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The genus Flavivirus comprises a large number of small, positive-sense single-stranded,
RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate
host cells. The genus, which has some 70 member species, includes a number of
emerging and re-emerging pathogens responsible for outbreaks of human disease
around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese
encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other
RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the
information required for the completion of the infectious cycle. The efficiency of this
storage system is attributable to supracoding elements, i.e., discrete, structural units
with essential functions. This information storage system overlaps and complements the
protein coding sequence and is highly conserved across the genus. It therefore offers
interesting potential targets for novel therapeutic strategies. This review summarizes our
knowledge of the features of flavivirus genome functional RNA domains. It also provides
a brief overview of the main achievements reported in the design of antiviral nucleic
acid-based drugs targeting functional genomic RNA elements.

Keywords: flavivirus RNA genome, functional RNA domains, RNA–RNA interactions, RNA structure/function,
DENV, WNV

INTRODUCTION

The great plasticity of RNA virus genomes allows them to perform different functions during
the infectious cycle, helping viral populations adapt to novel molecular and cellular contexts,
and to escape host defenses. It also contributes toward the development of resistance to antiviral
drugs. These feats are achieved by the genome preserving a degree of variability while avoiding
challenges to viral fitness. Genome variability can become a threat to viral survival if it reaches
the error catastrophe limit (Schuster, 1993; Eigen, 2002), but RNA viruses have overcome this by
storing information required for essential functions in discrete, highly conserved, genomic RNA
structural domains. These complexly folded regions may overlap the nucleotide sequence coding
for viral proteins. They play out their different biological roles (e.g., in replication, translation,
or encapsidation) by directly recruiting viral and/or cellular factors, or by forming high-order
regulatory structures via the establishment of long-range RNA–RNA interaction networks resulting
in the formation of the complex global structures required for correct viral functioning. By means
of this dynamic folding, the RNA genome can perform functions during the viral cycle other than
simply coding for proteins (Romero-López and Berzal-Herranz, 2013).
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Flavivirus spp. (from now on flaviviruses) belong to the family
Flaviviridae. They are small (40–65 nm diameter), enveloped
(icosahedral nucleocapsid) viruses with a positive single-stranded
RNA genome. The genus includes important human pathogens
responsible for ongoing/recurrent outbreaks of disease in areas
where such diseases are not traditionally endemic; West Nile
virus (WNV), dengue virus (DENV, perhaps the most important
human pathogen of the genus) and Zika virus (ZIKV), for
example, are all dramatically expanding their original geographic
distribution. Other well-known flaviviruses include the causal
agents of yellow fever (YFV), Japanese encephalitis (JEV), St.
Louis encephalitis (SLEV), Murray Valley encephalitis (MVEV),
or tick-borne encephalitis (TBEV) among of over 70 flaviviruses
that have been identified. Some authors believe there could be
over 2,000 left to discover (Pybus et al., 2002).

Most flaviviruses are transmitted to vertebrate hosts by
the bite of haematophagous arthropods (thus classifying them
within the heterogeneous group of arboviruses). Flaviviruses have
traditionally been assigned to one of three clusters according to
their arthropod vectors (Kuno et al., 1998; Cook and Holmes,
2006; Cook et al., 2012): mosquito-borne (MBFV), tick-borne
(TBFV), and no-known-vector (NKV) flaviviruses (Table 1).
These clusters can be further divided into clades and species.
The members of the MBFV and TBFV clusters replicate in
vertebrates and arthropods, while the NKV flaviviruses can be
subdivided into two clades infecting solely bats or rodents, with
no arthropod vector involved in the infective cycle. A fourth
cluster, gathers together the insect-specific flaviviruses (ISFV),
has recently been defined and characterized (Cook et al.,
2012). It is the most divergent group and can be subdivided
according to the mosquito host involved (mainly Aedes spp.
and Culex spp.). ISFVs do not infect any vertebrate host
(Table 1). Finally, Tamana bat virus (TABV), which infects
exclusively mammalian cells, shows no serological relationship
with any other flavivirus, and has only very distant phylogenetic
relationships with them. Its taxonomic position, therefore, is
not well defined (de Lamballerie et al., 2002; Roby et al.,
2014).

