably, nitrate-
reducing bacteria, including Veillonella dispar and Actin-
omyces odontolyticus, convert nitrate into nitrite, which is 
further metabolized into nitric oxide (NO). This pathway 
plays a crucial role in blood pressure regulation, antimi-
crobial defense, and oral health improvement by reduc-
ing inflammation and preventing caries [11, 12].

There has been increasing interest in the role of 
the human microbiome in human health, particu-
larly because several studies have revealed associations 
between microbial alterations and systemic diseases 
[13–19]. Cancer has also drawn attention because Heli-
cobacter pylori was classified as a class-I carcinogen by 
the World Health Organization based on its ability to 
promote stomach cancer after chronic infection [20, 
21]. An emerging concept in cancer biology is that the 
microbiome constitutes an influential environmental fac-
tor modulating the carcinogenic process; tumorigenesis 
is presumably influenced by compositional instability in 
microbial communities. For example, researchers have 
demonstrated intestinal microbiome involvement in sev-
eral cancer types, including colorectal, gastric, and liver 

cancers [14, 15]. Additionally, periodontopathogens, such 
as P. gingivalis, T. forsythia, and T. denticola, reportedly 
increase the risk of certain cancer types, including pan-
creatic, colon, and lung cancers, indicating an association 
between oral dysbiosis and tumorigenesis in organs dis-
tant from the oral cavity [17–19].

Despite mounting evidence regarding the roles of 
microbiomes in cancer development, the association 
between oral dysbiosis and GI cancer development 
remains poorly understood. The present study investi-
gated the oral microbiome composition in patients with 
esophageal cancer (EC), gastric cancer (GC), BC, and PC. 
We hypothesized that upper GI and pancreaticobiliary 
cancer patients would exhibit distinctive oral microbiome 
characteristics compared with healthy individuals. Com-
parative analyses were also used to assess oral micro-
biome profiles among cancer patients with different 
primary tumor sites. Subsequently, oral metagenomic 
classifiers to predict upper GI and pancreaticobiliary can-
cers were constructed; we identified microbial taxa that 
could potentially serve as diagnostic markers for cancer 
patients.

Materials and methods
Study design
This study utilized a case–control design (Fig. 1) involv-
ing 42 EC, 19 GC, 14 BC, and 21 PC patients diagnosed 
at the Seoul National University Bundang Hospital 
(SNUBH) between December 2019 and February 2022. 
In accordance with best practices for observational stud-
ies, we have followed the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) 
guidelines [22]. A completed STROBE checklist has been 
included in Supplementary Table  1 to ensure transpar-
ency and comprehensiveness in reporting. Samples were 
collected before patients underwent any surgical or ther-
apeutic treatment. Clinicopathological data, including 
demographics, TNM cancer stage (American Joint Com-
mittee on Cancer, 8th edition), histologic subtype, and 
tumor differentiation, were collected. Pathological TNM 
stage was determined for patients who underwent surgi-
cal resection, whereas clinical staging was used for those 
who did not undergo surgical resection. Healthy controls 
were recruited from among visitors to the dental clinic of 
SNUBH, selected based on the absence of systemic dis-
ease. All potential participants were informed about the 
study’s purpose and procedures. A questionnaire survey 
was conducted to gather information regarding disease 
history, including hypertension, diabetes, chronic infec-
tions, liver and kidney diseases, cardiovascular disease, 
autoimmune diseases, and malignant tumors, as well 
as the history of antibiotic use within the preceding 
6 months. Electronic medical records, routine laboratory 
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test results, and dental charts were reviewed to verify 
participants’ medical histories.3 Age- and sex-matched 
controls were selected for each cancer group [n = 31 
(EC), = 19 (GC), = 14 (BC), and = 21 (PC)]. In addition 
to the aforementioned clinical variables, information 
about potential microbiome-related confounding factors 
was collected, including alcohol consumption, tobacco 
smoking, and periodontitis severity, assessed by dental 
experts and classified according to the Centers for Dis-
ease Control and Prevention-American Academy of Peri-
odontology definition. However, dental inspections could 
not be performed on GC patients; periodontitis severity 
data were missing for this group in downstream analyses. 
The clinical characteristics of the patients and healthy 
controls are presented in Tables 1 and 2. Detailed infor-
mation regarding periodontal status and oral hygiene is 
provided in Supplementary Table 2.

