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Abstract
Urbanization	is	a	growing	concern	challenging	the	evolutionary	potential	of	wild	popu-
lations	 by	 reducing	 genetic	 diversity	 and	 imposing	 new	 selection	 regimes	 affecting	
many	key	fitness	traits.	However,	genomic	footprints	of	urbanization	have	received	
little	attention	so	far.	Using	RAD	sequencing,	we	investigated	the	genomewide	effects	
of	urbanization	on	neutral	and	adaptive	genomic	diversity	in	140	adult	great	tits	Parus 
major	collected	in	locations	with	contrasted	urbanization	levels	(from	a	natural	forest	
to	highly	urbanized	areas	of	a	city;	Montpellier,	France).	Heterozygosity	was	slightly	
lower	in	the	more	urbanized	sites	compared	to	the	more	rural	ones.	Low	but	significant	
effect	of	urbanization	on	genetic	differentiation	was	found,	at	the	site	level	but	not	at	
the	nest	 level,	 indicative	of	 the	geographic	 scale	of	urbanization	 impact	and	of	 the	
potential	for	local	adaptation	despite	gene	flow.	Gene–environment	association	tests	
identified	numerous	SNPs	with	small	association	scores	 to	urbanization,	distributed	
across	the	genome,	from	which	a	subset	of	97	SNPs	explained	up	to	81%	of	the	vari-
ance	in	urbanization,	overall	suggesting	a	polygenic	response	to	selection	in	the	urban	
environment.	These	findings	open	stimulating	perspectives	for	broader	applications	of	
high-	resolution	genomic	tools	on	other	cities	and	larger	sample	sizes	to	investigate	the	
consistency	of	the	effects	of	urbanization	on	the	spatial	distribution	of	genetic	diver-
sity	and	the	polygenic	nature	of	gene–urbanization	association.
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1  | INTRODUCTION

Humans	substantially	modify	natural	ecosystems,	especially	since	the	
industrial	revolution	(Vitousek,	Mooney,	Lubchenco,	&	Melillo,	1997).	
Urbanization,	 the	process	by	which	cities	are	formed	and	expand,	 is	
one	of	the	major	threats	to	natural	ecosystems.	Urbanization	affects	
habitats,	notably	resulting	in	their	loss,	modification,	or	fragmentation	
(Crooks	&	Sanjayan,	2006).	Urbanization	also	results	in	chemical,	noise,	
and	light	pollution,	altered	temperatures,	novel	epidemics,	predation	

risks,	all	in	all	resulting	in	the	modification	of	species	assemblage	and	
demography	 (Aronson	et	al.,	2014;	Galbraith,	Jones,	Beggs,	Parry,	&	
Stanley,	2017;	Shryock,	Marzluff,	&	Moskal,	2017;	Vincze	et	al.,	2017),	
phenotypic	 traits	 (Alberti	 et	al.,	 2017;	 Biard	 et	al.,	 2017;	 Suárez-	
Rodríguez,	Montero-	Montoya,	&	Macías	Garcia,	2017),	and	evolution-
ary	dynamics	(Alberti,	2015;	Anderies,	Katti,	&	Shochat,	2007;	Hendry,	
Gotanda,	&	Svensson,	2017).	Although	urbanization	generally	results	
in	dramatic	local	biodiversity	declines	as	a	lot	of	species	avoid	or	are	
unsuccessful	 in	urban	environments,	other	 species	 are	able	 to	 cope	
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and	 even	 take	 advantage	 of	 such	 environmental	 change	 via	 plastic	
or	adaptive	responses	 (Lancaster	&	Rees,	1979;	Møller	et	al.,	2012).	
Understanding	 the	 demographic,	 ecological,	 and	 evolutionary	 pro-
cesses	resulting	from	urbanization	is	thus	becoming	an	important	goal	
in	conservation	and	evolutionary	biology	(Donihue	&	Lambert,	2014).

Urbanization	has	various	 impacts	on	the	demography	of	species,	
affecting	the	density	of	individuals,	their	dispersal,	their	survival,	and	
their	 reproductive	 rates,	 and	 ultimately	 affecting	 genetic	 diversity	
and	 differentiation	 among	 populations.	 In	 particular,	 fragmentation	
and	 degradation	 of	 habitats	 strongly	 affect	 dispersal	 of	 individuals	
and	population	sizes.	Because	it	leads	to	reduced	dispersal	and	gene	
flow,	fragmentation	caused	by	urbanization	can	result	in	lower	genetic	 
diversity	and	higher	neutral	genetic	differentiation	among	populations	
(Gortat	 et	al.,	 2015;	 Lourenço,	Álvarez,	Wang,	 &	Velo-	Antón,	 2017;	
Munshi-	South,	Zolnik,	&	Harris,	2016)	as	well	as	increased	relatedness	
among	individuals	(Chiappero	et	al.,	2011).	The	impact	of	these	effects	
of	fragmentation	on	demography	and	genetic	differentiation	will,	how-
ever,	depend	on	the	dispersal	capacity	of	species.	While	fragmentation	
can	enhance	genetic	differentiation	in	rodents	and	amphibians	as	they	
are	susceptible	to	terrestrial	barriers	(Gortat,	Rutkowski,	Gryczynska-	
Siemiatkowska,	 Kozakiewicz,	 &	 Kozakiewicz,	 2012;	 Lourenço	 et	al.,	
2017),	bird	species	will	generally	be	less	affected	as	they	can	fly	be-
tween	suitable	habitats	(Partecke,	Gwinner,	&	Bensch,	2006;	but	see	
Björklund,	Ruiz,	&	Senar,	2010).	The	decrease	in	habitat	quality	caused	
by	urbanization	may	also	 result	 in	 reduced	genetic	diversity	 and	 in-
creased	differentiation	if	population	size	decreases,	thereby	increasing	
the	amount	of	genetic	drift	(Munshi-	South	et	al.,	2016).	Nevertheless,	
if	 fragmentation	does	not	 impede	dispersal,	asymmetrical	gene	flow	
can	occur	from	more	productive	populations	inhabiting	natural	habi-
tats	into	less	productive	ones	inhabiting	unfavorable	habitats,	that	is,	
highly	urbanized	areas	 (Björklund	et	al.,	2010).	Lastly,	habitat	choice	
could	 also	 reinforce	 a	 neutral	 genetic	 differentiation	 between	 pop-
ulations	 inhabiting	 natural	 and	 urbanized	 environments.	 Although	
habitat	choice	is	known	to	influence	patterns	of	dispersal,	gene	flow,	 
genetic	differentiation,	and	evolutionary	processes	(Dreiss	et	al.,	2012;	
Edelaar	&	Bolnick,	2012),	it	has	received	limited	attention	in	the	case	
of	urbanization	studies.

If	it	imposes	divergent	selection	pressures	compared	to	those	act-
ing	 in	wild	environments,	urbanization	may	also	result	 in	divergence	
at	particular	loci	underlying	adaptive	evolution	in	urbanized	environ-
ments,	 detectable	 through	 genomic	 approaches.	Many	 studies	 have	
recently	 investigated	 genomic	 footprints	 of	 divergent	 selection	 that	
may	 be	 implicated	 in	 local	 adaptations,	 in	 a	 wide	 range	 of	 species	
and	contexts	(Savolainen,	Lascoux,	&	Merilä,	2013;	Tigano	&	Friesen,	
2016).	However,	 these	studies	were	 largely	 restricted	 to	wild	popu-
lations	 in	 natural	 environments	 (e.g.,	well-	known	 examples	 in	 stick-
lebacks	 (Gasterosteus aculeatus;	 Hohenlohe	 et	al.,	 2010),	 in	 Atlantic	
cod	(Gadus morhua;	Nielsen	et	al.,	2009),	or	 in	 lizards	(Lacerta lepida; 
Nunes,	 Beaumont,	 Butlin,	 &	 Paulo,	 2010)).	 Only	 a	 small	 number	 of	
studies	have	 focused	on	urban	genomics,	 investigating	 footprints	of	
divergent	 selection	 between	 natural	 and	 urbanized	 environments	
based	 on	 genomewide	 data.	 Harris,	 Munshi-	South,	 Obergfell,	 and	
O’Neill	 (2012)	 and	 Harris	 and	 Munshi-	South	 (2017)	 investigated	

genomic	shifts	in	white-	footed	mice	Peromyscus leucopus	in	New	York	
City,	 and	 examined	 the	 evolutionary	 consequences	 of	 urbanization.	
Among	 the	 thousands	 of	 SNPs	 screened	 using	 genome	 scans,	 they	
identified	 several	 candidate	 genes	 possibly	 under	 positive	 selection	
in	urban	versus	 rural	populations	of	P. leucopus.	These	outliers	were	 
notably	involved	in	metabolic	functions	and	were	potentially	underly-
ing	rapid	local	adaptation	in	urbanizing	habitats	where	P. leucopus may 
use	different	food	resources.	Such	pioneering	urban	genomic	studies	
have	begun	to	pave	the	road	for	 investigating	genomic	footprints	of	
divergent	selection	between	natural	and	urban	wild	populations.	With	
the	rapid	spread	of	new	generation	sequencing	tools,	similar	genome-
wide	studies	like	the	one	of	Harris	and	Munshi-	South	(2017)	can	be	
applied	 to	nonmodel	organisms,	 in	 search	of	novel	 candidate	genes	
potentially	under	selection.

The	great	tit	(Parus major)	is	a	small	passerine	species	that	has	be-
come	a	model	study	organism	in	behavioral	ecology	and	evolutionary	
biology.	Great	 tits	 are	widespread	and	abundant	 across	Eurasia	 and	
can	be	found	in	a	wide	variety	of	environments,	from	natural	forests	
to	 highly	 urbanized	 cities.	 Previous	 studies	 based	 on	 microsatellite	
loci	 showed	 relatively	 small	 genetic	 differentiation	 across	 Europe,	
yet	 higher	 differentiation	 among	 southern	 populations	 (Lemoine	
et	al.,	2016)	as	well	as	within	 the	city	of	Barcelona	 (Björklund	et	al.,	
2010).	Studies	comparing	the	life	history	and	physiology	of	great	tits	
in	 forest	versus	 city	 habitats	 have	 recently	 revealed	 that,	 compared	
to	 their	 forest	 conspecifics,	 urban	 great	 tits	 lay	 earlier	 and	 smaller	
clutches,	they	display	faster	breath	rates	and	faster	exploration	scores	
in	a	novel	environment,	have	higher	levels	of	neophilia,	and	their	off-
spring	 fledge	 in	 poorer	 condition	 (Bailly	 et	al.,	 2016;	 Charmantier,	
Demeyrier,	 Lambrechts,	 Perret,	 &	 Gregoire,	 2017;	 Marzluff,	 2001;	
Sprau,	Mouchet,	&	Dingemanse,	2016;	Torné-	Noguera,	Pagani-	Núñez,	
&	Senar,	2014;	Tryjanowski	et	al.,	2016).	Given	this	strong	phenotypic	
divergence	and	as	genomic	resources	have	recently	been	developed	
for	this	species	 (Laine	et	al.,	2016),	 the	great	tit	 is	a	good	candidate	
species	for	urban	genomic	studies	investigating	both	neutral	genetic	
differentiation	between	urban	and	natural	populations	and	potential	
genomic	bases	underlying	adaptations	to	urban	environments.