Certainly, flaviviruses pose health problems for humans (and
some other vertebrates) that may be associated with enormous
social and economic costs. Over the last decade, the number
of outbreaks of flavivirus-induced disease has increased all over
the world. The main causes include the geographic expansion
of their mosquito vectors, and increasing human travel to the
areas of highest infection risk. They cause non-specific symptoms
in the initial phase of infection in humans, which hinders their
control, and as for other RNA viruses, no efficient therapeutic or
immunoprophylactic strategies have been developed. The World
Health Organization1 and the Centers for Disease Control2

therefore both cite flaviviruses as a global health threat.
The functional importance of the highly conserved structural

genomic RNA domains in different RNA viruses (Romero-López
and Berzal-Herranz, 2013) renders them potential therapeutic
targets for new antiviral drugs. This review focuses on the role

1http://www.who.int/mediacentre/en/
2http://www.cdc.gov/

of the functionally active structural RNA domains identified
in the flavivirus genome. Their mechanisms of action in the
regulation of essential functions of the viral cycle are discussed,
and a short overview is provided of the flavivirus subgenomic
RNAs (sfRNAs). Recent advances in the development of novel
therapeutic strategies entailing the use of nucleic acid-based
agents to target RNA molecules are also described.

THE FLAVIVIRUS INFECTIOUS CYCLE

Cell Entry and Internalization
The mechanism by which flaviviral particles attach to the cell
membrane is only partially understood. It has been reported
that host surface glycoproteins interact with the viral envelope
proteins to initiate attachment (Chen et al., 1997b; Kroschewski
et al., 2003; Davis et al., 2006). Attachment might also be
mediated by integrins, cytoskeleton proteins, and cholesterol-
dependent lipid raft pathways (Medigeshi et al., 2008; Bogachek
et al., 2010). Internalization is then mediated by clathrin-coated
vesicles (Chu and Ng, 2004). The subsequent acidification of
these vesicles causes the viral capsid proteins to fuse with
the vesicle membrane, releasing the viral genome into the
cytoplasm (Allison et al., 1995) (Figure 1A). This then reaches the
surface of the endoplasmic reticulum (ER) where the molecular
environment that allows the viral cycle to proceed is created,
while preventing interferon response signaling (Hoenen et al.,
2007; Welsch et al., 2009).

Translation and Replication
During the early phase of the flavivirus cycle, the viral genome
is mainly employed as mRNA in viral protein synthesis. The
initiation of translation occurs in a cap-dependent manner. In
DENV, the process starts with the binding of the eukaryotic
initiation factor 4E (eIF4E) to the 5′cap, and the further
recruitment of eIF4G and eIF4A (Merrick, 2004; Paranjape and
Harris, 2010). This ribonucleoprotein complex binds to the 43S
particle (40S + eIF1A + eIF3) and the AUG start codon can
then be recognized (Khromykh and Westaway, 1997). Finally,
the 60S ribosomal subunit is recruited and translation starts.
The resulting polyprotein product is cleaved by viral and host
proteases into three structural (capsid C, precursor of membrane
prM, and envelope E) and seven non-structural (NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5) proteins (Nowak et al., 1989)
(Figure 1B).

Once viral proteins levels are appropriate, the ER membrane
undergoes structural rearrangements that promote the formation
of replication complexes (Welsch et al., 2009; Gillespie et al., 2010;
Kaufusi et al., 2014). In addition to the circular RNA genome
conformation – stabilized by long-distance 3′–5′ interactions (see
below) (Khromykh et al., 2001; Zhang et al., 2008a) – and viral
proteins, different host cell factors including AUF1 (Friedrich
et al., 2014), eEF1A (p52) (Brinton, 2001), the TIAR (T-cell
intracellular antigen-related), and TIA-1 (T-cell intracellular
antigen-1) proteins (Li et al., 2002; Emara and Brinton, 2007),
La protein (Vashist et al., 2009), PABP (Polacek et al., 2009b)
and PTB (polypyrimidine tract binding protein) (Agis-Juarez
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TABLE 1 | Classification of flaviviruses.

Flaviviruses Abbreviation Primary
host (∗)

