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Recovery of horse fly populations 
in Louisiana marshes following the 
Deepwater Horizon oil spill
Claudia Husseneder1, Jong-Seok Park1,2 & Lane D. Foil1

The Deepwater Horizon oil spill in April 2010 had unprecedented impact on the Gulf of Mexico. We 
established the greenhead horse fly (Tabanus nigrovittatus Macquart) as a bioindicator of marsh health. 
This species is bound to coastal marshes, since its larvae develop as top invertebrate predators in the 
marsh soil. Immediately after the oil spill (2010–2011), populations of this horse fly declined in oiled 
areas of Louisiana marshes with significant impacts on genetic structure. In this follow-up study five 
years after the catastrophic event (2015–2016), we now report signs of recovery of populations in 
formerly oiled areas. Fly numbers increased compared to previous counts. Previously detected genetic 
bottlenecks in oiled populations have disappeared. Migration into oiled areas began to replenish 
formerly depleted horse fly populations in impacted regions with populations from non-oiled areas as 
an important source of migrants. Parameters of family structure that had been impacted by the oil spill 
(number of breeding parents, effective population size, number of family clusters) rebounded to levels 
similar to or exceeding those in non-oiled control areas.

In April 2010, the Deepwater Horizon (DWH) oil spill caused the largest man-made accidental marine oil spill to 
date with a total release of approximately 5 million barrels of oil into the Gulf of Mexico1 causing ecosystem-level 
injury to marine and coastal environments. Coastal Louisiana received the largest share of contamination by oil/
dispersant mixture of all the Gulf States impacting its valuable and vulnerable salt marshes2–6.

When the oil made landfall, wide-spread destruction of marsh vegetation was observed3,7,8. Microbial and 
meiofaunal communities decreased in diversity and community function shifted towards oil degrading taxa9–12.  
The large majority of infauna that serve as prey for higher trophic levels (meiobenthos, nematodes, ostracods, 
copepods, annelids, among others) experienced high mortality in both heavily and moderately oiled sites in 
Louisiana salt marshes with their lowest diversity and density occurring 18 months after the oil spill13–16. 
Furthermore, McCall and Pennings17 reported that arthropod predators, herbivores, parasitoids and detrivores 
were suppressed by 50% at oiled sites in 2010.

One of the most extensive studies on the impact of the oil spill on an arthropod species with close association 
to the salt marsh was our study of population changes of the greenhead horse fly, Tabanus nigrovittatus Macquart 
(Diptera: Tabanidae), in oiled areas18. We established this horse fly species as our prime bioindicator model of 
marsh health for several reasons: 1. this species is native and linked to Spartina marshes from Texas to Nova 
Scotia; 2. the carnivorous larvae of this species develop for 3–9 months as the top predators within the inverte-
brate food web in the marsh soil, and their development is dependent on and a sign for the presence of a healthy 
food web in the sediment; 3. adult populations are highly visible, easy to catch, and 4. have shown immediate 
responses to the presence of oil in the marsh18,19. Population census and genetic studies of T. nigrovittatus showed 
population decline in both adult and larval numbers in oiled locations compared to unoiled locations in 2010 
and 201118. Genetic bottlenecks, loss of breeders, shrinking family sizes, and reduced migration rates provided 
combined proof for a loss of effective population size and a change in population structure in oiled areas. The 
immediate decline in the adult population was likely due to attraction to oil sheen on the water since oiled lakes 
have been shown to be insect traps20.

We presumed that the recovery of the greenhead horse fly would be closely linked to the decline of oil toxicity 
and subsequent recovery of infaunal communities reported in the literature and could be used as a measurable 
indicator for the underlying recovery of the Spartina marsh and the food web it contains. Therefore, we followed 
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up on the fate of the greenhead horse fly in Louisiana Spartina marshes 5 to 6 years after the oil spill by pursuing 
the following scientific questions.

	 1.	 Have census numbers of adult horse flies in oiled areas increased in 2015 and 2016 compared to the years 
immediately after the oil spill (2010–2011)?

	 2.	 Have successful migrants replenished formerly depleted populations in oiled areas and has migration 
changed the population genetic structure over time?

	 3.	 Do the previously detected genetic bottlenecks in oiled populations still exist?
	 4.	 Have parameters of family structure that were impacted by the oil spill changed to indicate increased effec-

tive population size and population recovery when reexamined in 2015 and 2016?

Results
Signs of increases in abundance of horse fly adults and larvae in formerly oiled areas.  Immediately  
after the oil spill (2010, 2011), adult horse fly trap catches were magnitudes lower in oiled areas; yet in 2016, num-
bers of adult horse flies caught near oiled areas in Plaquemines Parish were not significantly different from those 
caught in the non-oiled areas of Cameron Parish. In 2016, adult horse fly trap catches in formerly oiled areas, i.e., 
Elmer’s Isle, Grand Isle (Jefferson Parish) and Grand Bayou (Plaquemines Parish, Fig. 1) have increased (Table 1) 
compared to the severely reduced population numbers in oiled areas in 2010 and 2011. Although increases in 
adult numbers in formerly oiled areas were small, the incidence rate of detecting larvae in the marsh soil rose 
seven-fold at least in the Grand Bayou location. In 2011, we found only 1 larva in 8 sediment samples (0.13 larvae 
per sample) at Grand Bayou, while in 2016 we found 14 larvae in 16 samples (0.9 larvae per sample). The latter 
lies within the range of larva recovered from non-oiled areas with an average of 1–3 larvae per sample in 2011 and 
0.8–1.2 larvae per site in 2016 at Cypremort Point and Rockefeller Wildlife Refuge. In contrast to the increased 
larval numbers at Grand Bayou, the larval count in 15 samples collected at Grand and Elmer’s Isle stayed zero in 
2016, although slightly more adult flies were collected.