Sample collection and preparation
Participants were instructed to refrain from oral hygiene 
activities for at least 2 h before sample collection. Saliva 
was collected from the oral cavity for 20  min without 
stimulation prior to any dental procedures that could 
alter the oral microbiome. All specimens were immedi-
ately transported to the laboratory and stored at − 70  °C 
until DNA extraction. Microbial DNA was isolated from 

each specimen using the QIAamp DNA Microbiome Kit 
(QIAGEN, Venlo, The Netherlands), in accordance with 
the manufacturer’s standard protocol.

16S rRNA‑targeted sequencing
The PHiCS Institute (Seoul, Korea) performed 16S 
rRNA-targeted sequencing. DNA quality was assessed 
using Qubit dsDNA HS Assay Kits (Thermo Fisher Sci-
entific, Waltham, MA, USA). Polymerase chain reaction 
(PCR) targeting the V3 and V4 hypervariable regions of 
16S rRNA genes was conducted using KAPA HiFi Hot-
Start ReadyMix PCR kits (Roche, Basel, Switzerland), in 
accordance with the manufacturer’s instructions. The 
primer sequences used for PCR amplification were 519F: 
5′-CCT​ACG​GGNGGC​WGC​AG-3′ and 806R: 5′-GAC​
TAC​HVGGG​TAT​CTA​ATC​C-3′. Libraries were con-
structed using Nextera XT DNA library preparation kits 
(Illumina, San Diego, CA, USA) and pooled to achieve 
a final loading concentration of 8  pM. Subsequently, 
paired-end (2 × 300 bp) sequencing was performed using 
the MiSeq platform (Illumina).

Microbiome data analysis
Taxonomic classification
Reads were processed using a Divisive Amplicon Denois-
ing Algorithm (DADA)−2-based pipeline within the 

Fig. 1  Schematic of the study design. The study included 42 esophageal cancer (EC), 19 gastric cancer (GC), 14 biliary tract cancer (BC), and 21 
pancreatic cancer (PC) patients, along with age- and sex-matched healthy controls [n = 31 (EC), = 19 (GC), = 14 (BC), and = 21 (PC)]. Comparative oral 
microbiome analyses were performed between each cancer and its matched control group, as well as among the cancer groups
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QIIME2 platform [23, 24]. An amplicon sequencing 
variant (ASV) table was produced through quality-based 
filtering and trimming, read deduplication, and ASV 
inference, followed by paired-end merging and chimera 
removal. For taxonomic analysis of microbial composi-
tion, sequences were taxonomically classified against the 
99% SILVA rRNA taxonomy using a pre-trained scikit-
learn naive Bayes machine-learning classifier within the 
QIIME q2-feature-classifier plugin [25, 26].

Diversity analysis
The following analyses were conducted using R software 
(version 4.1.2; R Development Core Team, Vienna, Aus-
tria). QIIME artifacts were imported into the R envi-
ronment using the qiime2R package [27]. To address 
artifactual biases, feature tables were normalized by rar-
efaction. Alpha and beta diversity indices were calculated 
using the phyloseq package [28]. Shannon entropy was 
used for alpha diversity analysis. Beta diversity indices, 
including Bray–Curtis and unweighted UniFrac distance 
matrices, were computed to estimate dissimilarities in 
microbial composition between samples. Principal coor-
dinates analysis was used to visualize broad trends of 
sample dissimilarities, whereas permutation multivari-
ate analysis of variance (PERMANOVA) and distance-
based redundancy analysis (db-RDA) were conducted to 
quantify the explanatory power of clinical variables with 
respect to microbial community variance using the vegan 
package [29].

Differential abundance (DA) testing
To identify differentially abundant genera and species in 
cancer patients compared with their matched controls, 
we conducted Wilcoxon rank-sum tests on centered 
log-ratio (CLR)-transformed taxonomic abundances. 
Before analysis, microbial taxa with prevalence < 0.05 
across all samples were removed. DA tests on taxonomic 
abundance were also performed among cancer patients 
to identify any microbial taxa that varied among the 
patients with four different tumor sites. All pairwise com-
parisons were conducted between pairs of cancer patient 
groups. Multiple testing correction was performed using 
the Benjamini-Hochberg (BH) method, and taxa were 
considered differentially abundant when q < 0.05. Effect 
size was calculated as the mean of the decile differences 
of CLR abundance between groups.