Mosquito-borne flaviviruses MBFV

Dengue virus group DENV group Primates

Dengue virus serotype 1 DENV-1

Dengue virus serotype 2 DENV-2

Dengue virus serotype 3 DENV-3

Dengue virus serotype 4 DENV-4

Japanese encephalitis virus group JEV group Birds

Japanese encephalitis virus JEV

West Nile virus WNV

Murray Valley encephalitis virus MVEV

St. Louis encephalitis virus SLEV

Usutu virus USUV

Spondweni virus group SPOV group Primates

Zika virus ZIKV

Yellow fever virus group YFV group Primates

Yellow fever virus YFV

Aroa virus group AROAV group Not
determined

Kokobera virus group KOKV group Macropods

Ntaya virus group NTAV Birds

Tick-borne flaviviruses TBFV

Mammalian tick-borne virus group Rodents

Tick-borne encephalitis virus TBEV

Langat virus LGTV

Powassan virus POWV

Ngiye virus NGOV

Seabird tick-borne virus group Seabirds

Kama virus KAMV

Meaban virus MEAV

Saumarez Reef virus SREV

No-known-vector flaviviruses NKV

Modoc virus group MODV Rodents

Rio bravo virus group RBV Bats

Insect-specific flaviviruses ISFV Mosquitoes

Classical ISFVs cISFV

Cell fusing agent virus CFAV

Dual host affiliated ISFVs dISFV

Lammi virus LAMV

Tamana bat virus TABV Bats

∗Always a vertebrate host, except for ISF, which infects mosquitoes. Representative
examples of different groups are included.

et al., 2009; Anwar et al., 2009) are thought necessary for the
completion of the viral cycle.

It has been recently shown that flaviviruses suppress host
protein synthesis in human cells early post infection (host
translation shutoff) while viral RNA translation is maintained
(Roth et al., 2017). This strategy to ensure an efficient viral
cycle consecution has been widely reported for other arboviruses
such as the alphaviruses. In the case of flaviviruses, the
precise molecular mechanisms leading to the translation shutoff
remains elusive. It does not respond to the canonical pathways
of translation control; several and not exclusive mechanisms

might be involved in the host translation suppression (Roth
et al., 2017). It is worth noting that this process is coupled
to a switch from cap-dependent to cap-independent viral
protein synthesis (Edgil et al., 2006; Roth et al., 2017). By a
non-IRES mediated mechanism, flavivirus genome can subvert
the lack of eIF4E to initiate viral translation in a 5′ and 3′
UTR dependent manner. Under these conditions, both ends
of the viral genome are brought together to initiate the direct
recruitment of translation initiation factors, thus by-passing the
eIF4E requirements. This fact confers to the viral genome the
great advantage of being able to translate viral proteins under
limiting protein synthesis conditions, as highly differentiated cells
(Edgil et al., 2006).

Assembly of Structural Proteins for
Virion Formation
Newly synthesized viral RNA genomes are assembled with
structural proteins to form new, infectious particles. The
genome packaging process is guided by mature viral capsid
protein (C) at the ER (Schrauf et al., 2009). The resulting
nucleocapsid is enveloped by a lipid bilayer belonging to the
host cell (Chu and Ng, 2004) with the prM and E proteins
embedded in it. These immature virions are transported to
the Golgi, where the E and prM proteins are modified to
yield the mature virion. The acidic pH of the Golgi causes a
conformational rearrangement in which immature viruses lose
their spiky prM-E trimer projections and acquire a smooth
surface composed of E homodimers (Mukhopadhyay et al., 2005)
(Figure 1A). Finally, the infectious particles are released by
exocytosis at 8–10 h post infection (hpi). Peak extracellular
virus titres are usually observed at 18–24 hpi (Chu and Ng,
2004).

THE FLAVIVIRUS GENOME

The flaviviral genome consists on a positive-sense single-
stranded RNA molecule approximately 11,000 nt long, varying
depending on the species. It bears a type 1 cap structure
at its 5′ end (m7GpppAmp) (Ray et al., 2006; Zhou et al.,
2007; Saeedi and Geiss, 2013) but it lacks a polyA tail
in the 3′ end (Wengler, 1981; Brinton et al., 1986). The
RNA genome contains a single ORF flanked by untranslated
regions (UTRs) (Castle et al., 1985; Wengler et al., 1985;
Castle and Wengler, 1987). It serves as a messenger for the
synthesis of a single polyprotein that is processed by viral
and cellular proteases (Brinton, 2002) to yield 10 different
products (Rice et al., 1985) (Figure 1B). The flanking UTRs are
defined by discrete, functionally active structural RNA elements
that play important roles in the viral cycle. These can be
divided into essential partners in the infection process (e.g.,
promoters) and other elements not essential for viral RNA
propagation but which help to regulate the processes involved.
The functional RNA elements of all flaviviruses appear as highly
conserved, complex folding regions, despite the lack of extensive
sequence conservation across the Flavivirus genus (Brinton,
2014).
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FIGURE 1 | Flavivirus infective cycle and genome. (A) Diagram of flavivirus infective cycle. (B) Genetic organization of flavivirus genomes. These genomes code
for three structural and seven non-structural proteins, the main functions of which are shown. Arrows indicate the cleavage sites for the viral protease NS2B/NS3
(Bera et al., 2007).