Figure 1.  Map of the sampling locations of tabanid populations from non-oiled (Cameron and St. Mary Parish 
in West Louisiana) and oiled (Jefferson and Plaquemines Parish in East Louisiana) regions. Adult collections 
from four locations with 4–5 traps at each site were used for population abundance studies18. Samples also 
used for population genetic analyses are marked by text boxes (SC = Ship Channel, SCO = Oak Grove, 
RWR = Rockefeller Wildlife Refuge, CP = Cypremort Park, CYO = Cypremort Point, CYRC = Cypremort 
Road and Canal, EI = Elmer’s Isle, GIW = Grand Isle West, GIP = Grand Isle Park, GB = Grand Bayou).The 
background map is based on imagery published online by the United States Geological Service [https://cmgds.
marine.usgs.gov/publications/of2008-1195/html/imagepages/land_sat.html].

Region/Parish

2010 2011 2016

Mean ± SE Mean (log x + 1) ± SE Mean ± SE Mean (log x + 1) ± SE Mean ± SE Mean (log x + 1) ± SE

Cameron 82.24 ± 6.62 3.88 ± 0.17a 53.25 ± 6.92 3.35 ± 0.18a 14.07 ± 3.09 2.39 ± 0.15bc

St. Mary 37.97 ± 6.64 2.62 ± 0.17b 38.01 ± 6.49 3.32 ± 0.17ab 55.61 ± 14.40 3.38 ± 0.26a

Jefferson 0.85 ± 6.06 0.42 ± 0.16f 1.34 ± 6.46 0.62 ± 0.17ef 1.72 ± 0.40 0.86 ± 0.09ef

Plaquemines 3.94 ± 5.82 1.17 ± 0.15de 4.51 ± 5.43 1.13 ± 0.14def 5.83 ± 0.97 1.73 ± 0.18cd

Table 1.  Mean number of adult Tabanus nigrovittatus trapped (flies per hour) by region and year. Different 
letters indicate statistical difference (P < 0.005, Tukey-Kramer).

https://cmgds.marine.usgs.gov/publications/of2008-1195/html/imagepages/land_sat.html
https://cmgds.marine.usgs.gov/publications/of2008-1195/html/imagepages/land_sat.html
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Population genetic structure.  The five trap samples of adult tabanids from 2015 were all genetically dif-
ferent from each other based on their allele frequencies at the 5% level (10,000 permutations, FSTAT) determined 
by microsatellite genotyping. However, not all of the 18 trap samples (312 individuals) collected in 2016 were 
significantly genetically differentiated based on their allele frequencies at the 5% level (153,000 permutations, 
FSTAT). We combined samples that were not genetically differentiated and collected within the same location. 
This process resulted in eight genetically independent populations for 2016. For comparison, these genotyping 
data were analyzed together with data collected immediately after the oil spill18.

Population genetic analysis via TESS assigned the individual tabanids from the 26 sample populations span-
ning the years from immediately after the oil spill (2010 and 2011) to six years after (2015 and 2016) to eight 
major genetic clusters (Fig. S1 in Supporting Information). The plot of the membership coefficients (Fig. 2) that 
assign each individual horse fly to its predominant genetic cluster(s) visualizes the change in population genetic 
structure of T. nigrovittatus in oiled and non-oiled areas over a period of six years following the DWH oil spill.

The 2010 populations collected immediately after the oil spill of oiled and non-oiled areas fell into distinctly 
separated genetic clusters with none of the individuals assigned with membership coefficients of >80% to any 
region other than their own. In the first two years after the oil spill, the control populations were homogeneous 
suggesting high gene flow among those populations. In 2011, genetic signatures from the control populations 
(purple, Fig. 2) started to show up in the oiled regions indicating beginning migration from non-oiled to oiled 
regions, but not vice versa. Only one individual in one non-oiled population (RWR) showed affiliation to genetic 
signatures seen in oiled regions (gold, Fig. 2). In 2015, populations from formerly oiled regions showed still dis-
tinct genetic signatures with individuals belonging to genetic clusters not found in the control populations (cyan, 
Fig. 2). Similar to 2011, however, there was a considerable influx of genotypes typically found in the control areas 
(red, Fig. 2).

In 2016, essentially the same genetic signatures were found in individuals and populations from oiled and 
non-oiled regions (blue and cream, Fig. 2). Only some individuals from Elmer’s Isle (EI) retained a somewhat 
distinct genetic signature (red and orange, Fig. 2). Populations from oiled regions in 2016 showed a greater degree 
of heterogeneity, possibly reflecting immigration from different genetic clusters (blue and cream, Fig. 2) from the 
control populations.