Here,	we	took	advantage	of	the	recent	advances	in	RAD	sequenc-
ing	techniques	(restriction	site-	associated	DNA	sequencing;	see	Etter,	
Bassham,	Hohenlohe,	Johnson,	&	Cresko,	2011	and	Rowe,	Renaut,	&	
Guggisberg,	2011	for	introductions	about	RAD	sequencing)	and	of	the	
availability	of	the	great	tit	genome	to	perform	a	genomewide	analysis	
of	 individuals	breeding	across	a	gradient	of	urbanization,	 looking	for	
effects	of	urbanization	on	both	neutral	and	adaptive	genetic	differen-
tiation.	Specifically,	the	first	aim	of	this	study	was	to	test	the	impact	
of	the	local	level	of	urbanization	on	the	extent	of	genomewide	genetic	
diversity	and	structure	in	urban	great	tits.	Although	small	genetic	dif-
ferentiation	was	expected	given	recent	empirical	findings	in	this	spe-
cies	 (Laine	et	al.,	 2016;	Lemoine	et	al.,	 2016),	we	hypothesized	 that	
significant	population	structure	and	reduction	in	diversity	may	occur	
among	populations	 found	 in	 areas	with	different	 levels	of	urbaniza-
tion	 (Björklund	 et	al.,	 2010),	 potentially	 resulting	 from	 the	 interplay	
between	 reduced	 dispersal	 and	 population	 size,	 habitat	 choice,	 and	
local	adaptation.	The	second	aim	was	to	search	for	genomic	footprints	
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of	divergent	selection	between	sites	with	different	levels	of	urbaniza-
tion,	 and	 gene–urbanization	 associations,	 that	may	be	 implicated	 in	
adaptation	to	urban	life	(Harris	et	al.,	2012).

2  | METHODS

2.1 | Study sites, sampling

A	 total	 of	 140	 great	 tits	 were	 sampled	 from	 87	 nest	 boxes	 posi-
tioned	 in	 five	 sites	 with	 different	 levels	 of	 urbanization	 in	 the	 city	
of	Montpellier	 (France)	 and	 in	 a	 rural	 site:	 the	 deciduous	 forest	 of	
La	Rouvière	(Montarnaud,	France)	where	great	tits	have	been	moni-
tored	since	1991	(Table	1,	Figure	1a).	The	total	number	of	monitored	
nest	boxes	available	for	great	tits	was	180	in	the	city	and	70	in	the	
Rouvière	 forest.	 The	 city	 of	Montpellier	 experienced	 a	 high	 human	
population	expansion	since	 the	middle	of	 the	19th	century	 to	early	
21st	 century,	 growing	 from	 around	 35,000	 to	 280,000	 inhabitants.	
Six	sites	are	equipped	with	monitored	nest	boxes:	the	zoo	of	Lunaret	
(ZOO)	which	 includes	 a	 large	 forested	 area;	Grammont	 (GRA),	Mas	
Nouguier	(MNO),	Font-	Colombe	(FCO)	and	Mosson	(MOS)	which	all	
contain	 a	mixture	 of	 urbanized	 sectors	 and	 parks;	 and	 La	 Rouvière	
(ROU)	which	is	an	oak	forest	located	20	km	northwest	of	Montpellier	
(Table	1,	Figure	1).

Great	 tit	breeding	was	monitored	 in	all	nest	boxes	 from	April	 to	
July	each	year	since	1991	in	La	Rouvière	forest	and	since	2011	in	the	
city	of	Montpellier.	Parents	were	caught	in	nest	boxes	when	their	nest-
lings	were	10	days	old.	In	2014,	5–30	μl	of	blood	was	sampled	from	
adult	breeders	for	later	DNA	extraction.	Blood	was	taken	from	a	small	
neck	vein	 or	 from	a	wing	vein	 and	 stored	 at	 4°C	 in	Queen’s	 buffer	
(Seutin,	White,	&	Boag,	1991).

2.2 | Urbanization level

From	April	to	May	2012,	vegetation	cover	(surface	covered	by	oaks,	
trees	and	green	spaces),	and	light	(artificial	night	lighting),	air	and	noise	
(using	car	traffic	to	reflect	as	a	proxy)	pollutions	were	recorded	within	
a	50-	m-	radius	disk	around	each	nest	box	(see	Demeyrier,	Lambrechts,	
Perret,	and	Gregoire	(2016)	for	details)	which	corresponds	to	the	main	
area	prospected	by	the	focal	pair	within	a	breeding	season	(Perrins,	
1979).	 A	 principal	 component	 analysis	 (PCA)	 of	 these	 variables	 re-
vealed	 that	 they	 were	 highly	 correlated	 (Demeyrier	 et	al.,	 2016).	
Therefore,	the	first	axis	of	the	PCA	was	chosen	as	a	single	continuous	
variable	to	reflect	the	urbanization	level	at	each	nest	box	(Table	1	and	
Figure	1a),	which	was	 thereafter	 referred	 to	 as	 nest-	level	 urbaniza-
tion.	Differences	 in	nest-	level	urbanization	among	sites	were	 inves-
tigated	using	an	ANOVA	and	a	Tukey’s	HSD	test	in	R	(R	Core	Team,	

TABLE  1 Site	name,	abbreviation,	average	nest	coordinate	per	site,	average	nest	urbanization	level	(see	methods),	sample	size	(before	and	
after	removing	highly	related	individuals),	and	observed	heterozygosity	(Ho).	Sites	were	ordered	by	average	urbanization	level.	For	urbanization	
level	and	observed	heterozygosity,	letters	indicate	significant	differences

Site Abbreviation Coordinates (lat. long.) Urbanization level Sample size Ho

Mas-	Nouguier MNO 43.586	3.862 +2.32a 18/18 0.285a

Font-	Colombe FCO 43.597	3.834 +0.87b 10/10 0.290abc

Mosson MOS 43.637	3.812 +0.70b 5/5 0.290abc

Grammont GRA 43.617	3.932 −0.31c 29/26 0.289ab

Rouvière ROU 43.664	3.668 −1.94d 47/41 0.294c

Zoo ZOO 43.642	3.878 −2.19d 31/25 0.292bc

F IGURE  1  (a)	Map	of	the	sampled	sites	with	color	scaled	urbanization.	(b)	Boxplots	of	urbanization	scores	per	site.	Correspondences	of	site	
abbreviations	are	found	in	Table	1
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2016).	Additionally,	latitude	and	longitude	were	recorded	at	each	nest	
box	(Table	1)	with	a	GPS	(Garmin©	GSPmap®	62s).

2.3 | DNA extraction and RAD sequencing

DNA	extraction	was	performed	using	Qiagen	DNeasy	Blood	&	Tissue	
kits.	DNA	extraction	was	 randomized	 across	 sites.	DNA	was	 quan-
tified	 using	 a	 NanoDrop	 ND8000	 spectrophotometer	 and	 then	 a	
Qubit	2.0	fluorometer	with	the	DNA	HS	assay	kit	(Life	Technologies).	
DNA	quality	was	 checked	on	agarose	gels.	DNA	extracts	 (including	
two	 replicates	 in	different	 lanes	 to	 estimate	 the	 consistency	of	 the	
analyses)	were	sent	to	MGX	(CNRS,	Montpellier)	for	libraries	prepara-
tion	using	restriction	site-	associated	DNA	sequencing	(RAD	seq;	Baird	
et	al.,	2008)	with	the	enzyme	SbfI.	Each	individual	was	identified	using	
a	 unique	 6-	nucleotide	 tag.	 Individual	 samples	 were	 multiplexed	 in	
equimolar	proportions	by	groups	of	29	or	30	individuals.	Individuals	
were	randomized	across	groups.	Each	group	was	sequenced	on	one	of	
seven	lanes	of	an	Illumina	HiSeq	2000	(on	these	lanes	were	also	in-
cluded	juvenile	great	tit	individuals	from	the	same	sites	but	that	were	
not	used	in	this	study).

2.4 | SNP calling and filtering

Raw	sequences	were	inspected	with	FastQC	(Andrews,	2010)	for	qual-
ity	controls.	Reads	were	treated	with	Cutadapt	(Martin,	2011)	to	re-
move	potential	fragments	of	Illumina	adapters.	A	10%	mismatch	was	
allowed	 in	 the	adapter	 sequence.	Stacks 1.32	 (Catchen,	Hohenlohe,	
Bassham,	Amores,	&	Cresko,	 2013)	was	 used	 to	 demultiplex	 reads,	
identify	 RAD	 loci,	 and	 call	 single	 nucleotide	 polymorphisms	 (SNPs).	
Reads	were	filtered	for	overall	quality,	demultiplexed,	and	trimmed	to	
85	bp	using	process_radtags.	One	mismatch	in	the	barcode	sequence	
was	allowed.	BWA-	MEM	0.7.13	(Li	&	Durbin,	2009)	was	used	to	map	
individual	 sequences	 against	 the	 reference	genome	of	 the	Great	 tit	
(Laine	 et	al.,	 2016)	 using	 default	 options.	 The	 total	 assembled	 con-
tigs	spans	1.0 Gb,	for	an	estimated	genome	size	of	1.2	Gb.	We	used	
samtools	0.1.19	to	build	and	sort	bam	files	(Li	et	al.,	2009).	We	used	
pstacks,	with	a	minimum	stack	depth	of	5	(m	=	5),	the	SNP	model,	and	
α	=	.05.	cstacks	was	used	 to	build	 the	 catalogue	of	 loci	 using	n	=	3.	
With	 sstacks,	 loci	were	 searched	against	 the	 catalog	of	 loci.	 Finally,	
individuals	were	genotyped	using	the	stacks’s	populations module and 
filtered	 using	VCFtools	 (Danecek	 et	al.,	 2011).	 Loci	were	 retained	 if	
genotyped	in	at	least	90%	of	individuals	(all	individuals	from	all	sites	
grouped)	with	individual	minimal	read	depth	of	8	(“na”	replaced	geno-
types	below	a	read	depth	of	8),	with	a	minimum	average	read	depth	of	
20	across	all	genotypes,	a	maximum	average	read	depth	of	100	across	
all	 genotypes,	 and	a	minor	allele	 frequency	above	5%	 (MAF	≥	0.05)	
across	all	individuals	(all	individuals	from	all	sites	grouped).	We	veri-
fied	 that	each	 individual	was	genotyped	 for	at	 least	95%	of	all	 loci.	
We	filtered	the	entire	dataset	 for	deviations	from	Hardy–Weinberg	
equilibrium	at	the	SNP	level	(HWE,	p-	value	≥	.01)	in	ROU.	We	did	not	
filter	specifically	the	other	populations	for	HWE	due	to	smaller	sam-
ple	sizes,	and	we	considered	 that	most	of	 the	significant	deviations	
in	every	site	would	also	be	found	 in	ROU	given	the	high	gene	flow	

among	 the	populations.	This	HWE	filtering	step	was	mainly	applied	
to	remove	sequencing	or	SNP	calling	errors	as	well	as	paralogous	se-
quences	 (Waples,	 2015).	 In	 turn,	 this	 should	 not	 interfere	with	 the	
detection	 of	 divergent	 selection	 between	 urban	 and	 forest	 popula-
tions	as	HWE	is	estimated	locally	but	not	across	sites.	We	investigated	
the	average	decay	of	LD	in	chromosomes	1–20	(the	chromosomes	on	
which	most	of	the	SNPs	(86%)	were	found),	in	ZOO	(as	LD	was	very	
similar	 in	 all	 populations),	 using	gdsfmt and SNPRelate	 (Zheng	 et	al.,	
2012).	Although	the	data	are	not	phased,	this	coarse	estimate	of	LD	
was	useful	to	evaluate	the	physical	distance	between	outlier	SNPs	and	
neighboring	 genes	 that	may	 be	 relevant	 for	 our	 functional	 analysis	
and	to	discuss	the	proportion	of	the	genome	covered	by	our	RADseq	
analysis.	Finally,	we	calculated	identity-	by-	state	IBS	among	individuals	
using	the	R	packages	gdsfmt and SNPRelate	to	(i)	estimate	consistency	
of	SNP	calling	on	the	two	replicated	individuals,	and	(ii)	identify	highly	
related	individuals.	One	individual	was	removed	for	each	pair	of	highly	
related	 individuals	 (i.e.,	 siblings	 and	 parent–offspring)	 to	 produce	 a	
dataset	called	“no-family-ties.”	The	rationale	for	this	procedure	is	that	
related	individuals	could	artificially	increase	Fst	between	groups	of	in-
dividuals	(see	also	Szulkin,	Gagnaire,	Bierne,	&	Charmantier,	2016).