The 5′ End of the Genomic RNA
Various functional RNA elements have been identified in the
100 nt-long 5′UTR and the 5′ end of the coding sequence of
the flavivirus genome (Brinton and Dispoto, 1988; Liu et al.,
2013) (Figure 2). The 5′UTR is relatively short in comparison
with that of the IRES-dependent members of the Flaviviridae
family. Different isolates of the same flavivirus show strong
sequence conservation, and significant identity is observed
among members of the same flavivirus group. Less nucleotide
conservation is seen among members of different groups
(Brinton and Dispoto, 1988), in contrast with the observed
conservation in RNA folding (Cahour et al., 1995; Thurner et al.,
2004). Preliminary structural studies of this region suggested the
predicted secondary structures to be functionally important – due
to their similar size and shape – in different flavivirus genomes
(Brinton and Dispoto, 1988; Gritsun et al., 1997; Leyssen et al.,
2002; Gritsun and Gould, 2007b). Further studies support the
requirement of these functional structural elements for RNA
synthesis both in vitro and in cell culture (Cahour et al., 1995;
Filomatori et al., 2006; Lodeiro et al., 2009; Li et al., 2010). The
functional role of the 5′UTR elements in RNA replication and

translation has been examined mostly in DENV and extrapolated
to other flavivirus (Cahour et al., 1995; Filomatori et al., 2006;
Lodeiro et al., 2009). Here we focus on MBFV flavivirus genome
5′ structures (Figure 2).

The ∼70 nt-long domain at the extreme 5′ terminus is
known as the SLA element, and this is conserved across all
flavivirus groups. It folds into a Y-shape and has a main stem-
loop structural element plus a smaller side stem-loop (SSL) that
emerges from it. The size of the essential SSL stem and the
sequence of its loop vary across flaviviruses (Leyssen et al., 2002;
Thurner et al., 2004; Filomatori et al., 2006; Gritsun and Gould,
2007b; Dong et al., 2008) (Figure 2). The SLA architecture is
recognized by viral RNA polymerase (NS5), an RNA-dependent-
RNA polymerase (RdRp) involved in viral replication (Filomatori
et al., 2006). It has been reported that residues located at the
basal portion of the stem-loop, in the upper stem, and in the
internal loop, are critical for NS5 binding and activity (Dong
et al., 2008; Li et al., 2010). In addition, the SLA element is
involved in directing the addition of the cap structure at the
5′ end of the viral genome during RNA synthesis (Zhou et al.,
2007; Zhang et al., 2008c). This is catalyzed by the guanylyl- and
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FIGURE 2 | Sequence and secondary structure of the 5′UTR of representative flavivirus genomes. The figure shows the 5′ end of two representative MBFV
genomes, (A) West Nile (WNV) and (B) dengue virus serotype 2 (DENV-2), including the functional RNA domains SLA, SSL (encircled by a gray line) SLB and cHP.
The translation start codon is indicated in italics. Sequence motifs involved in viral genome cyclization are shown in colors: 5′UAR in blue, 5′DARI in red, 5′DARII in
green, 5′CYC in purple, and CCR1 in orange. Sequence numbering corresponds to (A) the Kunjin virus MRM 61C strain (GenBank accession number L24511.1)
and (B) DENV-2 16681 strain (GenBank accession number NC_001474).

methyltransferase (MTase) activities of NS5 RNA-dependent-
RNA polymerase (RdRp), and requires the relocation of the
5′ end of the nascent genomic transcript at the MTase active site
(Ray et al., 2006). This event seems to be dependent on the local
conformation of the RNA. These features make the SLA element
an essential partner in viral translation and replication (Ray et al.,
2006; Li et al., 2010). This observation is reinforced by the fact
that the folding of SLA is preserved across flaviviruses, regardless
of any sequence differences in this region (Filomatori et al., 2006;
Lodeiro et al., 2009).

In most flaviviruses, including DENV and WNV, a second,
smaller stem-loop (SLB) is present downstream of SLA that
shows a certain variability in its size and shape (Brinton and
Dispoto, 1988). The SLB element bears the AUG translation
initiation codon, which is embedded within its stem portion
in a poor Kozak initiation context in many MBFVs, but in a
strong context in TBFVs (Clyde and Harris, 2006; Clyde et al.,
2008) (Figure 2). An oligo(U) tract providing an at-least-10 nt
spacer between the two stem-loop structures has been observed
in DENV (Lodeiro et al., 2009). In WNV, two sequence stretches –
UAR and DAR I – involved in genome cyclization are embedded
within this structural domain. DENV, however, contains only
UAR (Figure 2, see also genome cyclization section).