Multivariable modeling
To obtain multivariable models for the classification of 
cancer patients and healthy individuals, multivariable 
logistic regression models with L1 (LASSO) regulariza-
tion were constructed on CLR-transformed microbial 
abundances using the glmnet R package [30]. Abundance 

tables were initially filtered by selecting the univariably 
associated microbial taxa identified through DA analy-
sis. Data were randomly split into test and training sets 
in 10 repeated tenfold cross-validation. For each split, the 
regression model was trained on the training sets, and 
the trained model was then used to predict the left-out 
test set. Lambda parameters were selected to minimize 
mean binomial deviance, ensuring that more than three 
non-zero coefficients were retained for the final models. 
In addition to the binomial microbial classifiers for dis-
criminating between EC, GC, BC, and PC and their con-
trol groups, a multinomial logistic regression model was 
fitted to determine the optimal variable combination for 
discriminating among the four cancer groups. This was 
achieved through filtration, normalization, and LASSO 
variable selection procedures, as described above.

Statistical analysis
CLR transformation of raw feature counts was per-
formed to enable the application of conventional statisti-
cal techniques to microbial abundance data. Associations 
between categorical variables in contingency tables were 
assessed using either the Chi-square test or Fisher’s exact 
test. For continuous variables, nonparametric differences 
were analyzed using either the Wilcoxon rank-sum test 
or the Kruskal–Wallis H test. All statistical tests were 
two-sided, and p-values < 0.05 were considered statisti-
cally significant. Correction for multiple testing was car-
ried out using the BH method, and statistical significance 
was determined based on a q-value threshold of < 0.05.

Multivariable models were evaluated using the pROC 
and multiROC R packages for binomial and multinomial 
logistic regression models, respectively [31]. Sensitivi-
ties, specificities, and area under the curve (AUC) of the 
receiver operating characteristic curves for the classifica-
tions were calculated. Evaluation metrics for multiclass 
classification were computed by reducing the multiclass 
predictions to multiple sets of binary predictions in a one 
vs. rest manner, followed by macro- and micro-averaging 
across all groups. The 95% confidence interval (CI) of 
the AUC was computed using 2000 bootstrap replicates. 
Moreover, the predicted probability of cancer derived 
from the abundance of each taxon within the models was 
estimated by maintaining other variables at their mean 
values.

Results
Associations of oral microbiome with upper GI 
and pancreaticobiliary cancers
We investigated the microbial compositions in the oral 
cavities of patients with EC, GC, BC, and PC, along 
with their matched healthy controls. The predomi-
nant phylum in both cancer and control groups was 
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Firmicutes, followed by Actinobacteria and Proteobac-
teria (Fig. 2A), representing 48.0%, 20.6%, and 13.9% of 
healthy controls and 52.1%, 23.0%, and 11.0% of cancer 
patients, respectively. At the genus level, Streptococcus 
and Rothia were the most abundant taxa across all con-
trol and cancer groups, representing 24.1% and 16.9% 
of all healthy individuals and 27.8% and 19.8% of all 
patients, respectively.

Although dominant taxa remained consistent 
between control and cancer groups, diversity analy-
ses revealed microbial shifts in the oral cavity associ-
ated with upper GI and pancreaticobiliary cancers. A 
comparison of Shannon index values showed that EC 
patients exhibited greater alpha diversity compared 
with healthy individuals (p = 0.002, Wilcoxon). Simi-
larly, GC patients showed increased microbial richness 
in the oral cavity compared with controls (p = 0.011, 
Wilcoxon), whereas no significant differences were 
observed between patients and healthy controls in the 
BC and PC groups (p = 0.1 and = 0.58, respectively, Wil-
coxon; Fig. 2B).

To explore dissimilarities in microbial composition 
between cancer and corresponding control groups, 
beta diversity analysis was conducted using the Bray–
Curtis distance. Although baseline characteristics were 
balanced between cancer cases and controls (Tables  1 
and 2), we investigated potential confounders, includ-
ing age, sex, alcohol consumption, smoking habits, and 
periodontitis severity, to adjust for covariates as appro-
priate (Supplementary Table  3). Microbial composi-
tion differed according to periodontitis severity in EC 
patients and their control group (p = 0.003, R2 = 0.052, 
PERMANOVA), whereas tobacco smoking contrib-
uted to 4.7% of microbial variance in PC patients and 
their matched controls. Principal coordinates analy-
sis and PERMANOVA of the Bray–Curtis distance 
revealed significant dissimilarities in microbial com-
position between cancer patients and controls; disease 
status explained 6.7%, 7.5%, 6.8%, and 4.4% of the total 
oral microbiome variance in the four cancer types, 
respectively (p = 0.001, = 0.001, = 0.002, and = 0.003, 
respectively; Fig.  2B). Additionally, despite adjustment 
for covariates, oral microbiome differences persisted 

between cancer patients and healthy individuals [EC: 
p = 0.001 (adjusted for periodontitis severity, PER-
MANOVA), PC: p = 0.004 (adjusted for tobacco smok-
ing, PERMANOVA)].