2.5 | Investigation of genetic diversity, 
relatedness, and differentiation

Genetic	 diversity	 was	 inferred	 through	 individual	 observed	 het-
erozygosity	 (Ho)	 on	 the	 no-family-ties	 dataset.	 Ho	 was	 estimated	
using	VCFtools.	Differences	in	individual	Ho	were	investigated	using	
ANOVAs	in	R,	with	individuals	grouped	in	the	six	sites.	Finer	compari-
sons	of	Ho	between	pairs	of	sites	were	achieved	using	a	Tukey’s	HSD	
test	in	R.

Population	structure	was	investigated	via	identity-	by-	state	(IBS),	fix-
ation	index	(Fst),	a	principal	component	analysis	(PCA),	and	a	discriminant	
principal	 component	 analysis	 (DAPC).	We	 calculated	 IBS	 among	 indi-
viduals	of	the	entire	dataset	to	determine	whether	relatedness	among	
individuals	differed	between	sites	and	 to	 test	whether	we	could	 infer	
dispersal	 events	 (via	 the	 presence	 of	 highly	 related	 individuals	 found	
in	 different	 sites).	 Differences	 in	 IBS	 between	 sites	were	 assessed	 in	
R	 using	 an	ANOVA	 (see	 also	 Szulkin	 et	al.	 (2016)	 for	more	 details	 on	
the	method).	Fst	were	estimated	between	the	six	sites	using	GenoDive 
(Meirmans	&	van	Tienderen,	2004),	which	takes	into	account	Weir	and	
Cockerham’s	optimizations	of	Wright’s	theoretical	index	(Wright,	1951)	
to	control	for	unequal	sample	sizes	(Weir	&	Cockerham,	1984).	The	sig-
nificance	of	pairwise	Fst	values	was	tested	through	1,000	permutations	
in GenoDive.	We	estimated	the	Fst	using	both	the	entire	dataset	and	the	
no-family-ties	dataset.	We	also	estimated	a	global	Fst	(Weir	&	Cockerham,	
1984)	 between	 sites	 for	 each	 SNP	 using	 SNPRelate	 and	 represented	
with	a	Manhattan	plot.	The	most	 likely	number	of	genetic	cluster	was	
estimated	using	the	function	find.clusters	from	the	R	package	adegenet 
(Jombart,	2008)	on	the	no-family-ties	dataset.	We	used	a	principal	com-
ponent	analysis	(PCA)	using	the	function	snpgdsPCA	implemented	in	the	
R	package	SNPRelate	to	depict	genetic	structure	among	the	sites,	using	
both	the	entire	dataset	and	the	no-family-ties	dataset.	Finally,	we	used	
a	 discriminant	 analysis	 of	 principal	 components	 (DAPC)	 implemented	
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in	the	R	package	adegenet	to	depict	genetic	structure	among	the	sites,	
using	the	no-family-ties	dataset.	We	used	the	cross-	validation	procedure	
from	the	adegenet	package	using	the	function	xvalDapc,	to	identify	the	
optimal	number	of	principal	components,	reassigning	30%	of	the	individ-
uals,	with	a	training	set	based	on	70%	of	the	individuals	and	replicating	
100	times	the	procedure	for	each	set	of	PCs	from	10	to	45	by	steps	of	5,	
and	then	from	5	to	15	by	steps	of	1.

2.6 | Effect of geographic 
distance and of urbanization on genetic diversity, sites 
differentiation and individual relatedness

First,	 we	 estimated	 the	 correlations	 between	 urbanization	 and	 ob-
served	heterozygosity,	at	the	site	level	and	at	the	nest	level.

Second,	to	infer	the	effect	of	geographic	distance	and	of	urbanization	
difference	on	dispersal	and	genetic	differentiation,	we	inferred	correla-
tions	between	(i)	Fst	 (estimated	on	the	no-family-ties	dataset)	and	geo-
graphic	distance,	(ii)	Fst	and	urbanization	difference,	(iii)	IBS	(estimated	on	
entire	dataset)	and	geographic	distance,	and	(iv)	IBS	and	urbanization	dif-
ference.	The	correlations	of	either	Fst	or	IBS	with	geographic	distance	are	
used	to	infer	potential	isolation	by	distance,	whereby	dispersal	and	ac-
cumulation	of	genetic	differentiation	increase	with	geographic	distance	
between	populations.	The	correlations	of	either	Fst	or	IBS	with	urbaniza-
tion	difference	are	used	to	infer	potential	habitat	choice,	whereby	dis-
persal	and	accumulation	of	genetic	differentiation	increase	with	habitat	
differences.	Fst	is	more	likely	to	capture	long-	term	accumulation	of	allele	
frequency	differences	while	IBS	captures	the	present	time	distribution	of	
relatedness	and	therefore	the	dispersal	events.

Third,	 to	 investigate	 simultaneously	 the	 influence	 of	 latitude,	
longitude,	and	urbanization	on	the	genetic	distance	among	individu-
als	(using	the	entire	dataset),	we	used	a	redundancy	analysis	(RDA),	
which	 is	 a	 constrained	 version	 of	 PCA	 (Legendre	 &	 Fortin,	 2010;	
Legendre	&	Legendre,	2012),	 implemented	in	the	Vegan	R	package	
(Oksanen	et	al.,	2007).	Using	this	RDA,	we	first	investigated	the	por-
tion	of	the	genetic	variability	that	could	be	explained	by	a	constrain-
ing	covariance	matrix	consisting	of	latitude,	longitude,	and	nest-	level	
urbanization	for	each	 individual.	We	tested	the	global	significance	
following	1,000	permutations.	Then,	we	ran	marginal	effects	permu-
tation	tests	to	address	the	significance	of	each	variable.	Ultimately,	
we	 focused	 on	 the	 effect	 of	 nest-	level	 urbanization	 alone,	 using	
partial	RDA	first	taking	into	account	the	effect	of	latitude	and	longi-
tude.	Significance	was	tested	running	1,000	permutations.	Because	
the	 indirect	 effect	 of	 nest-	level	 urbanization	 on	 genetic	 structure	
could	operate	at	a	scale	larger	than	the	50-	m-	radius	sphere	around	
the	nests,	we	performed	a	second	RDA	using	a	site-	specific	average	
level	of	urbanization	(calculated	for	each	site	as	the	average	of	the	
nest-	level	urbanization	values)	rather	than	a	nest-	level	urbanization.

2.7 | Search for SNPs, genes, and Gene Ontologies 
associated with urbanization

We	 used	 latent	 factor	 mixed	 model	 (LFMM;	 Frichot,	 Schoville,	
Bouchard,	&	Francois,	2013)	on	 the	entire	dataset	 to	 identify	SNPs	

potentially	 under	 divergent	 selection	 along	 the	 urbanization	 gradi-
ent.	As	urbanization	may	act	as	a	selection	force	at	different	spatial	
scale	on	great	tits,	we	 implemented	three	tests	using	fine-		to	 large-	
scale	incorporation	of	urbanization.	We	first	used	the	fine-	scale	nest-	
level	urbanization	values	(50	m	radius	from	their	nest)	as	explanatory	
variable	(referred	as	test	A).	 In	test	B,	we	used	site-	specific	average	 
urbanization.	In	test	C,	we	used	a	binary	test	comparing	ROU	(coded	
as	0)	and	the	city	sites	(coded	as	1).

These	three	tests	were	performed	again,	excluding	the	ZOO	(re-
ferred	as	 tests	D,	E,	F).	This	was	motivated	by	the	fact	 that	birds	 in	
the	Zoo	may	experience	similar	selection	pressures	as	ROU	birds	(as	
similar	low	urbanization	values	were	observed),	while	being	in	the	pe-
rimeter	of	the	city.	Therefore,	gene	flow	among	urbanized	sites	from	
the	city	and	the	zoo	could	limit	the	response	to	locally	forestlike	envi-
ronment	in	the	zoo	and	limit	the	power	of	outlier	tests.	Moreover,	this	
site	also	represented	an	opportunity	to	avoid	circularity,	first	identify-
ing	outlier	loci	excluding	ZOO	and	subsequently	inspecting	by	mean	of	
PCAs	(detailed	next	paragraph)	whether	ZOO	individuals	were	closer	
to	urban	or	forest	birds.	ZOO	individuals	closer	to	urban	birds	would	
suggest	restricted	effect	of	selection	relatively	to	gene	flow,	at	small	
spatial	 scale,	or	absence	of	habitat	choice	 influenced	by	outlier	 loci.	
In	contrast,	ZOO	individuals	closer	to	forest	birds	would	suggest	rela-
tively	important	response	to	selection	at	small	spatial	scale,	or	of	hab-
itat	choice	influenced	by	outlier	loci.

Five	 runs	 (10,000	 burn-	in,	 100,000	 iterations)	 per	 LFMM	 test	
were	used	to	obtain	average	z-	scores,	representing	the	strength	of	the	
association	between	a	SNP	and	an	explanatory	variable,	and	associ-
ated	p-	values,	 assuming	 a	 unique	 genetic	 cluster.	We	displayed	 the	
Z-	scores	with	Manhattan	plots.	We	estimated	q-	values	from	LFMM’s	
p-	values,	 for	 each	 of	 the	 six	 tests	 separately,	 using	 the	 R	 package	
fdrtool	 (Strimmer,	2008)	and	 reported	 the	distribution	of	 the	 results	
across	the	six	tests	 (A–F)	using	 (i)	Manhattan	plots	 for	each	test,	 (ii)	
histograms	of	outliers’	z-	score	distributions	for	each	test,	 (iii)	biplots	
between	tests,	and	(iv)	Venn	diagrams	(R	package	VennDiagram,	Chen	
&	 Boutros,	 2011;	 and	 the	Web-	based	 tool	 InteractiVenn,	 Heberle,	
Meirelles,	da	Silva,	Telles,	&	Minghim,	2015).	On	each	Manhattan	plot	
was	superposed	a	line	representing	a	kernel-	smoothing	moving	aver-
age	using	a	10-	Mb-	long	window	sliding	by	steps	of	10	Kb,	to	deter-
mine	whether	outlier	SNPs	were	found	in	genomic	areas	with	average	
high	association	with	urbanization.	We	reported	a	table	of	the	SNPs	
found	in	the	top	10	of	each	test,	to	provide	more	functional	details	on	
the	putative	genes	in	which	these	outliers	were	found.