The stable, highly conserved hairpin cHP follows the SLB
element at its 3′ end, and expands into the first nucleotides of
the capsid coding region of DENV and WNV (Figure 2). It was
first identified in DENV, and despite the reduced conservation of
its sequence it was predicted to be preserved in the mosquito-
and TBFV flaviviruses (Clyde and Harris, 2006). cHP governs
the selection of the translation initiation codon by directly
positioning the ribosomal complex close to the “functional” AUG

in the SLB element. Importantly, translation initiation efficiency
at the appropriate codon is related to the thermodynamic stability
of the cHP element (Clyde and Harris, 2006). It is reported
that the introduction of stable secondary structural elements
(e.g., stem-loops) downstream of an AUG codon embedded in
a poor Kozak context, improves the recognition of the optimal
starting triplet by pausing the translation machinery, which
must unwind the hairpin (Kozak, 1990). This favors prolonged
contact with the correct AUG start codon. Thus, cHP acts as
a translation enhancer. In addition, it has been shown to have
a role as a cis-replicating element in WNV and DENV (Clyde
et al., 2008). cHP thus became the first known functional RNA
domain with a dual functional role in the flaviviruses life cycle
(Clyde et al., 2008), highlighting the efficiency of the information
coding system based on structural RNA units. During early
infection, translation initiation is promoted. At this stage, the
viral genome has not acquired the replication competent circular
conformation, but rather exhibits an extended cHP stem-loop
which temporarily makes the ribosomal complex linger at the
correct AUG start codon to favor its recognition. The switch
to replication might occur through the establishment of long-
distance RNA–RNA interactions between the 5′ and 3′ genome
ends (see below). These contacts induce the acquisition of a
circular conformation, which determines a slight shortening
of the cHP stem, thus allowing for rearrangements in the
translational-competent scaffold and the further recruitment of
factors required for viral RNA synthesis (Clyde et al., 2008).

Another conserved domain within the capsid coding region –
the conserved capsid-coding region 1 (CCR1; Figure 2B) – was
first described in the DENV genome. It was shown to modulate
the DENV life cycle in mammalian and mosquito cells, likely
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FIGURE 3 | Sequence and secondary structure of the 3′UTR. The figure shows the 3′UTR of the WNV RNA genome. The 3′UTR is organized into three
domains – I, II, and III – composed of well-defined structural elements the names of which are indicated in bold. The UAA stop codon is shown in italics. Conserved
sequence motifs (CS and RCS) are indicated by thin lines. The color code for cyclization sequences is as in Figure 2. The pseudoknot elements (PK1, PK2, and
PK3) are indicated by dashed lines, and the corresponding interacting sequences by solid lines. Sequence numbering corresponds to the Kunjin virus MRM 61C
strain (GenBank accession number L24512.1).

acting during a post-RNA synthesis stage and possibly regulating
viral assembly (Groat-Carmona et al., 2012). It was later found in
TBEV, in which it was shown to be important for efficient viral
translation (Rouha et al., 2011). Despite its high sequence and
structure conservation in DENV and TBEV serogroups, it is not
well-conserved across the flavivirus genus (Groat-Carmona et al.,
2012).

The 3′ End of the Genomic RNA
The 3′ end of the genome terminates in a 700 nt-long
untranslated region (3′UTR) that lacks a poly(A) tail. It ends
in a conserved CUOH dinucleotide (Wengler, 1981; Brinton and
Dispoto, 1988) in MBFV and TBFV, except in some strains of
TBEV (Mandl et al., 1991). The 3′UTR of flavivirus genomes is
essential for viral replication (Men et al., 1996; Zeng et al., 1998).
Its structure and functional characterization has mostly been
deciphered in MBFVs. The 3′UTR can be subdivided into three
autonomously folded regions, domains I-III (Figure 3), which
show different degrees of sequence and structure conservation
across members of the genus, with the 3′ extreme region – known
as small hairpin 3′ stem-loop (sHP-3′SL) – the most conserved

of all. A defining feature within the 3′UTR is the presence
of duplications of structural cassettes. These are composed of
various structural elements in MBFV and TBFV, but not in ISFV
or NKV flaviviruses. Compelling experimental evidence indicates
each duplicated cassette to play a different role in viral replication.
An association between the duplication of structural elements
and the capacity of the genome to replicate in mammalian and
arthropod hosts has been established (for review see Villordo
et al., 2016).