We next examined community-level microbial diversity 
in cancer cases to determine potential differences in oral 
microbiome composition among patients with four dis-
tinct cancer sites. Regarding alpha diversity, significant 
variations were observed in Shannon entropy of the oral 
microbiome among each of the cancer groups, except 
between EC and GC and between BC and PC (p = 0.007 
for EC vs. BC, p = 0.02 for EC vs. PC, p = 0.009 for GC 
vs. BC, and p = 0.044 for GC vs. PC, Wilcoxon; Fig. 3B). 
EC and GC patients exhibited higher microbial rich-
ness levels in their oral cavities compared with BC and 
PC patients. Additionally, primary sites of upper GI and 
pancreaticobiliary cancers were correlated with dis-
similarities in oral microbiome composition (R2 = 0.130, 
p = 0.001, PERMANOVA); pairwise differences remained 
statistically significant for all cancer groups (p = 0.001 for 
EC vs. GC, EC vs. BC, EC vs. PC, GC vs. BC, and GC vs. 
PC; p = 0.013 for BC vs. PC, PERMANOVA; Fig. 3C and 
D). Considering the potential effect of patient heteroge-
neity on our findings, we explored associations between 
microbial variance and other clinical features. We found 
that tobacco smoking habit (yes/no) and presence of 
distant metastasis (M0/M1) also contributed to sali-
vary microbial variance (R2 = 0.020 and = 0.018, respec-
tively, p = 0.019, PERMANOVA; Fig. 3C, Supplementary 
Table 4). Despite adjustment for smoking and M stage as 
covariates to quantify the marginal effects of primary site 
on beta diversity in cancer patients, tumor sites contin-
ued to explain 12.8% of total variance in the oral microbi-
ome (Supplementary Table 4).

Disease‑associated oral microbial taxa in upper GI 
and pancreaticobiliary cancer patients
Building on the associations of community-level diver-
sity of the oral microbiome with upper GI and pan-
creaticobiliary cancers, we conducted DA analyses to 
identify cancer-associated genera and species (q < 0.05, 
BH-adjusted, Wilcoxon). Our findings revealed sig-
nificant differences in the abundances of eight and 14 

Fig. 2  Comparison of community-level oral microbiome characteristics between upper gastrointestinal (GI) and pancreaticobiliary cancer patients 
and healthy controls. A Genus and species compositions of the oral microbiome in each group [top left: esophageal cancer (EC), top right: gastric 
cancer (GC), bottom left: biliary tract cancer (BC), bottom right: pancreatic cancer (PC); CON, controls; Ca, cancer patients]. Phyla and genera 
representing less than 1% and less than 2.5% of the microbial community are shown as < 1% and < 2.5%, respectively. B Alpha (Shannon entropy) 
and beta (Bray–Curtis distance) diversity, and their associations with disease status [top left: EC, top right: GC, bottom left: BC, bottom right: 
PC (*p < 0.05; **p < 0.01; ns, not significant, Wilcoxon)]. R2 value indicates the proportion of variance explained by disease status in each group, 
as confirmed by PERMANOVA

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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genera in EC and GC patients, respectively, compared 
with their respective controls. However, one genus 
was differentially abundant in BC patients, and none 
was identified in PC patients. At the species level, we 
detected two and six species with significant DA in EC 
and GC patients, respectively, compared with healthy 

controls; none showed significant DA in BC and PC 
groups (Fig. 4A and B).