We	performed	PCAs,	using	the	function	snpgdsPCA	implemented	
in	the	R	package	SNPRelate,	followed	by	linear	models	in	R,	to	inves-
tigate	the	proportion	of	variance	in	individuals’	scores	of	urbanization	
at	the	nest	and	at	the	site	explained	by	the	genetic	distances	between	
individuals	when	considering	several	outlier	lists	of	SNPs	with	q-	values	
<.05,	as	well	as	the	entire	set	of	SNPs.	This	procedure	was	achieved	to	
inspect	the	power	of	gene–urbanization	associations.	Either	the	PC1	
or	 PC2	or	 both	were	 considered	 to	 explain	 individual	 nest-		 or	 site-	
level	urbanization,	using	a	linear	model	in	R.	The	PCA,	realized	with	the	
list	obtained	from	tests	D,	E,	and	F,	was	furthermore	used	to	visually	 
inspect	the	genetic	distance	of	ZOO	with	other	sites.
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To	assess	to	which	extent	genomic	associations	with	urbanizations	
were	 polygenic,	we	 inferred,	 using	 linear	models,	 the	 proportion	 of	
variance	in	nest-	level	urbanization	that	was	explained	by	PCAs	using	
an	increasing	number	of	SNPs,	from	1	to	49,969,	sorted	by	decreasing	
Z-	score	in	test	A.	Although	this	is	a	circular	examination,	it	is	primarily	
an	attempt	to	investigate	the	cumulative	nature	of	the	top	outlier	SNPs	
from	gene–urbanization	association	tests.	We	considered	only	PC1	as	
this	axis	captured	most	of	the	variation	in	urbanization	while	analyzing	
outliers	from	test	A	(as	it	will	be	explained	in	the	result	section).

Genes	were	extracted	from	the	great	tit	reference	annotation	(NCBI	
Parus major	Annotation	Release	100).	We	reported	the	genes	found	in	the	
aforementioned	lists.	Then,	gene	ontology	(GO)	enrichment	tests,	which	
aim	to	identify	potentially	enriched	GO	terms,	were	performed	in	GOrilla	
(Eden,	Navon,	Steinfeld,	Lipson,	&	Yakhini,	2009),	using	as	background	
list	of	genes	the	entire	set	of	genes	found	among	the	SNPs	used	in	this	
study	(n	=	5,276).	We	tested	for	GO	enrichment	among	genes	founds	for	
several	lists	of	outliers	(each	test	separately	and	several	combinations	of	
tests).	Enrichment	tests	were	corrected	with	the	FDR	method.

3  | RESULTS

3.1 | Environmental data

Average	urbanization	level	per	site	ranged	from	−2.19	in	ZOO	to	2.32	
in	MNO	(Table	1,	Figure	1a,b).	The	maximum	nest-	level	urbanization	
was	2.9	 in	MNO,	and	the	minimum	was	−2.7	 in	ZOO.	The	fact	that	
ZOO	was	found	 less	urbanized	than	ROU	(the	forest)	 is	 in	part	due	
to	the	absence	of	motorized	vehicles	in	the	zoo,	unlike	in	the	forest,	
as	well	as	its	huge	vegetation	cover.	Nest-	level	urbanization	was	sig-
nificantly	different	across	sites	(ANOVA,	F	=	180.3,	p-	value	<	2e-	16).	
Tukey’s	HSD	test	revealed	that	all	pairs	of	sites	had	significantly	dif-
ferent	means	in	nest-	level	urbanization	scores	(p	<	.05),	except	FCO	
and	MOS	(p	=	.99)	and	ZOO	and	ROU	(p	=	.52).

3.2 | SNP calling

Sequencing	RAD	tags	for	140	breeding	great	tits	resulted	in	a	total	
of	 1,815,823,241	 raw	 sequences,	 with	 an	 average	 of	 7,793,233	
reads	per	individual.	107,413	loci	were	identified	in	the	stacks	cata-
log.	After	filtering	for	depth	coverage,	HWE,	and	MAF,	49,969	SNPs	
in	32,756	loci	were	kept	in	the	final	dataset,	roughly	one	locus	every	
37	Kb.	The	missing	rate	per	individual	ranged	from	0.001	to	0.058,	
with	 a	 median	 of	 0.024.	 The	missing	 rate	 per	 locus	 ranged	 from	
0.000	 to	0.100,	with	 a	median	of	 0.014.	 The	 average	 read	depth	
across	genotypes	(SNP	*	Individual)	was	72	(Appendix	S1),	and	the	
fifth	 percentile	was	 24.	Average	 linkage	 disequilibrium	 decreased	
rapidly	 within	 the	 first	 Kb	 between	 SNPs	 and	 then	 continued	 to	
decrease	slowly	 (Appendix	S2).	The	 IBSs	between	each	 replicated	
samples	were	high,	respectively,	of	0.9999	and	0.9987.	Replicates	
were	removed	from	all	subsequent	analyses.	To	construct	 the	no-
family-ties	dataset,	twelve	individuals	with	IBS	superior	to	0.80	with	
other	individuals	were	removed	(three	in	GRA,	six	in	ZOO,	and	six	
in	ROU).

3.3 | Genetic diversity, relatedness, and 
differentiation

There	 was	 a	 general	 pattern	 of	 reduced	 diversity	 in	 individuals	
from	 the	 four	most	 urbanized	 city	 sites,	 in	 particular	MNO,	 com-
pared	 to	 ZOO	 and	 to	 ROU.	 The	 observed	 genomewide	 observed	
heterozygosity	 (Ho)	was	different	 among	 sites	 (ANOVA:	F	=	11.6,	
p-	value	=	.000866,	 Table	1).	Ho	was	 lower	 in	MNO	 (the	most	 ur-
banized	site)	than	in	ROU	and	in	ZOO.	Ho	was	lower	in	GRA	than	
in	ROU.

Pairwise	 IBS	between	 individuals	 ranged	 from	0.73	 to	0.89	 and	
was	 in	 average	 of	 0.75	 (Figure	2a,b).	 Average	 IBS	 values	 were	 not	
significantly	different	between	the	sites,	using	either	the	entire	data-
set	 (ANOVA:	 F	=	1.99,	 p-	value	=	.08)	 or	 the	 no-family-ties-	dataset	
(ANOVA:	F	=	1.62,	p-	value	=	.15).

The Fst	 ranged	 from	 0.004	 to	 0.009,	 for	 an	 average	 of	 0.007	
(Table	2).	 Fsts	 were	 significant	 for	 all	 of	 the	 comparisons.	 The	 Fst  
between	the	most	and	least	urbanized	site	was	0.008.	When	highly	
related	 individuals	 were	 kept,	 the	 genomewide	 differentiation	
among	the	sites	ranged	from	0.004	to	0.013	for	an	average	of	0.009,	
illustrating	that	keeping	these	individuals	could	have	slightly	biased	
the	results.	Although	average	Fst	was	very	 low,	 there	were	several	
SNPs	 showing	 relatively	 high	 Fst	 (Appendix	 S3a).	 The	 find.clusters 
analysis	 supported	 the	 existence	 of	 only	 one	 genetic	 cluster.	The	
cross-	validation	procedure	identified	n	=	10	as	the	optimal	number	
of	principal	components	of	allelic	variation	to	retain	for	the	DAPC	
(Appendix	S4a,b).	This	use	of	10	principal	components	in	the	DAPC	
resulted	in	average	in	82%	(median	=	87%)	of	correct	individual	as-
signments	to	their	population,	revealing	a	moderate	discrimination	
power	of	 the	 six	 groups	 (Appendix	S4b)	 clearly	 rejecting	 the	pan-
mixia	hypothesis.	The	DAPC	(Appendix	S4d)	based	on	10	principal	
components	 and	 the	PCA	 (Figure	4a–d)	both	depicted	 a	 clear	 ge-
netic	structure	between	the	sites	but	no	particular	pattern	of	differ-
entiation	in	link	with	urbanization.	The	PCA	performed	better	when	
the	 no-	family-	tie	 dataset	 containing	 no	 highly	 related	 individuals	
was	used	(Figure	3c,d)	than	when	they	were	included	(Figure	3a,b).

3.4 | Effect of geographic distance and urbanization 
on genetic diversity and differentiation

At	 the	 site	 level,	 observed	 heterozygosity	 was	 significantly	 cor-
related	 with	 urbanization	 (r2	=	.76,	 p-	value	=	.02;	 Figure	4).	 At	 the	
individual	 level,	 observed	 heterozygosity	was	 also	 significantly	 cor-
related	with	urbanization	but	explained	much	less	variation	(r2	=	.09,	
p-	value	=	.0003).

Genetic	differentiation	between	sites	 tended	 (no	significant	cor-
relation)	 to	 increase	with	geographic	distance	and	with	urbanization	
difference	 (Figure	5a,b).	All,	 except	one,	of	 the	 few	high	 IBS	 indices	
(superior	or	equal	to	0.80,	probably	corresponding	to	parent–offspring,	
full-	sib,	or	half-	sib	relationships)	were	found	within	sites,	at	small	geo-
graphic	distances	(Figure	5c).	The	rest	of	the	IBS	indices	(below	0.80)	
only	slightly	decreased	with	geographic	distance	and	urbanization	dif-
ference	(Figure	5c,d).
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When	genetic	variance	among	genotypes	was	constrained	by	the	
full	RDA	model	for	latitude,	longitude,	and	nest-	level	urbanization,	the	
proportion	 of	 variance	 explained	 was	 significant	 globally	 (p	<	.001,	
Table	3),	although	only	the	single	effect	of	longitude	(p	<	.001)	was	sig-
nificant,	while	nest-	level	urbanization	and	latitude	had	nonsignificant	
effects	(p	=	.16	and	.17,	respectively).	Using	the	partial	RDA	model	to	
test	for	a	nest-	level	urbanization	effect,	after	subtracting	the	effect	of	
longitude	and	latitude,	the	proportion	of	variance	explained	was	not	
significant	(p	=	.21).	Urbanization	at	the	nest	explained	0.75%	of	the	
total	genotypic	variance	(p	=	.20).

When	genetic	variance	among	genotypes	was	constrained	by	the	
full	RDA	model	for	latitude,	longitude,	and	average	urbanization	at	the	
site	rather	than	at	the	nest,	the	proportion	of	variance	explained	was	

significant	globally	(p	<	.001,	Table	3),	and	both	longitude	and	average	
urbanization	at	 the	site	had	significant	effects	 (p < .001 and p	=	.01,	
respectively).	After	subtracting	the	effect	of	longitude	and	latitude,	the	
proportion	of	variance	explained	using	the	partial	RDA	model	was	still	
significant	(p	=	.02).	Urbanization	average	per	site	explained	0.78%	of	
the	total	genotypic	variance	(p	=	.01).