Genetic distances and migration rates.  Genetic distances (FST) among non-oiled populations showed 
no significant difference among the years (all P ≥ 0.10, two-tailed difference of means test, 300 permutations, 
Table S1). The genetic distances among oiled populations decreased over the years with distances in 2016 
(FST = 0.083, SD = 0.064) being significantly lower compared to 2010 (FST = 0.259, SD = 0.032, P = 0.047) and 
2011 (FST = 0.200, SD = 0.054, (P = 0.017). Distances were also lower (P = 0.037) in 2015 (FST = 0.129, SD = 0.113) 
than in 2010 and marginally lower (P = 0.097) in 2011 (Table S1). The genetic distances between populations 
from non-oiled vs. those from oiled regions, which were considerably high in the two years immediately after the 
oil spill, decreased after 2011 with 2016 FST-values (0.163, SD = 0.095) being significantly lower than those from 
previous years (range 0.295 to 0.389, P < 0.001, Table S1).

Bayesian analyses demonstrated that recent migration rates (over the last few generations) among populations 
collected in 2015 and 2016 ranged from 0.1 to 25% with 68–99% being derived from the source populations in 
each generation (Table 2). This range is almost identical to what was recorded in 2010 and 201118. However, 
there were changes in source and direction of migration patterns. Immediately after the spill event in 2010, only 
migration rates from and into non-oiled regions (see Table S4 in18) exceeded the minimum value required for 
informative levels obtained from simulations in BAYESASS21. None of the populations from oiled areas showed 
meaningful levels of migration rates in 2010. Gene flow among geographically close oiled areas connecting Grand 
Isle and Grand Bayou populations with migration rates ranging from 0.026 to 0.261, was first detected in 2011, 
one year after the spill18, but continued in 2015 and 2016 (Table 2).

Figure 2.  Tabanid population genetic structure from oiled and non-oiled regions of the Louisiana Gulf coast 
(2010–2016). The graph represents assignment of adult tabanid individuals from 26 populations (x-axis) 
collected from 2010 to 2016 from unaffected and oiled locations to eight major genetic clusters. The height of 
colored bars in each column represents the membership coefficient, i.e. the likelihood with which an individual 
is assigned to each genetic cluster. Number of genetic clusters (Kmax = 8) was determined using DIC curves 
(Fig. S1).
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Migration from non-oiled into oiled areas and vice versa was mostly below the detection threshold in 2010 
and 2011 except for one non-oiled western population (SC) that contributed small proportions of migrants (m) 
to oiled areas in the east (GIP: m = 0.017 and GB3: 0.073) in 201118. In 2015, however, migration from non-oiled 
regions into formerly oiled regions increased with CP being the foremost source population (into GIP: m = 0.082, 
into EI: m = 0.119). In 2016, migration was observed from most of the non-oiled regions into all formerly oiled 
regions with reciprocity in one instance (from oiled GI into SC/RWR: 0.065, Table 2).

The average emigration rate from non-oiled regions almost doubled in 2015 and 2016 and was significantly 
higher than in the two years after the spill (Table S2). Emigration from oiled areas spiked in 2015. In 2016, emi-
gration from oiled areas was still higher than immediately after the oil spill but the difference was not significant 
due to large variance among populations (Table S2). Immigration into non-oiled areas also showed considerable 
variance among populations and, thus, did not change significantly across the years, except for an increase in 2016 
compared to 2011 (P = 0.01).

In 2016, immigration was significantly higher than in both 2010 (P = 0.001) and 2011 (P = 0.05, Table S2). 
Despite the small sample size in 2015, significantly elevated immigration rates were observed compared to 2010 
(P = 0.002), but not to 2011 (P = 0.52). Immigration into oiled areas surpassed immigration into non-oiled areas 
in 2011 (P = 0.001), 2015 (P = 0.085) and 2016 (P = 0.002).

The main sources of repopulation from non-oiled into oiled areas shifted across the years. In 2010, no migra-
tion from non-oiled into oiled areas was detected. In 2011, SC showed minor contributions in terms of migrant 
proportions to GIP (m = 0.017) and GB2 (m = 0.073)18. In 2015, increasing proportions of migrants from CP 
were detected in GIP (m = 0.082) and EI (m = 0.119). Finally, in 2016, migrant proportions ranging from 0.03 to 
0.14 originating from non-oiled areas (SC/RWR, CP, and CYRC) contributed to all formerly oiled populations 
(EI, GI, GB) (Table 2).

Previously confirmed genetic bottlenecks in oiled populations disappeared five years after the 
oil spill.  In contrast to populations collected immediately after the oil spill18, none of the populations collected 
in 2015 and 2016 showed signs of recent genetic bottlenecks. No heterozygote excess resulting from a population 
crash induced rapid loss of allele numbers was detected under the three mutation models (IAM, TPM, SMM, 
Table 3), regardless whether the area was oiled in 2010 or not. On the contrary, the majority of the populations, 
including those from oiled areas, showed significant homozygote excess in at least one of the mutation models.