Seven genera (Akkermansia, Parabacteroides, Blau-
tia, Collinsella, Escherichia-Shigella, Subdoligranulum, 
and Fusicatenibacter) and two species (Bacteroides ple-
beius and Parabacteroides merdae) were consistently 

Fig. 3  Comparison of community-level oral microbiome characteristics among esophageal cancer (EC), gastric cancer (GC), biliary tract cancer (BC), 
and pancreatic cancer (PC) patients. A Genus and species compositions of the oral microbiome in EC, GC, BC, and PC patients. Phyla and genera 
representing less than 1% and less than 2.5% of the microbial community are shown as < 1% and < 2.5%, respectively. B Differences in alpha 
diversity (Shannon entropy) among cancer groups (*p < 0.05, **p < 0.01, Wilcoxon). C Associations between beta diversity (Bray–Curtis distance) 
and clinicopathological variables in cancer patients. Bars represent the percentage of explained variance relative to the total microbial variance, 
and the orange color indicates statistical significance (p < 0.05, PERMANOVA). D Bray–Curtis distance-based redundancy analysis (db-RDA) of cancer 
patients. Variance constrained by the clinical variables included in db-RDA explained 16.8% of the total microbial variance. Variables are illustrated 
using arrows, where arrow length indicates the contribution of each variable to microbial variance. The colors of dots and ellipses represent tumor 
sites
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decreased in both BC and GC patients compared with 
healthy individuals. Meanwhile, we also observed 
microbial taxa with disease associations specific to cer-
tain cancers. For example, Ruminococcaceae UCG-013 
showed a significant decrease in EC patients compared 
with controls. Additionally, five genera (Gemella, Para-
prevotella, Holdemanella, Actinomyces, and Stoma-
tobaculum) and four species (Eubacterium sp. oral 
clone EI074, Ruminococcus sp. Marseille-P328, Bacte-
roides dorei, and Leptotrichia wadei F0279) were sig-
nificantly decreased, whereas two genera (Actinomyces 
and Stomatobaculum) were enriched in GC patients 
(Fig. 4C).

We observed several microbial taxa in the EC and GC 
groups whose direction of change in cancer patients 
compared with healthy subjects was opposite to that 
in the BC and PC groups (Fig. 4C). Akkermansia, Para-
bacteroides, Blautia, Collinsella, Escherichia-Shigella, 
Subdoligranulum, and Fusicatenibacter were decreased 
in EC and GC patients, whereas they showed increasing 
trends in BC and PC groups, compared with healthy 
individuals. Conversely, Actinomyces, Neisseria, and 
Stomatobaculum were significantly or tended to be 
enriched in EC and GC patients, but were diminished 
in BC and PC patients, compared with controls.

Furthermore, we conducted comparative analy-
ses to identify oral microbial taxa that varied among 
cancer patients with different primary tumor sites. 
Intriguingly, no taxa showed DA between EC and GC 
patients or between BC and PC patients. However, 15 
and 23 genera were differentially abundant in EC and 
GC patients, respectively, compared with BC patients. 
We also detected three and 10 genera that were sig-
nificantly reduced in EC and GC patients, respectively, 
compared with PC patients. Subdoligranulum and 
Bifidobacterium were among the oral genera with the 
greatest differences between cancer groups, followed 
by Rothia, Bacteroides, and Blautia. Similarly, the top 
five species exhibiting DA were Bacteroides dorei, Para-
bacteroides merdae, Bacteroides plebeius, Streptococ-
cus intermedius, and Rothia dentocariosa (Fig.  4D). 

Detailed DA testing results for the cancer groups are 
provided in Supplementary Table 5.

Oral metagenomic classification models of upper GI 
and pancreaticobiliary cancers
To consolidate univariably associated microbial taxa into 
a comprehensive model and select predictive microbial 
taxa while eliminating less informative ones, we con-
structed oral microbiome-based classifiers using LASSO 
logistic regression models. Because DA analysis did not 
identify any significant taxa in PC patients and only one 
taxon in BC patients compared with controls, multivari-
able modeling was conducted for EC and GC groups. The 
classifier for EC effectively discriminated between can-
cer patients and healthy individuals with good accuracy 
[AUC = 0.791 (95% CI: 0.679–0.892)]. It included three 
genera, Akkermansia, Escherichia-Shigella, and Subdol-
igranulum, for which increased abundance reduced the 
probability of cancer (Fig.  5A). Similarly, the binomial 
model for differentiating GC patients from healthy con-
trols exhibited high discriminative power [AUC = 0.961 
(95% CI: 0.889–1)]. Variables with non-zero coefficients 
in this model comprised five genera (Escherichia-Shigella, 
Gemella, Holdemanella, Actinomyces, and Stomatobacu-
lum) and three species (Eubacterium sp. oral clone EI074, 
Ruminococcus sp. Marseille-P328, and Leptotrichia wadei 
F0279). An increase in Stomatobaculum, Actinomyces, 
or Leptotrichia wadei F0279 increased the risk of GC, 
whereas increases in the remaining taxa decreased the 
risk (Fig. 5B).