3.5 | SNPs and genes associated with 
urbanization and gene ontology enrichment

Several	SNPs	exhibited	relatively	high	scores	of	association	with	ur-
banization	 (Figure	6).	These	association	scores	were	on	average	de-
coupled	 from	average	Fst	 between	sites	 (Appendix	S3b,c).	Although	

F IGURE  2  (a)	Heatmap	of	genomic	
relatedness	(IBS)	among	individuals.	(b)	
Boxplots	of	IBS	among	individuals	in	the	
six	sites.	Site	abbreviations	correspond	to	
Table 1
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TABLE  2 Fst	(upper	triangle)	and	associated	p-	values	(lower	triangle)	among	locations,	estimated	using	the	dataset	with/without	highly	
related	individuals

MNO FCO MOS GRA ROU ZOO

MNO 0.004/0.004 0.009/0.009 0.009/0.008 0.009/0.008 0.012/0.008

FCO 0.001/0.001 0.006/0.006 0.009/0.007 0.007/0.006 0.011/0.006

MOS 0.001/0.001 0.001/0.001 0.010/0.009 0.007/0.006 0.012/0.008

GRA 0.001/0.001 0.001/0.001 0.009/0.001 0.009/0.007 0.012/0.007

ROU 0.001/0.001 0.002/0.001 0.012/0.019 0.001/0.001 0.013/0.008

ZOO 0.001/0.001 0.003/0.001 0.012/0.030 0.001/0.001 0.001/0.001



600  |     PERRIER Et al.

several	hundred	outliers	were	identified,	there	was	little	evidence	for	
large	z-	score	peaks	that	could	have	been	synonymous	of	strong	as-
sociation	at	a	particular	genomic	region	(but	see,	e.g.,	the	outlier	SNPs	
in	the	middle	of	chromosome	3,	Figure	6).	The	correlations	were	high	
between	the	z-	scores	obtained	with	the	quantitative	tests	at	the	nest	
level	and	at	the	site	level	with	or	without	ZOO	(r2	=	.79	between	A	and	
B,	r2	=	.79	between	D	and	E,	p	<	.001,	Appendix	S5).	The	correlations	
were	also	relatively	high	between	similar	tests	made	with	or	without	
the	ZOO	(r2	AD	=	.59;	r2	BE	>	.58;	r2	CF	=	.75,	p	<	.001).	In	turn,	the	

correlations	were	 relatively	 small	between	z-	scores	values	obtained	
for	the	quantitative	tests	(A,	B,	D	and	E)	and	for	the	binary	tests	(C	and	
F;	average	r2	=	.28,	ranging	from	0.08	to	0.48,	p	<	.001,	Appendix	S5).	
At	a	q-	value	threshold	of	0.05,	45,	89,	514,	81,	114,	and	224,	SNPs	
were	significant	for	each	of	the	six	tests	A,	B,	C,	D,	E,	and	F,	respec-
tively	(Appendix	S6),	for	a	total	of	667	SNPs	when	the	six	lists	were	
merged.	 Similar	 type	of	 tests	 (quantitative	 vs.	 binary)	 had	 relatively	
large	proportions	of	shared	outlier	SNPs	compared	to	dissimilar	tests	
(Appendix	S7).	Seven	outlier	SNPs	were	found,	at	q-	values	<.05	for	all	
of	the	tests	(Appendix	S7e).	415	outlier	SNPs	were	only	found	in	one	
of	the	six	tests.

As	expected,	 the	PCAs	using	outlier	SNPs	 revealed	patterns	of	
genetic	 structure	 linked	 to	urbanization	 (Figure	7),	 in	 contrast	with	
the	PCA	using	the	entire	SNP	dataset	that	showed	very	little	genetic	
structure	 linked	to	urbanization	(Figure	3b	and	d)	but	rather	a	geo-
graphic	structure	(Figure	3a	and	c).	The	first	axis	of	the	PCA	based	on	
the	entire	set	of	SNPs	explained	3%	of	the	variation	in	urbanization	
score	at	the	nest	(Table	4).	Taken	together,	the	first	and	second	axes	
of	 this	 PCA	explained	6%	of	 the	variation	 in	 urbanization	 score	 at	
the	 nest.	 Similar	 results	were	 obtained	 for	 the	 site-	level	 urbaniza-
tion	scores,	 the	first	axis	of	 the	PCA	explained	4%	of	 the	variation	
and	8%	were	explained	by	both	axes	together.	In	turn,	81%	of	vari-
ance	in	site-	level	urbanization	was	explained	by	the	first	axis	of	the	
PCA	summarizing	interindividual	genomic	variation	at	97	SNPs	with	
q-	values	<.05	 for	 gene–urbanization	 tests	A	&	B	grouped	 (Table	4,	
Figure	7a,b).	 In	 contrast,	 only	 15%	of	variance	 in	 urbanization	was	
explained	 by	 the	 first	 axis	 of	 the	 PCA	 summarizing	 interindividual	
genomic	variation	at	the	top	514	SNPs	with	q-	values	<.05	for	gene–
urbanization	test	C	(Table	4,	Figure	7e,f),	rather	depicting	ROU	ver-
sus	 city	 differentiation,	 as	 expected	 from	 the	 nature	 of	 the	 test	C	

F IGURE  3 Principal	component	
analyses	of	individual	genotypes	based	on	
(a	and	b)	the	entire	dataset	of	49,969	SNPs	
and	all	of	the	140	individuals,	(c	and	d),	the	
entire	dataset	of	SNPs	and	no-family-ties 
dataset.	In	(a	and	c),	color	code	refers	to	
populations.	In	(b	and	d),	color	code	refers	
to	urbanization	level
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F IGURE  4 Correlations	between	site	averages	of	observed	
heterozygosity	and	urbanization.	Error	bars	represent	standard	
deviations
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comparing	ROU	versus	city.	PC1	and	PC2	explained	36%	of	variation	
among	individuals	at	these	outlier	SNPs,	with	PC2	rather	capturing	
urbanization	differences.	When	combining	tests	A,	B,	and	C,	71%	of	
variance	 in	urbanization	was	explained	by	the	two-	first	axes	of	the	

PCA	 summarizing	 interindividual	 genomic	variation	 at	 the	 top	599	
SNPs	with	q-	values	<.05	 (Table	4,	Figure	7i,j),	PC1	rather	capturing	
ROU	 versus	 city	 differentiation,	 and	 PC2	 capturing	 differentiation	
along	the	urbanization	gradient.	When	the	ZOO	was	removed	from	

F IGURE  5 Correlations	between	(a)	genetic	differentiation	(Fst/(1–Fst))	and	geographic	distance	(Km),	(b)	genetic	differentiation	and	
urbanization	differences	(absolute	value	of	the	difference	between	local	urbanization	values),	(c)	identity-	by-	state	and	geographic	distance,	 
(d)	identity-	by-	state	and	urbanization	differences

p

p p

p
R R

R R

(a) (b)

(c) (d)

TABLE  3 p-	Values	and	variables	contributions	in	the	RDA	models.	Full	RDA	and	partial	RDA	refer,	respectively,	to	models	applied	on	(i)	
latitude,	longitude,	and	urbanization	as	dependent	variables,	and	(ii)	urbanization	as	unique	dependent	variable	with	the	effects	of	longitude	and	
latitude	removed.	Urbanization	level	was	considered	either	at	the	nest	level	or	averaged	per	site.	See	methods	for	details.	Significant	p-	values	
are in bold

Urbanization level at the nest Average urbanization level at the site

p- Value RDA axis 1 RDA axis 2 RDA axis 3 p- Value RDA axis 1 RDA axis 2 RDA axis 3

Full	RDA .001 — — — .001 — — —

%	of	variance	
explained

— 0.97% 0.86% 0.72% — 0.98% 0.87% 0.74%

Latitude .17 −0.44 0.88 0.19 .093 −0.4 0.88 −0.26

Longitude .001 0.94 −0.34 0 .001 0.91 −0.41 −0.02

Urbanization .157 −0.07 0.97 −0.24 .013 −0.02 0.99 −0.05

Partial	RDA .212 — — — .018 — — —

%	of	variance	
explained

— 0.75% — — — 0.78% — —

Urbanization .204 −0.47 — — .014 −0.31 — —
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outlier	tests	but	reintegrated	for	PCAs,	ZOO	genotypes	had	interme-
diate	PC1	and	PC2	scores	between	ROU	and	city	sites.	The	propor-
tion	of	variance	in	urbanization	at	the	nest	explained	by	the	first	axis	
of	PCAs	 summarizing	 interindividual	 genotypic	distances	 increased	
sharply	from	18%	to	90%	(Figure	8a)	with	the	increase	in	the	number	
of	SNPs	added	to	the	model,	by	decreasing	Z-	score	from	test	A.	The	
increase in r2	was	particularly	sharp,	with	the	45	first	SNPs	(q-	values	
<.05,	 Figure	8b)	 explaining	 66%	of	 the	variation	 in	 urbanization	 at	
the	nest,	80%	being	reached	with	123	SNPs	and	85%	with	240	SNPs.	
After	a	plateau,	the	proportion	of	variance	explained	in	urbanization	
decreased	 down	 to	 3%	 explained	with	 the	 entire	 dataset	 of	 SNPs	
(Figure	8a).	In	contrast,	there	was	little	effect	of	the	number	of	SNPs	

on	the	percentage	of	variation	explained	when	SNPs	were	added	ran-
domly	to	the	PCAs	(Figure	8a,b,	gray	circles).

SNPs	 from	 the	 entire	 dataset	 were	 found	 in	 5276	 genes.	 266	
genes	were	identified	among	the	661	SNPs	found	at	least	once	with	
a q-	value	 <.05	 (Appendix	 S6).	None	of	 the	 seven	 SNPs	 below	0.05	
q-	values	at	the	intersection	of	the	six	tests	were	found	in	genes.	12	
genes	were	identified	among	the	30	SNPs	found	in	the	top	10	z-	scores	
of	 each	 test	 (Table	5;	Appendix	 S8).	 Performing	GO	 tests	 for	 genes	
found	for	different	sets	of	SNPs	with	q-	values	<.05,	we	detected	42	
enriched	GO	terms	(p-	val	<	.0001)	compared	to	the	background	list	of	
the	5276	genes	(Table	6).	However,	none	of	the	GO	were	significantly	
enriched	after	FDR	correction.

F IGURE  6 Manhattan	plots	and	sliding	window	of	z-	scores	of	association	tests:	(a)	with	urbanization	at	the	nest,	(b)	with	averaged	site	
urbanization,	(c)	comparing	ROU	versus	the	city	sites,	and	d,	e,	and	f	showing	z-	score	for	similar	comparisons	as	above	but	excluding	ZOO.	Red	
dots	correspond	to	SNPs	with	q-	value	<.05	in,	at	least,	the	considered	test

Z
-s

co
re

 1                         2                         3                4     4A    1A           5        6    7     8    9                                                     Z10 11 12 13 14 15 17 18 18 19 20

2624
25

LG
1232221

25
LG

2 27 28

Genomic position

(a)

(b)

(c)

(d)

(e)

(f)



     |  603PERRIER Et al.