Comparison of family structure between populations from non-oiled and oiled areas collected 
across six years.  Year had no significant effect in the previous data sets from 2010/2011 (GLM)18. The data 
sets were thus combined and included for comparison to the situation in 2015 and 2016 to allow assessment of 
recovery. “Year” had a marginal effect in 2015 and 2016 on the number of parents (P = 0.089, df = 1, F = 3.628) 
with significant interactions of “year” and “condition” on the number of parents (P = 0.006, df = 1, F = 12.789) 
and percent of half-sibs (P = 0.025, df = 1, F = 7.439, GLM) and the years were, thus, treated separately. When 
2015 and 2016 data sets were added to the 2010/2011 data, “year” had significant effects on the number of par-
ents (P = 0.012, df = 2, F = 5.546), the number of family clusters (P = 0.004, df = 2, F = 7.243), the percentage of 
half-sibs (P = 0.03, df = 2, F = 4.195), and a marginal effect on the effective population size (P = 0.077, df = 2, 
F = 2.915). “Condition” had a significant effect over all years on effective population size (P = 0.038, df = 1, 
F = 4.935), and the number of parents (P < 0.001, df = 1, F = 17.417).

2015
*0.0417 From

Non-oiled Regions Oiled Regions

SC CP GB GIP EI

Into

SC 0.989 0.003 0.003 0.003 0.003

CP 0.004 0.986 0.004 0.003 0.003

GB 0.006 0.006 0.750 0.233 0.006

GIP 0.013 0.082 0.012 0.882 0.011

EI 0.019 0.119 0.017 0.147 0.698

2016
*0.0236 From SC/RWR SCO CP CYO CYRC EI GI GB

Into

SC/RWR 0.792 0.011 0.122 0.002 0.004 0.002 0.065 0.002

SCO 0.041 0.927 0.014 0.004 0.004 0.003 0.004 0.003

CP 0.001 0.001 0.992 0.001 0.001 0.001 0.001 0.001

CYO 0.007 0.006 0.245 0.684 0.040 0.006 0.006 0.006

CYRC 0.005 0.003 0.027 0.003 0.954 0.003 0.003 0.003

EI 0.030 0.003 0.003 0.004 0.021 0.778 0.149 0.003

GI 0.043 0.007 0.038 0.004 0.109 0.012 0.783 0.004

GB 0.016 0.019 0.075 0.004 0.148 0.004 0.060 0.674

Table 2.  Proportions of migrants from and into each population. *Simulations were conducted for each data 
set to determine the value above which migration rate is informative (bold). Values in italics represent the 
proportion of individuals derived from the source population.
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Effective population size and number of parents contributing offspring to population samples were equally 
high in non-oiled areas across all years (Fig. 3). In the years immediately after the oil spill, the effective popula-
tion size and the number of parents were significantly lower in oiled areas, consistent with the decline in adult 
populations (details and P-values in18). These differences between non-oiled and oiled regions persisted in the 
year 2015 (effective population size: P = 0.044, t = 3.346, df = 3; number of parents: P = 0.040, t = 3.465, df = 3). 
However, in 2016 both effective population size and number of parents had increased significantly in formerly 
oiled areas compared to 2010/2011 (effective population size: P = 0.002 t = −4.341 df = 8; number of parents: 
P = 0.05, t = −1.917, df = 8) and 2015 (effective population size: P = 0.005, t = −5.618, df = 4; number of parents: 
P = 0.033, t = −3.211, df = 4) and reached a level that is not significantly different from those of non-oiled areas 
across the years (P > 0.20).

The number of family clusters increased significantly in oiled regions in 2015 (P = 0.019, t = −2.938, df = 8) 
and 2016 (P = 0.001, t = −5.499, df = 8) compared to the number in oiled areas in 2010/2011. In 2015, the num-
ber of family clusters in oiled areas was not significantly different from the numbers in non-oiled areas anymore. 
Moreover, in 2016 the number of family clusters in formerly oiled areas became significantly higher than in con-
trol areas (P = 0.021, t = −2.954, df = 7).

Both sexes of T. nigrovittatus can be polygamous18. The number of partners each individual mated with and 
the number of offspring per partner did not differ across the years or between oiled and non-oiled regions. The 
percentage of full-sib pairs found in the sample populations was only different between non-oiled areas imme-
diately after the oil spill and oiled areas in 2016. The percentage of half-sibs was significantly lower in oiled areas 
in 2016 compared to most other samples (except non-oiled 2015). In particular, the percentage of half-sibs was 
reduced in oiled areas sampled in 2016 compared to oiled areas in 2010/2011 (P = 0.019, t = 2.972, df = 8) and 
2015 (P = 0.001, t = 9.568, df = 4).

Non-oiled areas 2015 Non-oiled areas 2016 Oiled areas 2015 Oiled areas 2016

SC-2015 CP-2015 SC/RWR-2016 SCO-2016 CP-2016 CYO2016 CYRC-2016 GI-2015 EI-2015 GB-2015 GI-2016 EI-2016 GB-2016

One-tailed Wilcoxon-test

for heterozygote deficiency

IAM >0.20 >0.20 >0.20 >0.20 0.004 >0.20 >0.20 >0.20 >0.20 >0.20 0.065 >0.20 >0.20

TPM >0.20 >0.20 0.041 >0.20 0.008 >0.20 0.008 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20

SMM >0.20 0.03 0.006 0.037 0.008 >0.20 0.008 0.15 0.16 >0.20 0.002 0.016 0.02

for heterozygote excess

IAM >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 0.16 >0.20 0.08 >0.20

TPM >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20

SMM >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20

Table 3.  Probabilities to reject mutation-drift equilibrium due to heterozygote deficiency or heterozygote 
excess (genetic bottleneck) for three different mutation models (IAM = infinite allele model, TPM = two-phase 
mutation model, SMM = stepwise mutation model) in tabanid populations from unaffected and oiled areas. 
None of the populations showed genetic bottlenecks in 2015 or 2016 regardless whether the area was oiled 
in 2010 or remained unaffected. Note, that in 2010/2011 6 out of 7 populations from oiled locations showed 
signatures of genetic bottlenecks18.