Moreover, a multinomial logistic regression model was 
obtained to identify the optimal combination of micro-
bial taxa for discriminating among cancer patients with 
four primary sites. Of the 32 genera and 14 species with 
univariable associations, the model selected 18 genera 
and eight species, achieving high accuracy for classify-
ing cancer groups [macro-average AUC = 0.950 (95% 
CI: 0.912–0.972), micro-average AUC = 0.948 (95% CI: 
0.917–0.979)]. The coefficients of the variables are pre-
sented in Fig. 6B.

Fig. 4  Differentially abundant microbial taxa in the oral microbiome of upper gastrointestinal (GI) and pancreaticobiliary cancer patients. A–C 
Genera and species exhibiting significant differences between esophageal cancer (EC), gastric cancer (GC), biliary tract cancer (BC), and pancreatic 
cancer (PC) patients and their control groups. Venn diagrams show significant genera (A) and species (B) with disease associations in EC, GC, 
and BC patients relative to healthy individuals, some of which were common between EC and GC patients. Heatmap illustrates the results of DA 
tests, highlighting the directions of changes in microbial abundance in cancer patients compared with controls. The effect size was calculated 
as the mean of the decile differences of centered log-ratio (CLR) abundance between two groups; an effect size > 0 indicated that a taxon 
was increased in patients compared with healthy individuals. D Genera and species exhibiting significant differences among cancer groups. The five 
most differentially abundant taxa are shown in the plots. Correction for multiple testing was performed using the Benjamini–Hochberg method, 
and statistical significance was determined as q < 0.05 (*q < 0.05, **q < 0.01, ***q < 0.001, Wilcoxon)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Discussion
To our knowledge, this study represents the first com-
prehensive analysis of the oral microbiome in upper GI 
and pancreaticobiliary cancer patients. We investigated 
the oral microbiome signatures of EC, GC, BC, and PC 

by 16S rRNA-targeted sequencing of saliva samples 
from cancer patients and their age- and sex-matched 
healthy controls. Our study demonstrated associations 
between oral dysbiosis and upper GI and pancreatico-
biliary cancers (Figs. 2 and 3). The oral microbiome can 

Fig. 5  Performances of oral metagenomic models in the classification of cancer patients and healthy individuals, obtained through LASSO logistic 
regression analysis with cross-validation. A, B Left panel shows classifier predictive accuracies as receiver operating characteristic (ROC) curves, 
with 95% confidence intervals (CIs) shaded. Values in parentheses represent CIs for area under the curve (AUC) values. Black ‘X’ markers indicate 
the optimal cutoff points, where the models achieved 73.8% sensitivity and 77.4% specificity (A), and 94.7% sensitivity and 89.5% specificity (B). 
Right panel shows the coefficients of selected variables in the model. Red, blue, and gray colors indicate positive, negative, and zero coefficients, 
respectively. A: esophageal cancer (EC); B: gastric cancer (GC); CON, controls; Ca, cancer patients; Sens, sensitivity; Spec, specificity
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be influenced by various demographic and biological 
factors, leading to inter-individual variability in micro-
bial composition; this variability may explain the lack 
of consistent findings across studies [32, 33]. There-
fore, we examined the extent to which confounding fac-
tors, such as smoking habits and periodontitis severity, 
explained microbial variance to identify genuine associa-
tions between oral microbial variance and cancer. Com-
parisons between cancer patients and healthy individuals 
revealed significant decreases in alpha diversity in EC and 
GC patients, as well as beta diversity differences across 
all cancer types, compared with their respective controls, 
both with and without adjustment for covariates (Sup-
plementary Tables 3 and 4). Furthermore, significant dif-
ferences in the oral microbiome were observed among 
cancer patients with different tumor sites; microbial rich-
ness was higher in EC and GC patients than in BC and 
PC patients, and dissimilarities in composition were pre-
sent among the groups.