4  | DISCUSSION

Using	RAD	sequencing,	we	investigated	(i)	the	potential	effect	of	urbani-
zation	on	genetic	diversity	and	differentiation	in	great	tits,	and	(ii)	the	po-
tential	existence	of	genomic	footprints	of	divergent	selection	driven	by	
urbanization.	Observed	heterozygosity	was	only	slightly,	yet	significantly,	
lower	in	the	most	urbanized	sites	compared	to	the	least	urbanized	ones.	
Furthermore,	a	small	but	significant	proportion	of	genetic	variance	was	
explained	by	urbanization.	These	results	either	suggest	that	gene	flow	
was	only	slightly	limited	along	this	urbanization	gradient	or	alternatively	
that	relatively	 large	effective	population	sizes	and	relatively	recent	ur-
banization	slow	down	the	rise	of	genetic	differentiation.	Although	urban-
ization	explained	a	small	proportion	of	genetic	variance,	such	deviation	
from	panmixia	may	be	 sufficient	 to	allow	 for	 the	 rise	of	 local	 adapta-
tion	(Lenormand,	2002).	This	result	is	furthermore	in	line	with	similarly	
small	genetic	structure	between	habitats	found	elsewhere	in	studies	on	
small-	scale	local	adaptation	in	blue	tits	Cyanistes caeruleus	(Charmantier,	
Doutrelant,	Dubuc-	Messier,	Fargevieille,	&	Szulkin,	2016;	Szulkin	et	al.,	
2016).	Our	 search	 for	SNP–urbanization	associations	 revealed	 several	

gene–urbanization	associations	across	the	genome,	suggesting	little	evi-
dence	for	an	oligogenic	but	rather	a	polygenic	response	to	selection.	A	
top	subset	of	97	SNPs	associated	with	urbanization	explained	81%	of	the	
variance	in	urbanization	score.	A	polygenic	response	to	urbanization	may	
be	concordant	with	both	the	small	genomewide	differentiation	along	the	
urbanization	gradient,	the	relatively	recent	rise	of	urbanization,	and	the	
expectations	that	several	selective	agents	may	act	in	urban	environments	
on	several	complex	fitness	traits.	We	discuss	below	the	implications	of	
these	results	for	the	evolutionary	potential	and	local	adaptation	of	great	
tit	urban	populations	and	the	need	for	further	analyses	of	genomewide	
patterns	of	differentiation	linked	to	urbanization,	notably	including	more	
replicates	 from	 other	 cities,	 using	 both	 larger	 genomic	 coverage	 and	
ample	size,	and	integrated	in	a	polygenic	analytical	framework.

4.1 | Reduced heterozygosity in urban birds

Genomic	data	make	it	possible	to	measure	genetic	diversity	with	great	
precision.	In	this	study,	RADseq	exposed	that	individual	heterozygo-
sity	was	significantly	slightly	 lower	 in	the	more	urbanized	sites	than	

F IGURE  7 Principal	component	analyses	of	individual	genotypes	based	on	(a	and	b):	outlier	SNPs	identified	by	tests	A	and	B;	(d	and	e):	
outlier	SNPs	identified	by	tests	D	&	E;	(e	and	f):	outlier	SNPs	identified	by	tests	C;	(g	and	h):	outlier	SNPs	identified	by	tests	F;	(i	and	j):	outlier	
SNPs	identified	by	tests	A,	B	and	C;	(k	and	l):	outlier	SNPs	identified	by	tests	D,	E,	and	F.	In	a,	c,	e,	g,	i,	and	k,	color	code	refers	to	populations.	In	
b,	d,	f,	h,	j,	and	l,	color	code	refers	to	urbanization	level.	In	tests	c,	d,	g,	h,	k,	and	i,	ZOO	was	excluded	from	gene–environment	association	tests	
but	was	subsequently	used	for	the	PCA	and	representation
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in	the	less	urbanized	ones	(Figure	4).	This	result	is	in	line	with	the	re-
duced	genetic	diversity	observed	 in	urban	blackbird	 (Turdus merula)	
populations	 compared	 to	 rural	 ones	 (Evans	 et	al.,	 2009).	 Similarly,	
large	increases	in	relatedness	and	decreases	in	genetic	diversity	have	
been	documented	 in	urban	populations	 for	 less	mobile	 taxa	 like	 ro-
dents	 (Calomys musculinus;	 Chiappero	 et	al.,	 2011),	 foxes	 (Vulpes 
vulpes;	 Wandeler,	 Funk,	 Largiader,	 Gloor,	 &	 Breitenmoser,	 2003),	
or salamanders (Desmognathus fuscus;	Munshi-	South,	Zak,	&	Pehek,	
2013; Salamandra salamandra;	 Lourenço	et	al.,	 2017).	 Such	patterns	
suggest	 that	 population	 sizes	 are	 slightly	 smaller	 and/or	 less	 con-
nected	 in	more	urbanized	sites,	possibly	 in	 relation	 to	various	envi-
ronmental	constrains,	including	lower	resource	quality	and	availability,	
chemical,	 light	 and	 noise	 pollution,	 and	 anthropogenic	 disturbance	
(Dubiec,	 2011;	 Hedblom	 &	 Söderström,	 2011;	 Koivula,	 Kanerva,	
Salminen,	Nikinmaa,	&	Eeva,	2011;	Longcore,	2010).	However,	in	this	
study,	heterozygosity	was	only	slightly	different	across	the	urbaniza-
tion	gradient.	This	may	be	congruent	with	the	small	Fst	found	among	
populations,	either	suggesting	the	presence	of	gene	flow	or	a	lag	from	
demographic	to	genetic	effects	in	a	context	of	relatively	recent	urban-
ization.	Admittedly,	having	only	six-	point	estimates	of	heterozygosity	
is	rather	scarce,	and	genotyping	more	sites	and	possibly	in	different	
cities	is	required	for	generalization	of	this	pattern.

Given	the	implications	of	heterozygosity	for	individual	fitness	and	
population	evolutionary	potential,	slightly	reduced	heterozygosity	de-
tected	in	urban	areas	may	have	important	consequences	for	the	adap-
tive	 potential	 of	 urban	 great	 tit	 populations.	 Several	 theoretical	 and	

empirical	studies	showed	negative	effects	on	fitness	resulting	from	re-
duced	heterozygosity	and	sometimes	associated	inbreeding	(Crnokrak	
&	Roff,	1999;	Reed	&	Frankham,	2003;	Theodorou	&	Couvet,	2006).	
Moreover,	 reduced	 diversity	 impedes	 adaptive	 response	 to	 stressful	
conditions	(Bijlsma	&	Loeschcke,	2012).	Recent	analyses	of	life-	history	
traits	in	the	focal	populations	of	great	tits	have	revealed	that	urban	great	
tits	in	Montpellier	lay	smaller	clutches	and	have	lower	hatching	success	
than	their	conspecifics	breeding	in	the	forest	ROU	(Charmantier	et	al.,	
2017).	Surprisingly,	however,	 this	study	showed	that	rural	and	forest	
birds	did	not	differ	in	fledging	success.	Future	efforts	will	need	to	inte-
grate	survival	analyses	in	the	comparison	of	fitness	between	rural	and	
forest	birds.	The	slight	decreased	heterozygosity	may	 therefore	have	
implications	for	the	potential	of	adaptation	of	great	tit	populations	in	
urban	environments,	although	whether	such	reduced	diversity	in	urban	
environments	is	generalizable	and	associated	with	demographic	and/or	
selective	processes	remains	to	be	examined.

4.2 | Low but significant neutral genetic 
differentiation along the urbanization gradient

The	overall	 low	but	significant	genetic	differentiation	between	sites	
with	different	urbanization	levels	suggests	a	relatively	small,	although	
significant,	effect	of	urbanization	on	great	tit	genetic	structure	along	
a	 rural/urban	 gradient.	 Interestingly,	 the	 genetic	 structure	 revealed	
here	 is	 weaker	 than	 the	 Fst	 estimated	 in	 two	 studies	 investigating	
great	tits	in	urban	versus	rural	areas.	First,	Lemoine	et	al.	(2016)	found	

Explanatory variable Urbanization

PC1 PC2 PC1 + PC2

r2 p- Value r2 p- Value r2 p- Value

All	SNPs,	n	=	49,969 Nest	level .03 1.9E-	02 .03 2.8E-	02 .06 5.3E-	03

All	SNPs,	n	=	49,969 Site	level .04 9.5E-	03 .04 1.4E-	02 .08 1.5E-	03

AB,	n	=	97	union	of	FDR	<0.05 Nest	level .73 1.5E-	41 .00 5.3E-	01 .73 1.8E-	40

AB,	n	=	97	union	of	FDR	<0.05 Site	level .81 5.5E-	52 .00 4.6E-	01 .81 3.8E-	51

C,	n	=	514	FDR	<0.05 Nest	level .13 9.0E-	06 .17 1.7E-	07 .30 6.3E-	12

C,	n	=	514	FDR	<0.05 Site	level .15 1.1E-	06 .20 1.8E-	08 .36 3.3E-	14

ABC,	n	=	599	union	of	FDR	<0.05 Nest	level .18 1.5E-	07 .44 2.3E-	19 .62 4.6E-	30

ABC,	n	=	599	union	of	FDR	<0.05 Site	level .21 9.0E-	09 .48 9.5E-	22 .70 1.3E-	36

DE,	n	=	134	union	of	FDR	<0.05 Nest	level .56 1.7E-	26 .02 3.5E-	02 .59 1.6E-	27

DE,	n	=	134	union	of	FDR	<0.05 Site	level .61 4.1E-	30 .02 4.5E-	02 .64 3.8E-	31

F,	n	=	224	FDR	<0.05 Nest	level .37 8.3E-	16 .03 2.0E-	02 .41 1.2E-	16

F,	n	=	224	FDR	<0.05 Site	level .43 6.3E-	19 .04 8.9E-	03 .48 1.7E-	20

DEF,	n	=	301	union	of	FDR	<0.05 Nest	level .47 5.2E-	21 .09 2.6E-	04 .56 1.3E-	25

DEF,	n	=	301	union	of	FDR	<0.05 Site	level .53 7.7E-	25 .09 1.7E-	04 .63 1.0E-	30

ABCDEF,	n	=	667	union	of	FDR	<0.05 Nest	level .22 2.4E-	09 .42 2.7E-	18 .65 3.1E-	32

ABCDEF,	n	=	667	union	of	FDR	<0.05 Site	level .26 8.0E-	11 .46 3.3E-	20 .72 4.2E-	39

ABCDEF,	n	=	30	top	10 Nest	level .44 3.7E-	19 .00 2.4E-	01 .44 1.5E-	18

ABCDEF,	n	=	30	top	10 Site	level .49 4.3E-	22 .02 6.5E-	02 .51 2.1E-	22

TABLE  4 Variation	in	urbanization	score	at	the	nest	and	at	the	site	explained	by	the	two-	first	PCA	axes	summarizing	the	genomic	variation	
among	individuals,	using	all	the	SNPs	or	different	outlier	subsets	from	gene–urbanization	associations.	r2	are	color	coded	using	a	blue-	red	
gradient
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an Fst	 of	 0.018	 between	Montpellier	 City	 and	 La	 Rouvière	 Forest.	
Second,	Fst	 among	 close	 sites	 in	Barcelona	City	 ranged	 from	0.018	
to	0.19	(Björklund	et	al.,	2010).	Such	higher	differentiations	found	in	
these	 previous	 studies	might,	 however,	 be	 explained	 by	 the	 use	 of	
highly	polymorphic	microsatellite	genetic	markers	and	relatively	small	

sample	sizes.	In	the	Barcelona	study	(Björklund	et	al.,	2010),	it	is	also	
possible	 that	 the	 structure	of	 the	city	presents	a	case	of	extremely	
reduced	patch	sizes	and	population	sizes	together	with	high	fragmen-
tation	due	to	urbanization,	leading	to	increased	differentiation.	From	
a	broader	perspective,	our	results	also	contrast	with	other	vertebrate	
studies	 showing	 a	 stronger	 impact	 of	 urbanization	 on	 the	 genetic	
structure	of	species	with	lower	dispersal	capacities	(Munshi-	South	&	
Kharchenko,	2010;	Munshi-	South	et	al.,	2013;	Wandeler	et	al.,	2003).