Figure 3.  Parameters of population genetics and family structure of tabanids collected from oiled and non-
oiled areas immediately after the oil spill to six years later. Shared letters in letter combinations above bars 
denote lack of significant difference (P > 0.05, two-tailed t-tests, SPSS) when comparing the same parameter 
measured in populations from oiled vs. non-oiled regions across the years. Significant differences (P ≤ 0.05) are 
indicated by unique letters.
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Discussion
A holistic understanding of the progression of long-term effects of oil spills as well as the timelines for recovery of 
salt marshes is essential for assessing the resilience of the marshes’ vital ecosystem services and fundamental eco-
logical patterns and processes. Native infauna, i.e., the meio- and macrofauna developing in the salt marsh soil, 
are postulated to be the most informative indicators of ecosystem recovery after oil spills due to their important 
interactions as part of the food web. Here we discuss the observed recovery of the greenhead horse fly 5–6 years 
after the Deepwater Horizon oil spill in the framework of the multi-layered recovery of infauna with different life 
history, diversity and function.

We postulated that species native to the marsh, like T. nigrovittatus, with carnivorous sediment dwelling devel-
opmental stages placed at the top of the invertebrate food chain, should be most sensitive22 and, thus, most valu-
able bioindicators of marsh health. The DWH oil spill caused a severe drop in the numbers of horse fly larvae and 
adults in oiled areas, accompanied by underlying changes in population genetic and family structure18. This led 
to the question if, when, and how the process of recovery might mitigate or even restore the genetic make-up of 
tabanid populations colonizing or residing in oiled areas.

Six years after the oil spill, adult census numbers and the frequency of larvae being found in the soil were 
increased in formerly oiled areas compared to our findings immediately after the oil spill. Adult numbers as 
stand-alone, however, should be interpreted with caution. Census data often overestimate effective population 
size23. Trap catches vary due to seasonal fluctuations18, weather conditions and the occasional presence of horse 
fly predators such as dragonflies and bembix sand wasps, which cause horse flies to avoid traps24. Although 
increases in adult numbers in formerly oiled areas were small, the incidence rate of detecting larvae in the marsh 
soil clearly increased. The larva numbers (0.9 larvae per sample) in the formerly oiled Grand Bayou location 
reached the range of larva recovered from control areas. Since the larvae are cannibalistic, finding approximately 
one per sample would be expected in a productive habitat. The other formerly oiled areas (Elmer’s Isle and Grand 
Isle) were heavily impacted by clean-up and reconstruction efforts, which may explain why the ecosystem has not 
yet rebounded to sustain peak larval development. Although there were no pre-event data to know the “normal” 
baseline number of horse flies in specific areas before the oiling, the rising census numbers in formerly oiled areas 
could be interpreted as the first sign of population recovery, especially since recovery subsequently was confirmed 
six years after the spill by genetic measures.

The observed increase in effective population size, number of breeders and number of family clusters in for-
merly oiled areas, which reached the level of control populations in 2016, supported the rise in census numbers 
and explains the mitigation of genetic bottlenecks recorded after the oil spill. The quick (≤5 years) recovery from 
bottlenecks of tabanid populations from oiled areas is expected to reduce negative consequences on evolution-
ary potential and resilience of the impacted populations25,26 that are typically predicted and observed in slow 
recovering populations27,28. Most of the populations of 2015 and 2016 showed significant homozygote excess in 
at least one of the mutation models. While inbreeding is part of the life history of T. nigrovittatus19, the novel rise 
of heterozygote deficiency in populations of the formerly oiled areas likely indicates a reverse bottleneck effect, 
i.e., a recent population expansion. Population expansion in formerly oiled areas could be caused by 1. successful 
migration into oiled areas, 2. sufficient rate of reproduction in oiled areas to overcome residual larval mortality, if 
any, and 3. increased survival of larvae developing in formerly oiled areas due to decreased oil residue toxicity to 
larvae and/or increased availability of their food web.

1. In terms of migration capacity, tabanids rank as strong fliers and can disperse across considerable dis-
tances18,29,30. In the present study we recorded shrinking genetic distance (FST) over the years between populations 
from non-oiled and oiled areas and among populations from oiled areas, which suggests increasing migration 
rates compared to the low gene flow among populations after the oil spill. Therefore, we tested the hypothesis that 
populations from non-oiled areas were an important source for repopulation of formerly depleted oiled areas.

The lack of migration of a typically strong flyer immediately after the oil spill in 2010 could be explained by 
reduced dispersal capacity of tabanids from oiled areas (comparable to the reduced swimming performance in 
fish after sublethal oil exposure31,32; and/or mortality of migrants into oiled areas, because flies were attracted by 
polarized reflections from oil sheens while searching for fresh water33,34. However, in 2011 (one year after the 
spill), some degree of migration was detected among geographically close oiled areas (Grand Isle and Grand 
Bayou) suggesting sufficient reduction of oil in the water and/or in the sediment to sustain survival of migrants. 
Still, larvae were almost entirely absent from formerly oiled areas in 201118. The most important parameter in 
terms of recovery was the significant increase in migration from non-oiled areas into oiled areas over the years 
with 2016 showing migration from most of the non-oiled regions into all formerly oiled regions and even occa-
sional contributions of migrants from oiled areas into non-oiled areas. This flow of migrants from populations of 
non-oiled regions (or closely related unsampled populations with the same genetic signature) into oiled areas was 
reflected in the increasing homogenization of population structure in the later years, which stands in contrast to 
the distinct genetic signatures of populations immediately after the oil spill in 2010.