EC is the seventh most common cancer type and the 
sixth most common cause of cancer mortality worldwide; 
more than half of the cases occur in Asia [3]. Because 
EC is often asymptomatic during the early stages, many 
cases are diagnosed at an advanced stage, contributing 
to high mortality rates [34]. Considering the need for 
early detection markers, previous studies have explored 
the association between the salivary microbiome and EC 
risk, yielding potential microbiological markers for EC 
[35, 36]. Our study successfully identified characteris-
tic microbial taxa in the oral microbiome of EC patients 
(Figs.  4 and 5). Specifically, Akkermansia, Escherichia-
Shigella, and Subdoligranulum exhibited predictive fea-
tures; a multivariate model achieved an AUC of 79% 
in classifying EC patients and healthy individuals. A 
decrease in abundance among these genera corresponded 
to an increase in the probability of EC. Notably, Akker-
mansia, a probiotic isolated from the human intestine, 
has been detected in saliva and inversely correlated with 
inflammatory diseases [37–40]. Its presence, particularly 
that of Akkermansia muciniphila, appears to downregu-
late the production of inflammatory cytokines associ-
ated with periodontal and systemic inflammation (such 
as interleukin-10 and interleukin-12) [39] and stimulate 

anticancer immune responses targeting the PD-1/PD-L1 
interaction [41]. The lower abundance of Subdoligranu-
lum, a butyrate-producing bacterium, has been associ-
ated with various diseases, including type 2 diabetes and 
inflammatory bowel disease (IBD). Its co-occurrence 
with Akkermansia species has also been demonstrated in 
several studies [42–44].

Although H. pylori is a key pathogen in gastric carcino-
genesis, only 3% of H. pylori-positive individuals develop 
GC, and H. pylori colonization is dramatically reduced 
in cancerous lesions. These findings imply the involve-
ment of other microbes in GC progression [21, 45, 46]. 
Our results suggested that the oral microbiome plays a 
role in GC pathogenesis, consistent with previous reports 
[47–50]. We successfully constructed oral metagenomic 
classifiers with high accuracy (AUC: 96%) for predicting 
GC. Escherichia-Shigella, Gemella, Holdemanella, Actin-
omyces, Stomatobaculum, Eubacterium sp. oral clone 
EI074, Ruminococcus sp. Marseille-P328, and Leptotri-
chia wadei F0279 demonstrated diagnostic properties. 
In particular, Gemella and Holdemanella, the reduction 
of which appeared to increase GC risk, have been high-
lighted for their health implications in previous studies. 
Gemella, an indigenous anaerobic bacterium in the oral 
cavity, has been described as a component of the symbi-
otic microbial flora because its abundance was higher in 
healthy controls than in periodontitis patients [51, 52]. 
Holdemanella biformis has exhibited antitumor activity 
by reducing tumor cell proliferation through mechanisms 
involving histone acetylation and nuclear factor of acti-
vated T cells-3 [53].

Pancreaticobiliary cancer, although less common than 
EC and GC, lacks diagnostic markers other than cancer 
antigen 19–9 for early detection; thus, most patients are 
diagnosed with metastatic or locally advanced cancer, 
precluding curative surgery [3, 54]. Despite its relatively 
low cancer morbidity, PC has been widely studied for 
its association with oral dysbiosis [19, 55–58]. Salivary 
microbiome composition significantly differs between PC 
patients and healthy controls [56, 57]. Some species with 
diagnostic properties for PC—for example, decreases 
in Neisseria elongate, Neisseria mucosa, and Streptococ-
cus mitis, and increases in Granulicatella adiacens and 

Fig. 6  Performances of oral metagenomic model in the classification of upper gastrointestinal (GI) and pancreaticobiliary cancer patients, 
obtained through LASSO multinomial logistic regression analysis with cross-validation. A Model predictive accuracies were evaluated by reducing 
multiclass [esophageal cancer (EC) vs. gastric cancer (GC) vs. biliary tract cancer (BC) vs. pancreatic cancer (PC)] predictions to multiple sets of binary 
predictions in the one vs. rest manner, depicted as receiver operating characteristic (ROC) curves. Values in parentheses represent 95% confidence 
intervals (CIs) for area under the curve (AUC) values. The optimal cutoff points for each model yielded the following sensitivity and specificity 
values: EC—87.0% and 88.1%; GC – 94.8% and 89.5%; BC—98.8% and 92.9%; PC—90.7% and 95.2%. For the macro- and micro-average models, 
the sensitivity and specificity were 89.3% and 89.2%, and 89.9% and 92.7%, respectively. B Lollipop plots show the coefficients of selected variables 
in the model. Red, blue, and gray colors represent positive, negative, and zero coefficients, respectively

(See figure on next page.)
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Fusobacterium periodonticum—have been reported, 
but there has been minimal consistency across studies 
[55, 56, 58]. Conversely, there are limited data available 

regarding the microbiome in BC; most studies have ana-
lyzed bile or biliary tract tissue based on the hypothesis 
that introducing gut bacteria into the biliary system alters 

Fig. 6  (See legend on previous page.)
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bile composition and behavior towards tumorigenesis 
[59–61]. Although we observed community-level dis-
similarities in the oral microbiome between pancreatico-
biliary cancer patients and the control groups, we could 
not detect any specific microbial taxa with diagnostic 
features.