Domain I is located just downstream of the translation stop
codon. In most flaviviruses it appears as a hypervariable sequence
followed by two conserved stem-loop domains (SL-I and -II)
similar in sequence and structure (Figures 3, 4); in YFV (Wang
et al., 1996), the NKV flaviviruses (Leyssen et al., 2002), and
ISFVs [for a review see (Blitvich and Firth, 2015)], however, there
is only one stem-loop (SL). In YFV, domain I contains tandem
repeats in hairpin structures (RYFs) unique to the ISFV group
(Bryant et al., 2005). The SL of the NKV flaviviruses is similar
to those of the TBFVs (Villordo et al., 2016), while differences
are observed in the structure of this region within the two main
subgroups of the ISFVs – classical ISFVs (cISFV) and dual-host
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FIGURE 4 | Long-range RNA–RNA contacts in representative flavivirus
RNA linear genomes. Diagrams show the proposed conserved secondary
structural elements and sequence motifs within the 5′ and the 3′ ends of three
representative MBFV genomes, (A) WNV, (B) DENV-2, and (C) YFV. The ORF
and the 5′ and 3′UTRs are indicated. Thin colored lines denote long-distance
RNA–RNA interactions between genomic termini; the interacting sequences
are shown by solid colored lines. Translation start and stop codons and the 5′

end sites of the subgenomic flavivirus RNAs (sfRNAs) are indicated by arrows.
The three-way junctions critical for the generation of the sfRNAs are included
in shadowed boxes. The pseudoknot elements (PK1, PK2, and PK3) are
indicated by black dashed lines.

affiliated ISFVs (dISFV) (Blitvich and Firth, 2015). Although
all ISFVs contain multiple sequence repeats (Gritsun et al.,
2014), cISFVs are characterized by folding into short hairpins,
and the dISFVs into an SL similar to those seen in MBFVs
(Villordo et al., 2016). Domain I of the prototypical DENV-2

comprises a duplicated SL preceded by the hypervariable tract.
The nucleotides of the apical loop of both SLs are involved
in the formation of pseudoknots with the nearby downstream
sequence (forming PK1 and PK2) (Thurner et al., 2004). In the
JEV group (Table 1), the hypervariable region folds into an AU-
rich stem-loop (SL-I) followed by a highly conserved branched
element (SL-II) immediately preceded by a short conserved
hairpin (RCS3) (Brinton, 2014) (Figure 3). This structural unit
(SL-I•SL-II•RCS3) is repeated to yield the SL-III, SL-IV, and
CS3 elements (Proutski et al., 1999) (Figure 3). Deletion and
sequence mutation analyses of SL-I and II, and of the motifs
RCS3 and CS3, have revealed their roles as regulatory replication
elements (Lo et al., 2003; Pijlman et al., 2008). Importantly, the
apical loop of SL-II is involved in the formation of a pseudoknot
structure (PK1) with the single stranded region immediately
downstream (Figures 3, 4). The formation of this PK is critical
for infectivity (Lo et al., 2003; Pijlman et al., 2008). A second
pseudoknot, PK2, is formed in the repeated structural unit
SL-III•SL-IV•CS3. Interestingly, several GNRA-like motifs are
found in domain I, suggesting this region to function as a protein
recruiting platform and as a nucleation center for direct RNA–
RNA interactions (Sztuba-Solinska et al., 2013). TBFV duplicated
stem-loops are Y-shaped (Gritsun and Gould, 2007a) – a different
type of folding than seen in MBFV genomes. It is remarkable that
their involvement in PK formation with downstream sequences
is preserved, emphasizing the functional significance of the PK
structural element.