These results highlight dispersal ability as an important driver of recovery. As a general rule, populations of 
organisms with rapidly dispersing life stages were the first to recover as soon as oil contamination and soil con-
ditions were sufficiently improved to sustain survival. Similar patterns were also found in long-term colonization 
and succession studies of invertebrates in newly constructed salt marshes35. Taxa with dispersing larval stages, 
e.g. some annelids, copepods and nematodes, quickly colonized newly created marshes or re-colonized formerly 
oiled sites within three to five years to a level equivalent to healthy reference sites16,35,36. In contrast, slow recovery 
(>4 years) was shown for taxa that lack larval dispersal and those whose later stages are also poor dispersers due 
to their association with the marsh sediment16,35.

In comparison to these macro- and meiofauna invertebrates that are similarly native and tightly bound to the 
marshes as T. nigrovittatus, the dispersal and recovery of the latter was quicker than expected despite the fact that this 
tabanid has sediment-dwelling carnivorous (top of the food chain) larvae. The larvae are accomplished swimmers 
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and can be observed hunting in the tidal zone, which likely facilitates dispersal at the larval stage to some degree (LF 
personal observation, https://www.youtube.com/watch?v=GAdm_JqAuoM). In addition, adults are excellent fliers, 
which explains the observed gene flow from unoiled into oiled areas as soon as one year after the spill.

2. While dispersal capacity was certainly a strong factor to facilitate population recovery of T. nigrovittatus, 
successful recolonization of formerly oiled areas also requires reproductive success. Invertebrates with slow recov-
ery include the tube-dwelling oligochaetes, polychaetes and tanaids, whose relatively small offspring numbers 
develop confined within the maternal tubes37. In contrast, quick recovering invertebrates (annelids, nematodes, 
and copepods) produce and release high numbers of progeny into the water column16. Tabanus nigrovittatus is 
known to lay >200 eggs per batch and is an autogenous species, i.e., females can produce the first batch without 
the need for a blood meal and produce subsequent batches after blood meals have been obtained. The pursuit of 
a blood meal and subsequent oviposition would ensure dispersal of individuals and recovery of depleted areas. 
Genetic data suggest that males and females might be able to mate multiple times (polygamy) and have multiple 
offspring with each partner18. The high reproductive and dispersal capacity of tabanids should translate into rapid 
population growth and re-colonization of formerly oiled areas, but only if larvae can develop in the sediment. The 
observed rebound in effective population size of adults, number of successful breeders and families in formerly 
oiled areas required not only a certain degree of decontamination of formerly oiled sediments, but also sufficient 
secondary (heterotrophic) production and food web support for larval development.

3. The process of recovery of the food web had started bottom-up almost immediately after the oil spill setting 
the stage for the return of horse flies to oiled marsh regions. Microbial bioremediation of oiled marsh sites9,10,38 
paved the way for vegetation recovery. Even in heavily oiled areas with near complete plant mortality initially, 
some recovery of was reported six years after the spill albeit total live aboveground biomass was <50% of refer-
ence marshes. In moderately oiled areas above ground vegetation recovered within 2.5 years3,39. Most microalgae 
and 90% of meiofauna (e.g., nematodes, copepods and most annelids), which form the base of the food web in the 
marsh sediments, recovered within three years after the DWH oil spill following closely the re-growth of Spartina 
marshes except for certain polychaetes, amphipods, kinorhynchs, ostracods and gastropods, that had not reached 
levels of reference marshes after 4 years15,16. According to McCall and Pennings’ study17, the terrestrial arthropod 
community, including mostly herbivorous insects, and intertidal crabs had largely recovered one year after the 
spill despite suppression by oil exposure a year earlier. The guts of tabanid larvae contain mostly insect DNA as 
revealed by a recent 18S metagenome sequencing study (unpublished data). The quick return of insects to oiled 
marshes was, therefore, vital for the tabanid recovery.

Tabanus nigrovittatus populations’ sensitivity to oil contamination evidenced by the immediate population 
crash following landfall of DWH oil18 and their recovery following in succession with regrowth of Spartina and 
recovery of 90% of the meiofauna16 makes this species a valuable bioindicator to assess the process of marsh 
reconstitution (Table 4). To provide more detail about what is required for the greenhead horse fly to colonize 
newly established wetlands or recolonize marshes after a catastrophic event, we are currently describing the food 
web of T. nigrovittatus larvae via 18S rRNA gene metagenomic sequencing of larval gut contents.