In	turn,	although	low,	the	significant	genetic	variance	explained	
by	urbanization	may	suggest	that	genetic	differentiation	due	to	ur-
banization	is	on	the	rise.	The	process	of	differentiation	could	in	fact	
be	partly	slowed	by	large	effective	population	size	and	the	relatively	
recent	rise	of	urbanization.	This	hypothesis	is	sustained	by	the	rel-
atively	good	definition	of	populations	based	on	IBS	and	the	almost	
absence	 of	 highly	 related	 individuals	 in	 different	 sites,	 suggesting	
little	recent	gene	flow	among	sites.	Furthermore,	the	small	but	sig-
nificant	genetic	differentiation	between	groups	of	great	tits	that	are	
separated	 by	 a	maximum	of	 17	km	 (Fst	 of	maximum	0.009)	 found	
in	this	study	matches	the	Fst	of	0.01	observed	earlier,	using	a	SNP	
chip,	between	 two	much	more	geographically	distant	populations,	
respectively,	 from	 the	Netherlands	 and	 the	United	 Kingdom	 (Van	
Bers	et	al.,	2012).	It	is	also	similar	to	the	Fst	of	0.012	found	among	
several	 distant	 sites	 across	 Europe	 using	 SNP	 from	 genome	 rese-
quencing	(Laine	et	al.,	2016),	and	to	the	small	genetic	differentiation	
found	 across	European	populations	 of	 great	 tits	 by	 Lemoine	 et	al.	
(2016)	 using	 microsatellite	 markers.	 These	 studies	 tend	 to	 high-
light	that	despite	small	average	dispersal	distances	(e.g.,	mean	great	
tit	 natal	 dispersal	 distance	 in	 males/females	 were	 498	m/643	m	
in	Dingemanse,	Both,	Van	Noordwijk,	Rutten,	&	Drent,	 2003;	 and	
528	m/788	m	in	Szulkin	&	Sheldon,	2008),	genetic	structure	remains	
weak,	potentially	resulting	from	the	effect	of	reduced	genetic	drift	
in	large	populations	limiting	genetic	differentiation.	Although	large	
gene	flow	might	limit	the	potential	for	local	adaptation	(Lenormand,	
2002),	the	second	hypothesis	of	rather	small	gene	flow	coupled	with	
small	genetic	drift	in	large	populations	is	compatible	with	local	ad-
aptation	processes.	On	a	practical	note,	 relatively	 low	average	ge-
nomewide	differentiation	facilitates	the	detection	of	relatively	weak	
footprints	of	selection	and	gene–environment	associations.

4.3 | Gene–urbanization associations

This	is	the	first	study,	to	our	knowledge,	to	achieve	genomewide	SNP	
scans	searching	 for	specific	associations	between	SNPs	and	urbani-
zation	 level	 in	 a	 passerine	 bird.	Our	 results	 of	 an	 absence	 of	 SNPs	
strongly	 associated	 with	 urbanization,	 but	 evidence	 for	 numerous	
small	 gene–urbanization	 associations	 does	 not	 support	 the	 hypoth-
esis	that	urbanization	could	provoke	a	strong	response	to	selection	in	
one	or	a	few	oligogenic	traits	(but	see	the	following	paragraph	for	an	
alternative	hypothesis).	The	absence	of	strong	gene–urbanization	as-
sociations	may	be	due	to	relatively	large	gene	flow,	suggested	by	low	
Fst,	compared	to	the	strength	of	selection.	This	could	also	suggest	that	
divergent	 selection	 could	 be	 relatively	 recent	 between	Montpellier	
city	and	neighboring	forests	and	that	more	time	is	needed,	especially	

F IGURE  8  Investigation	of	putative	polygenic	gene–urbanization	
association:	a:	Percentage	of	variation	in	nest-	level	urbanization	
explained	by	the	first	principal	component	of	PCAs	summarizing	
genomic	variation	among	individuals	for	an	increasing	number	of	
SNPs	(from	1	to	49,969),	either	ordered	by	decreasing	Z-	score	
obtained	from	the	test	A	(red,	blue,	and	black	circles)	or	randomly	
added	(10	randomizations,	gray	circles).	Models	integrating	only	SNPs	
with	q-	values	<.05	are	shown	in	red.	Models	notably	integrating	SNPs	
with	q-	values	>.05,	but	p-	values	<.05	are	shown	in	blue.	Models	
notably	integrating	SNPs	with	p-	values	>.05	are	shown	in	black.	(b)	
Zoom	in	for	the	first	500	SNPs
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in	the	face	of	large	effective	population	sizes,	to	see	large	effects	of	
selection	on	individual	loci.	For	example,	it	has	been	shown	that	urban	
populations	of	species	that	have	a	longer	history	of	inhabiting	urban	
areas	have	lower	fear	of	humans,	suggesting	relatively	slow	local	se-
lection	or	acclimation	for	reduced	responsiveness	to	humans	in	urban	
areas	 (Symonds	 et	al.,	 2016).	 Another	 alternative	 is	 a	 power	 issue	
caused	by	a	low	genome	coverage	(i.e.,	missing	linkage	blocks,	Lowry	

et	al.,	2016;	but	see	McKinney,	Larson,	Seeb,	&	Seeb,	2016	&	Catchen	
et	al.,	2017).	This	hypothesis	needs	to	be	considered	carefully	as	we	
found	rapid	decay	in	average	linkage	disequilibrium	(as	also	shown	in	
this	species	by	Bosse	et	al.,	2017).	Furthermore,	fewer	loci	of	 larger	
effects	and	tighter	 linkage	may	resist	to	the	homogenizing	effect	of	
gene	flow	and	participate	to	local	adaptation	in	heterogeneous	envi-
ronments	connected	with	high	gene	flow	(Lenormand,	2002;	Yeaman	

TABLE  5 The	30	SNPs	and	corresponding	functional	annotations	found	at	the	union	of	the	top	10	SNPs	of	each	of	the	six	LFMM	test.	SNPs	
are	ordered	by	genomic	position.	“na”	means	that	the	SNP	was	in	an	intergenic	region

Chrom Position
n outlier 
tests A B C D E F Gene abbreviation Gene name

1 25541327 1 x CUL4A Cullin	4A

1A 6049393 2 x x FRMD4A FERM	Domain	Containing	
4A

3 711321 1 x XRN2 5′-	3′	Exoribonuclease	2

3 39324763 1 x RPS6KA2 Ribosomal	Protein	S6	
Kinase	A2

3 54412965 4 x x x x na na

3 54412968 4 x x x x na na

3 54413011 4 x x x x na na

3 56699164 2 x x na na

3 104563224 1 x na na

3 107202050 2 x x na na

4 1271239 2 x x na na

4A 9107560 1 x SLC25A43 Solute	Carrier	Family	25	
Member	43

5 22593135 1 x na na

5 60966129 1 x FANCM Fanconi	Anemia	
Complementation	Group	
M

6 29555585 1 x CPXM2 Carboxypeptidase	X,	M14	
Family	Member	2

6 32208338 2 x x TCERG1L Transcription	Elongation	
Regulator	1	Like

7 1817393 1 x ACKR3 Atypical	Chemokine	
Receptor	3

8 1800681 1 x na na

8 14554424 1 x LOC107208051 na

9 16210793 1 x PRSS56 Protease,	Serine	56

9 18034856 2 x x na na

10 11334760 1 x na na

12 487655 4 x x x x na na

13 573280 2 x x na na

17 3241094 5 x x x x x na na

19 3617547 4 x x x x CUX1 Cut	Like	Homeobox	1

19 3617556 1 x CUX1 Cut	Like	Homeobox	1

21 3689856 1 x CAMTA1 Calmodulin	Binding	
Transcription	Activator	1

27 390659 2 x x na na

25LG1 437844 4 x x x x na na
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&	Whitlock,	2011),	hence	potentially	decreasing	the	chance	of	finding	
them	with	modest	coverage	and	small	 linkage	disequilibrium.	Lastly,	
our	modest	sampling	(140	individuals)	may	also	lack	power	to	unravel	
relatively	 small	 gene–urbanization	 associations	 in	 a	 context	of	 rela-
tively	high	homogenizing	effect	of	gene	flow.

In	 turn,	 our	 results	 of	 numerous	 small	 gene–urbanization	 associ-
ations	explaining	a	 large	proportion	of	variance	 in	urbanization	 score	
(81%	explained	by	a	subset	of	97	SNPs)	may	be	in	line	with	the	hypoth-
esis	 that	 selection	 regimes	 resulting	 from	 urbanization	 diverge	 from	
natural	 environments	 in	many	 aspects	 and	 act	 on	 several	 potentially	
complex	traits.	A	formal	comparison	of	the	force,	shape,	and	direction	
of	natural	selection	across	the	urbanization	gradient	would	be	pivotal	in	
understanding	how	divergent	selection	really	acts.	The	theory	of	quanti-
tative	genetics	and	the	recent	advances	in	sequencing	and	quantitative	
genomics	show	that	variation	in	adaptive	traits	often	has	polygenic	ori-
gins	(Pritchard,	Pickrell,	&	Coop,	2010;	Purcell	et	al.,	2009).	In	the	partic-
ular	context	of	high	gene	flow,	and	for	traits	that	are	genetically	highly	
redundant,	local	adaptation	may	occur	via	rapid	small	frequency	shifts	
at	many	alleles	of	small	effects	that	are	prone	to	swamping	in	the	face	
of	gene	flow	(Yeaman,	2015).	In	the	great	tit,	the	recent	use	of	a	large	
SNP	array	(650,000	SNPs)	on	many	(2000)	individuals	to	elucidate	the	
architecture	of	a	heritable	trait,	laying	date,	in	a	wild	population,	shows	
no	 large	 effect	 locus	 (Gienapp,	 Laine,	Mateman,	Van	Oers,	 &	Visser,	
2017).	Similarly,	Bosse	et	al.	(2017)	searched	for	gene	associations	with	
bill	length	in	nearly	1000	birds	and	found	that	3009	SNPs	contributed	
to	bill	 length	variation.	These	studies	illustrated	that	these	traits	were	
highly	polygenic	in	this	species.	In	such	cases,	increasing	genomic	cover-
age	and	sample	size,	and	applying	individual	SNP	genomewide	associa-
tions	and	genome	scans	may	not	be	sufficient	to	understand	the	genetic	
architecture	of	complex	traits’	variation.	In	such	cases	of	complex	traits’	
variation	and	polygenic	adaptation	with	a	mixture	of	small-	to-	moderate	
effects	 size	 genes,	 it	will	 be	 important	 to	 consider	 polygenic	 scoring	
(Berg	&	Coop,	2014;	Euesden,	Lewis,	&	O’Reilly,	2014),	gene	sets	anal-
yses	 (Daub	et	al.,	2013;	Gouy,	Daub,	&	Excoffier,	2017),	and	regional	
chromosome	partitioning	(Gienapp,	Fior	et	al.,	2017;	Robinson,	Santure,	
&	DeCauwer,	2013;	Santure	et	al.,	2013)	as	promising	tools	to	identify	
sets	of	markers,	sets	of	genes,	and	genomic	regions	of	interest.	It	will	
also	be	essential	to	maximize	both	the	number	of	SNPs	and	the	num-
ber	of	individuals	to	confidently	detect	the	contributions	of	small	effect	
variants	(Robinson,	Wray,	&	Visscher,	2014;	Zhou	&	Stephens,	2012).