Domain II is moderately conserved and in MBFV and
NKV flaviviruses contains a characteristic structure known as
a dumbbell (DB); this is involved in the formation of a PK
structural element (Figures 3, 4). In the DENV and JEV
groups (Table 1), it contains a sequence motif duplicated in
tandem (RCS2 and CS2) that forms an essential component of
the respective functional dumbbell structures 5′DB and 3′DB
(Figure 3) (Shurtleff et al., 2001; Silva et al., 2008). YFVs
contain a pseudo-dumbbell (ψ-DB) which may be derived from
a duplicated DB. In DENV, a pseudoknot structure (PK) has
been proposed which involves the highly conserved 5 nt-long
motif in the apical loop (top loop, TL1) of the 5′ hairpin in
the 5′DB element plus the corresponding downstream single-
stranded complementary sequence (Olsthoorn and Bol, 2001;
Sztuba-Solinska et al., 2013). This structural element is likely to
be formed in WNV as well (PK3, Figure 3). This architecture
is functionally important for viral replication (Men et al., 1996;
Lo et al., 2003; Alvarez et al., 2005), translation (Wei et al., 2009;
Manzano et al., 2011) and infectivity (Proutski et al., 1999). NKV
flaviviruses and dISFVs contain a single copy of the DB structure
but there is no evidence of its involvement in a PK structure. In
contrast TBFVs have no DB structure in this region, although
they do have two different SLs. The more proximal, which is often
duplicated, is known as GC-SL since its loop has a conserved
GGC stretch involved in the formation of a PK element. The
distal SL, AU-SL, is very stable and its loop contains a conserved
AAUU sequence that participates in the formation of a second PK
(Villordo et al., 2016).

Domain III is defined by the highly conserved terminal
genomic functional elements sHP (short hairpin) and 3′SL
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FIGURE 5 | Long-range RNA–RNA contacts in the circular flavivirus genome. The diagram shows the circular conformation of representative flavivirus
genomes mediated by long range RNA–RNA interactions. Colored boxes indicate the interacting sequences involved in genome cyclization. Lines above them
represent their length in WNV (solid black lines), DENV-2 (dotted lines), and YFV (dashed lines). The sequence motifs within the 5′ and the 3′ ends are represented
below the diagram for these MBFV models. Sequences correspond to the Kunjin virus MRM 61C strain (GenBank accession number L24511.1 for 5′UTR and
L24512.1 for 3′UTR), the dengue virus serotype 2 (DENV-2) 16681 strain (GenBank accession number NC_001474) and the yellow fever virus (YFV) 17D vaccine
strain (GenBank accession number X03700.1) respectively. The diagram also shows where the viral RdRp polymerase (yellow) binds in the genome ends.

(Figures 3, 4). The presence of both has been confirmed by
chemical probing (Brinton et al., 1986; Shi et al., 1996), SHAPE
(selective 2′-hydroxyl acylation analyzed by primer extension)
(Sztuba-Solinska et al., 2013) and nuclear magnetic resonance
(NMR) analysis (Davis et al., 2013). The sHP element of domain
III consists of a 5 bp stem and a highly conserved 6 nt
apical loop (Brinton et al., 1986; Olsthoorn and Bol, 2001)
that resembles the typical GNNRA motif. This suggests sHP to
be a potential recruitment region of protein factors or to be
involved in the establishment of RNA–RNA interactions. Partially
overlapping with this sHP element, a highly conserved 24 nt-
long sequence (CS1, Figure 3) has been shown indispensable
for virus replication in DENV (Men et al., 1996). CS1 contains
sequences involved in genome cyclization (Wengler and Castle,
1986; Hahn et al., 1987) (see below). The functional requirement
of the CS1 nucleotides not involved in cyclization has not
been explained. The terminal 3′SL is an essential structural
element with a small number of conserved sequence stretches:
the terminal 5′-CUOH-3′ and surrounding residues (Wengler,
1981; Brinton et al., 1986; Wengler and Castle, 1986) and
the apical loop (Elghonemy et al., 2005; Tilgner et al., 2005)
(Figure 3). In addition, all flaviviruses show a bulge in the upper
portion of the 3′SL stem (Yu and Markoff, 2005) (Figures 3,
4). This bulge induces a bend in the duplex, which might be

required for NS5 protein recognition. The functions of sHP
and 3′SL have been studied in depth, and are essential for
viral replication (Blackwell and Brinton, 1995; Men et al., 1996;
Khromykh and Westaway, 1997; Zeng et al., 1998; Bredenbeek
et al., 2003; Villordo et al., 2010; Villordo and Gamarnik, 2013)
and the completion of the viral cycle (Brinton et al., 1986;
Hahn et al., 1987; Zeng et al., 1998; Khromykh et al., 2001;
Alvarez et al., 2005; Tilgner et al., 2005; Yu and Markoff,
2005; Yu et al., 2008). They perform their functions likely by
interacting with non-structural viral proteins (Chen et al., 1997a)
and cellular factors such as eEF1A (Blackwell and Brinton,
1997; Davis et al., 2013), the La autoantigen (De Nova-Ocampo
et al., 2002) and PTB (polypyrimidine tract binding protein)
(De Nova-Ocampo et al., 2002). The role of 3′SL during viral
translation initiation has also been widely studied, but the results
obtained have been discrepant (Li and Brinton, 2001; Holden
and Harris, 2004; Alvarez et al., 2005). Since flaviviruses do not
bear a poly(A) tail, it has been proposed that 3′SL contributes
to the recruitment of poly(A) tail binding protein (PABP)
(Polacek et al., 2009b), and subsequently to ribosome recruitment
and assembly. Finally, orthologous domains in DENV might
be related to disease outcome (Mangada and Igarashi, 1997;
Leitmeyer et al., 1999), suggesting a role for 3′ structural domains
in virulence.
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SUBGENOMIC FLAVIVIRUS RNAs