Material and Methods
Collections.  For population census data, adult female flies were collected using canopy traps baited with dry 
ice40 every other week from April through October in 2016, at the same four locations with 4–5 traps per site as 
described before (Fig. 1)18. Collection permits for horse fly larvae and adults were obtained from the Louisiana 
Department of Wildlife and Fisheries (permit number LNHP-16–060). The sites were selected relative to available 
access, personal observation (LF) of high horse fly abundance prior to the oil spill, absence of confined livestock, 
and vicinity to Spartina marshes. Cameron Parish and Cypremort Point in St Mary’s Parish in West Louisiana 
were not impacted by the oil spill (non-oiled controls). However, oiling was reported at Elmer’s and Grand 
Isle on May 24, 2010 and at Grand Bayou on June 18, 2010 [http://www.nytimes.com/interactive/2010/05/01/
us/20100501-oil-spill-tracker.html, date of access: 1/26/2018]. The exact daily trapping period (ranging from 
2–8 hours) was recorded for each site at each location, and the highest three trap counts were used for analysis. 
The captured flies were transferred on dry ice and stored at −80 °C. Specimens were identified as T. nigrovittatus 
and counted using a dissecting microscope and cold plate, and returned to −80 °C for storage. Voucher specimens 
were deposited in the Louisiana State Arthropod Museum at the Department of Entomology of the Louisiana 
State University Agricultural Center.

2010/2011 2015 2016

Not oiled Oiled Not oiled Oiled Not oiled Oiled

Adult fly counts High Low n/a n/a High Rising

Larvae recovered from marsh soil High Low n/a n/a High Rising

Effective population size High Low High Low High High

Number of breeders High Low High Low High High

Number of families High Low High High High High

Number of migrants/gene flow High Low High Rising High High

Genetic bottlenecks No Yes No No No No

Table 4.  Comparison of population parameters of tabanids collected from oiled and non-oiled areas across 
a period of six years after the oil spill. Data obtained immediately after the oil spill18 were included for 
comparison. n/a: survey data not collected in 2015.

https://www.youtube.com/watch?v=GAdm_JqAuoM
http://www.nytimes.com/interactive/2010/05/01/us/20100501-oil-spill-tracker.html
http://www.nytimes.com/interactive/2010/05/01/us/20100501-oil-spill-tracker.html
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A set of five and 18 samples collected in June 2015 and June 2016, respectively, were used for population 
genetic studies and combined with the previously published data set18 for longitudinal comparison. For the data 
to be comparable to our microsatellite data set from 2010 and 2011, we genotyped horse flies that were collected 
during the same month (June) in 2015 and 2016. Samples were taken from single traps representing three dif-
ferent trap sites in the non-oiled marshland along the coast of Western Louisiana (Ship Channel, Rockefeller 
Wildlife Refuge, and Cypremort Point) and three trap sites from regions in Eastern Louisiana (Grand and Elmer’s 
Isle and Grand Bayou, Fig. 1) that were oiled or where oiling was reported in close proximity.

We also compared the presence or absence of tabanid larvae from 15–16 Spartina marsh substrate samples 
per location collected using the techniques of Dukes et al.41 on four occasions between 4/11/2016 and 8/2/2016 
to the larval numbers sampled in 2011 at of the same four locations, i.e., Rockefeller Wildlife Refuge, Cypremort 
Point, Grand and Elmer’s Isle, and Grand Bayou18. Marsh samples were collected near adult collection sites by 
excavating 5 m long 0.5 m wide 10 cm deep transects. Tabanid larvae were removed from the sediment samples 
using a brine-flotation system, and the collected larvae were stored in 95% ethanol.

Microsatellite genotyping.  Total DNA was extracted from thoraces of up to 30 adult female horse flies 
per sample (trap) using the DNeasy Tissue Kit (Qiagen Inc., Valencia, CA) and genotyped using the Li-Cor 4300 
automated DNA analyzer (Li-Cor Inc., Lincoln, NE) as described in Husseneder et al.19. The same microsatellite 
loci developed and used in previous population genetic studies of the greenhead horse fly18,19 were screened as 
described in19 before being employed to compare population genetic parameters in 2015 and 2016 to those meas-
ured after the oil spill (2010, 2011)18. Since a formerly monomorphic locus (7FA)19 showed multiple alleles in sev-
eral samples of 2016, the number of polymorphic loci was increased from 10 (2010, 2011, 2015) to 11 (2016). Locus 
characteristics, GenBank accession numbers, and other summary statistics have been published previously18,19.

Statistical analysis of adult horse fly abundance.  Exploratory analyses indicated that data were not 
normally distributed. The average numbers in each trap collection were transformed to y = log(x + 1) to normal-
ize prior to statistical analysis. A two-way ANOVA (PROC MIXED, SAS Institute 2010) was used to compare log 
transformed tabanid catch data across years and locations. Model main effects were Year (2010, 2011, 2016) and 
Region (Plaquemines, Jefferson, St. Mary, and Cameron). All possible interactions among the main effects in the 
model, and a Tukey-Kramer adjustment (α = 0.05) were used to separate the means. The catch data for 2010 and 
2011 were published in Husseneder et al.18, but included for comparison to adult tabanid counts obtained six 
years after the oil spill.

General population genetic statistics.  Samples from 5 traps in June 2015 and 18 traps in June 2016 were 
tested for significant genotypic differentiation using pairwise log-likelihood G-Statistics with standard Bonferroni 
corrections at a 0.001 nominal level for multiple comparisons (FSTAT)42 and genetically separated samples (pop-
ulations) were then used as population genetic units of analysis. Genetic distances among populations (FST) were 
calculated using the methods of Weir and Cockerham (1984) in FSTAT. For comparison of pairwise distances 
two-tailed difference of means tests were performed with resampling techniques (300 permutations) using a 
modified Excel worksheet available at woodm.myweb.port.ac.uk/nms/diffofmeansconfidence.xls.