From	a	functional	perspective,	we	can	compare	our	results	to	two	
transcriptomic	studies,	which	 identified	differentially	expressed	genes	
between	 rural	 and	 urban	 white-	footed	 mice	 (Peromyscus leucopus; 
Harris	et	al.,	2012)	and	urban	great	tits	 (Watson,	Videvall,	Andersson,	
&	Isaksson,	2017)	and	to	one	study	of	footprints	of	selection	in	urban	
white-	footed	mice	(Peromyscus leucopus;	Harris	&	Munshi-	South,	2017).	
Almost	no	GO	terms	or	genes	were	found	in	common	between	our	anal-
ysis	and	these	former	studies.	These	studies	reported	expression	differ-
ences	in	genes	related	to	immune	system	and	to	metabolic	processes.	
In	contrast,	our	study	suggested	that	several	of	the	enriched	GO	terms	
were	related	to	neural	functions,	which	could	be	in	line	with	the	person-
ality	traits	differences	found	between	urban	and	rural	birds,	 including	
in	 the	 focal	 population	 (Atwell	 et	al.,	 2012;	Charmantier	 et	al.,	 2017;	G
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Minias,	 2015;	Miranda,	 Schielzeth,	 Sonntag,	 &	 Partecke,	 2013).	 This	
may	also	be	congruent	with	the	overrepresentation	of	genes	related	to	
neuronal	functions	among	regions	under	selection	in	the	great	tit	ge-
nome	at	a	much	larger	geographic	scale	(Laine	et	al.,	2016).	Taken	alto-
gether,	these	results	suggest	that	selection	acting	on	this	species	both	
during	its	long-	term	and	short-	term	evolution	targeted	similar	import-
ant	biological	 functions	related	to	the	neural	 functions.	Nevertheless,	
caution	should	be	taken	while	 interpreting	these	results,	especially	as	
none	of	the	GO	was	significantly	enriched	after	FDR	correction.

4.4 | Which relevant spatial scale for studying 
evolutionary effects of urbanization?

The	spatial	scale	at	which	urbanization	impacts	wild	populations	is	an	
important	consideration	for	studies	investigating	the	effects	of	urbani-
zation	on	evolutionary	trajectories	of	wild	populations.	The	results	of	
both	 the	RDA	and	 the	 gene–urbanization	 associations	may	educate	
us	on	the	relevant	spatial	scale	to	examine	the	impact	of	urbanization	
in	the	study	system.	The	fact	that	the	RDA	showed	a	significant	ef-
fect	of	urbanization	when	using	a	 site-	average	urbanization	but	not	
with	a	nest-	level	urbanization	suggests	that	the	spatial	scale	at	which	
urbanization	acts	on	great	tits	 is	 larger	than	the	 immediate	50	m	ra-
dius	around	the	nest	and	may	rather	integrate	several	hundred	meters	
around	the	nest.	This	is	congruent	with	the	fact	that	(i)	great	tits	usu-
ally	explore	and	 forage	 in	a	 relatively	vast	area	around	the	nest	 (ca.	
3,500–4,000	m2	 according	 to	Naef-	Daenzer,	 2000),	 and	 that	 (ii)	 the	
individuals	breeding	in	a	given	nest	may	have	dispersed	from	a	rela-
tively	close	nest	(see	natal	dispersal	distances	provided	in	the	above	
section).	Therefore,	while	nest-	level	urbanization	might	be	related	to	
annual	urbanization	pressure,	site-	level	urbanization	may	be	more	rep-
resentative	of	 the	 level	of	urbanization	 individuals	encounter	during	
their	lifetime.	Similarly,	the	fact	that	the	several	gene–environment	as-
sociation	tests	yielded	different	SNPs,	genes,	and	enriched	GOs,	may	
also	reveal	that	urbanization	acts	at	a	specific	spatial	scale	as	a	selec-
tive	pressure	and	that	association	tests	capture	different	genomic	re-
gions	and/or	have	different	power.	The	nest-	value	urbanization,	used	
as	exploratory	variable	in	the	association	tests	A	and	D,	was	a	precise	
description	of	urbanization	at	the	nest	 level	at	the	time	of	breeding.	
Despite	its	precision,	it	may	not	be	entirely	representative	of	the	ur-
banization	pressure	exercised	on	individuals’	during	their	entire	lives,	
depending	on	individuals’	dispersal	and	movements.	Conversely,	com-
paring	 birds	 from	 the	 forest	 to	 birds	 from	 the	 four	most	 urbanized	
sites,	in	the	association	tests	C	and	F,	used	a	binary	investigation	of	the	
effect	of	urbanization	at	the	gene	pool	level.	Such	a	test	is	more	likely	
to	maximize	the	detection	of	the	biggest	genomic	gene–urbanization	
associations	at	longer	time	span	and	larger	geographic	scale,	but	may	
at	the	same	time	neglect	more	fine-	scale	variations	in	urbanization	and	
may	be	influenced	by	isolation	by	distance.	Based	on	genomic	and	en-
vironmental	data	only,	it	is	difficult	to	resolve	which	of	the	results	of	
the	tests	conducted	from	fine-		to	large-	scale	urbanization	assessment	
make	more	sense	and	we	propose	that	it	may	be	interesting	to	com-
bine	 the	 results	of	 these	several	 tests,	 taking	advantage	of	environ-
mental	gradients	to	conduct	such	a	strategy.

5  | CONCLUSION AND PERSPECTIVES

For	 the	 first	 time	 in	 a	 passerine	 bird,	 this	 study	 shows	 a	 small	 yet	
significant	 effect	 of	 urbanization	 on	 genomewide	 diversity	 and	 dif-
ferentiation.	This	 result	 contrasts	with	 the	 relatively	high	effects	of	
urbanization	 on	 genetic	 diversity	 and	 differentiation	 observed	 for	
terrestrial	animals	with	 lower	dispersal	capacities	compared	to	birds	
(e.g.,	Peromyscus	 spp.;	Munshi-	South	 et	al.,	 2016)	 but	 also	with	 the	
results	obtained	previously	for	great	tits	in	Barcelona	City	(Björklund	
et	al.,	2010).	Nevertheless,	the	results	of	a	significant	slight	decrease	
in	urban	birds’	heterozygosity	may	have	implications	for	the	adaptive	
potential	of	great	tit	populations	in	urban	environments.	Furthermore,	
the	 small	 but	 significant	 genetic	 variance	 explained	by	urbanization	
may	 be	 indicative	 that	 gene	 flow	 is	 slightly	 reduced	 along	 the	 ur-
banization	gradient,	potentially	allowing	for	local	adaptation	to	occur	
(Lenormand,	2002).	This	context	of	small	genomewide	differentiation	
may	 furthermore	 be	 favorable	 to	 the	 identification	 of	 the	 genomic	
footprints	 of	 divergent	 selection	 between	 urban	 and	 rural	 environ-
ments	as	 little	confounding	effect	of	 spatial	and	historical	 structure	
is	 expected.	 Accordingly,	 we	 identified	 numerous	 genomic	 regions	
most	likely	to	be	associated	with	differences	in	urbanization	level	and	
explaining	a	large	part	of	the	variation	in	urbanization	score,	possibly	
suggesting	polygenic	response	to	urbanization.

Several	research	avenues	may	be	of	interest	for	a	generalization	
but	also	a	finer	understanding	of	the	neutral	and	selective	genetic	
effects	of	urbanization.	First,	 long-	term	monitoring	of	great	 tits	 in	
Montpellier	 and	 surroundings	 should	 allow	 in	 a	 few	 years	 to	 run	
capture–mark–recapture	 models	 to	 better	 estimate	 demographic	
parameters	such	as	population	size,	as	well	as	apprehend	dispersal	
patterns	across	the	different	urban	areas.	Second,	studying	multiple	
pairs	of	urban	and	rural	populations	and	other	urban	gradients	would	
attest	 the	 robustness	 of	 our	 results,	 but	 also	 determine	whether	
initial	 groups	 of	 urban-	adapted	 individuals	 sequentially	 colonized	
multiple	urban	areas	or	if	independent	colonization	and	subsequent	
selection	occurred	 (Evans,	Hatchwell,	Parnell,	&	Gaston,	2010).	As	
urbanization	is	a	recent	selective	pressure,	colonization	and	subse-
quent	response	to	selection	will	most	likely	be	independent.	It	would	
therefore	be	interesting	to	compare	the	genes	under	divergent	se-
lection	 in	 replicated	 urban	 environments.	 For	 example,	 Mueller,	
Partecke,	Hatchwell,	 Gaston,	 and	 Evans	 (2013)	 showed	moderate	
parallelism	in	variations	at	the	SERT	gene	in	12	pairs	of	urban	and	
rural	blackbird	populations.	Third,	regarding	the	geographic	scale	at	
which	studying	urbanization	effects,	spatially	explicit	simulations	of	
genetic	data	considering	different	urban	landscapes	and	population	
features	 could	help	 in	 determining	 the	 spatial	 resolution	 at	which	
measuring	urban	explanatory	variables.	Fourth,	increasing	genomic	
resolution	 (i.e.,	 genotyping	 more	 SNPs)	 could	 help	 in	 discovering	
more	genomic	variants	potentially	implicated	in	adaptation	to	urban	
environments	(Lowry	et	al.,	2016;	but	see	McKinney	et	al.,	2016	&	
Catchen	 et	al.,	 2017).	This	 could	 be	 done	 by	 increasing	 the	 num-
ber	of	sites	targeted	by	restriction	enzymes	in	a	new	RAD	seq	study	
or	via	whole-	genome	resequencing,	similarly	 to	the	study	of	Laine	
et	al.,	2016	at	a	larger	geographic	scale.	Fifth,	in	a	context	of	large	
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gene	 flow	and	polygenic	 architecture	 of	 complex	 traits	 and	 adap-
tation,	it	will	be	important	to	increase	the	number	of	individuals	to	
detect	infinitesimal	signals	(Robinson	et	al.,	2014;	Zhou	&	Stephens,	
2012).	 Lastly,	 statistical	 approaches	 to	 consider	 polygenic	 signals,	
by	estimating	polygenic	scores	of	adaptation	 (Berg	&	Coop,	2014;	
Gagnaire	&	Gaggiotti,	2016;	Stephan,	2016),	 identifying	gene	sets	
(Daub	et	al.,	2013;	Gouy	et	al.,	2017),	and	partitioning	additive	vari-
ance	throughout	the	genome	(Robinson	et	al.,	2013;	Santure	et	al.,	
2013)	will	probably	be	of	high	interest	in	this	context	of	polygenic	
adaptation.	These	research	aims	are	likely	to	be	tested	in	the	near	
future	thanks	to	an	increasing	interest	in	recent	years	in	both	poly-
genic	adaptation	(Berg	&	Coop,	2014;	Boyle,	Li,	&	Pritchard,	2017;	
Pritchard	et	al.,	2010;	Purcell	et	al.,	2009;	Yeaman,	2015)	and	urban	
ecology	research	 (Alberti	et	al.,	2017;	Hendry	et	al.,	2017;	 Ibáñez-	
Álamo,	Rubio,	&	Bitrus	Zira,	2017;	Johnson	&	Munshi-	South,	2017).
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