Intriguingly, we observed an inverse correlation 
between the magnitude of oral dysbiosis and the dis-
tance from the oral cavity to the organ where the tumor 
occurred. Specifically, a cancer site closer to the mouth 
was associated with more pronounced cancer-related 
changes in the oral microbiome. This relationship was 
evident in our data, where PC showed the lowest con-
tributions to oral microbial variance, as indicated by the 
smallest R2 value (4.3%) compared with other cancer 
groups (Fig.  2). Although predictive models with high 
accuracy were obtained for patients with upper GI can-
cer, no differentially abundant taxa were detected for PC 
patients compared with healthy controls, and only one 
was identified for BC patients. Furthermore, taxonomic 
changes in cancer patients were correlated with the dis-
tance between the oral cavity and the primary tumor site. 
Oral taxa with significant decreases in upper GI cancer 
patients relative to healthy individuals showed a decreas-
ing trend among pancreaticobiliary cancer patients, and 
vice versa (Fig.  4). The db-RDA plot in Fig.  5 revealed 
overlap between BC and PC patients, whereas other 
groups formed distinct clusters.

Researchers have proposed several plausible mecha-
nisms by which oral dysbiosis may induce systemic dis-
eases, particularly cancer. Oral infection or dysbiosis 
can influence the production of pathogen-associated 
molecular patterns, such as lipopolysaccharides, lead-
ing to initiation of systemic inflammatory and immune 
responses [62]. This chronic inflammation contributes 
to cancer progression by increasing the production of 
anti-apoptotic proteins, growth factors, and cytokines 
that support cancer growth and dissemination [63, 64]. 
Another mechanism involves the direct translocation of 
microbes between the oral cavity and distant organs [65, 
66]. Because the oral cavity serves as the entry to the GI 
tract, oral bacteria can be swallowed and easily reach 
other organs, and vice versa. For example, resident oral 
species, such as Fusobacterium nucleatum, have been 
found in the gut microbiome of patients with IBD and 
colorectal cancer [67]. Considering the inter-organ net-
working behavior of the oral microbiome, the degrees 
and patterns of oral dysbiosis may be correlated with the 
distance between the oral cavity and the organ where 
tumor occurs.

This study had some limitations that must be 
addressed. First, because our study population was small 
and from a single institution, the generalizability of our 

findings might be limited. Further studies involving 
multi-center collections from larger populations with 
diverse geographic and genetic backgrounds are neces-
sary to validate the robustness of the classification mod-
els. Furthermore, while we assessed the presence and 
severity of periodontitis, we acknowledge that additional 
periodontal factors—such as the use of antimicrobial 
mouthwash in the six months prior to the study, the pres-
ence of gingivitis, and other periodontal diseases—could 
influence the oral microbiota. Although we included 
self-reported data on participants’ toothbrushing habits, 
more detailed oral hygiene behaviors and their potential 
impact on oral dysbiosis should be further investigated. 
Finally, as this is an observational study, causal relation-
ships between variables cannot be firmly established. To 
better understand the dynamic interactions between oral 
health and cancers, future studies should employ longi-
tudinal designs and incorporate additional in  vitro and 
in  vivo models, including animal studies, to explore the 
causal links between oral dysbiosis and upper GI and 
pancreaticobiliary cancers and further validate the diag-
nostic potential of the screened differential bacteria.

Conclusions
In conclusion, we identified distinctive oral microbi-
ome features in upper GI and pancreaticobiliary cancer 
patients compared with healthy individuals, and we dem-
onstrated that oral dysbiosis patterns were correlated 
with primary cancer sites. Although the mechanisms by 
which oral microbial taxa identified in this study contrib-
ute to pathogenesis are not yet fully understood, the oral 
metagenomic models for EC and GC suggest the feasibil-
ity of constructing diagnostic microbial markers for can-
cer screening.
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