Population genetic structure.  The data set from 2010 and 201118 was combined with the genotypes 
obtained for 2015 and 2016 to allow for longitudinal comparisons to detect changes in population genetic struc-
ture over time. For ad hoc approximations of the number of genetic clusters in the total population (2010–2016) 
and the genetic relationships among the 26 populations, individual flies were probabilistically assigned to genetic 
clusters based on their multilocus genotypes using TESS 3.143. For exploratory analysis, the simulations were 
run 10 times with and without admixture for each Kmax ranging from 2–26 for 1,200 sweeps with 200 sweeps 
burn-in. The maximum number of genetic clusters (Kmax) was determined from changes in the deviance 
information criterion (DIC, Fig. S1)44. Since Kmax and cluster patterns were similar with both ancestry mod-
els, and population differentiation in previous studies made it less likely that the majority of individuals have 
recent ancestors from different populations, a full analysis was completed with 100 runs with 50,000 sweeps and 
10,000 burn-in using the no admixture model. The 20 runs with the lowest DIC (20% filter) were averaged using 
CLUMPP 1.1.245. Finally, the estimated membership coefficients of each individual multilocus genotype to each 
genetic cluster were plotted with STRUCTURE PLOT Version 246.

Migration rates.  Bayesian statistics were employed (BayesASS v. 1.3) to estimate the proportion of migrants 
(Table 2) and immigration and emigration rates (Table S2), because these techniques allow for deviation from 
migration-drift balance and Hardy-Weinberg equilibrium21. Preliminary runs were used to assure that delta val-
ues for allele frequency, migration rate and inbreeding stayed between 20–60% of the total chain length21. The 
final settings were 3,000,000 iterations, a sample frequency of 2000, a burn-in period of 999,999 and delta values 
of 0.25.

Detection of genetic bottlenecks.  Immediately after a genetic bottleneck, allele numbers are reduced 
faster than heterozygosity. To detect signs of bottlenecks, genotypes of individuals in each population were tested 
for heterozygote excess across loci using a Wilcoxon sign-rank test under different mutation models (IAM, 
i.e., infinite allele model, TPM, i.e., two-phased model of mutation with 80% single step mutations and 20% 
multi-step mutations, SMM, i.e., stepwise mutation model), as implemented in BOTTLENECK v. 1.2.0247. In 
general, SMM and TPM are recommended when using microsatellite data since they are taking evolutionary 
relationships among alleles into account47. However, in our study over a limited geographical and time scale 
migration likely exceeded mutation as source of genetic variation and, therefore, we also presented results for the 
IAM, an implicit model that makes no assumptions on ancestry of alleles and origin of diversity.
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Mating structure and effective population sizes.  Pedigree structure in each population was inferred 
using the full pedigree likelihood method implemented in COLONY v.2.0.3.148. Program choice and parameter 
settings are described in detail in Husseneder et al.18. To infer the best configuration of relationship structure, 
populations were subjected to full maximum likelihood calculations48,49. Based on the Best Maximum Likelihood 
Configuration output of COLONY, we determined the number of inferred parents contributing offspring to each 
population (i.e., a measure of the breeding population size) and the number of family clusters in each population. 
Values were corrected for uneven sample sizes by calculating each for a sample size of 30 individuals genotyped 
per population. We also estimated the number of partners that individuals mated with and the number of off-
spring produced per parent. The percentages of full-sib and half-sib pairs in each population were inferred from 
sibship assignment plots48. Effective population size (Ne) was inferred with the sibship assignment method in 
COLONY48. The sibship assignment method showed superior accuracy for “real-world” data sets compared to 
other methods since it does not assume isolated populations or random mating and performs comparatively well 
even with small sample sizes and numbers of loci50.

General Linear Model (GLM) analyses were used to test for effects of “year” and “condition” (oiled vs 
non-oiled) on the variables of mating structure and population size. For each variable pairwise comparisons were 
performed between populations from oiled and non-oiled regions and between each year using two-tailed t-tests 
(SPSS, IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.). 
P-values ≤ 0.05 were considered significant and P-values up to 0.10 were considered marginal.

Metadata.  Metadata are archived and available through the GRIIDC site of the Gulf of Mexico Research 
Initiative Information and Data Cooperative. Detailed sample information including GPS location, dates, trap 
times and horse fly counts and can be found at https://data.gulfresearchinitiative.org/in the data sets by L.F. Adult 
tabanid population data and available voucher specimens (https://doi.org/10.7266/N75718ZM) and Tabanid 
adult and larval collection data, coastal Louisiana, 2016 (https://doi.org/10.7266/N7MS3R4Z). Raw data of 
microsatellite genotypes are available at https://data.gulfresearchinitiative.org/ in the data sets by C.H. Tabanus 
nigrovittatus microsatellite data for the assessment of population genetics of 13 populations sampled from coastal 
Louisiana, 2010-2011 (https://doi.org/10.7266/N71J97N2) and Tabanus nigrovittatus microsatellite data for 
the assessment of population genetics of populations sampled from coastal Louisiana, 2012–2017 (https://doi.
org/10.7266/N7MK6B8V).
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