In addition to the accumulation of genomic RNA during
flavivirus infection, subgenomic, non-coding flavivirus RNA
molecules (sfRNAs) ranging from 300 to 500 nt-long accumulate
in the cytoplasm (Urosevic et al., 1997; Lin et al., 2004;
Pijlman et al., 2008). These molecules are the result of
incomplete digestion of the viral genome by the host cell
5′–3′ exoribonuclease Xrn1, which cleaves the viral RNA but
stalls at defined locations in the highly folded 3′UTR (Pijlman
et al., 2008) (Figure 4). This resistance to Xrn1 activity is
dependent on specific residues; these have been elucidated for
WNV (Pijlman et al., 2008; Funk et al., 2010), YFV (Silva
et al., 2010), DENV-2 (Chapman et al., 2014b), and MVEV
(Chapman et al., 2014a), and are confirmed to be conserved
across flaviviruses (Chapman et al., 2014a). Such residues share a
common structural environment defined by a three-way junction
and a characteristic and conserved pseudoknot, PK1 (Pijlman
et al., 2008; Chapman et al., 2014b) (Figures 3, 4), which is
essential for sfRNA generation. In the DENV and JEV groups
(Table 1), this structure has been located within the SL-I and
SL-II of Domain I of the 3′UTR, respectively (Pijlman et al., 2008;
Funk et al., 2010) (Figures 4A,B), while in YFV the single SL
(SL-E) provides the stalling point (Silva et al., 2010) (Figure 4C).
In MBFVs, it has been reported that the abrogation of PK1
leads to the production of shorter species of sfRNAs derived
from the Xrn1 stalling at the downstream pseudoknot structures
PK2 [SL-II in DENV-2 (Figure 4B), SL-IV in JEV (Figure 4A)
and ψ-DB in YFV (Figure 4C)] and/or PK3 [5′DB in JEV and
DENV and DB in YFV (Figure 4)] (Pijlman et al., 2008; Funk
et al., 2010; Chapman et al., 2014a). Consecutive pseudoknots
therefore appear to act as security or check points to assess the
production of sfRNAs. The three-way junction organizes the
three-dimensional folding by bringing the basal stem and the
3′ apical loop of the structure close together, yielding a ring-
like topology with the free 5′ end inside it, as determined by
X-ray crystallography (Chapman et al., 2014a). Thus, rather than
providing a simple unfolding mechanism, Xrn1 turns the ring
inside-out to provide access to the susceptible residues at the
5′ end. This architecture may also be responsible for the selection
of directionality during extension by viral polymerase (Chapman
et al., 2014a).

From a functional point of view, full-length sfRNAs play
important roles in regulating the switch between translation and
replication during the infectious cycle (Lin et al., 2004). They
promote cytopathic effects and pathogenicity in mice (Pijlman
et al., 2008; Funk et al., 2010; Chapman et al., 2014a; Liu et al.,
2014) and they disrupt the generation of a proper immune
response at different levels, while shortened sfRNA species lead
to attenuated viral forms. In particular, full-length sfRNAs inhibit
the antiviral activity of IFN-α/β by an unknown mechanism
(Schuessler et al., 2012), as well as that of the antiviral RNAi
pathway, probably by acting as Dicer decoy substrates (Schnettler
et al., 2012). Intrinsic to sfRNA formation, Xrn1 function is
inhibited and, thus, endogenous mRNAs are accumulated (Moon
et al., 2012). Moreover, DENV-2 sfRNA has been shown to
interact with stress granules (Bidet and Garcia-Blanco, 2014).

Detailed information on the roles of sfRNAs is provided in recent
reviews (Roby et al., 2014; Clarke et al., 2015; Charley and Wilusz,
2016).

GENOMIC CYCLIZATION IN FLAVIVIRUS

The acquisition of a circular conformation in viral RNA genomes
is a successful strategy that provides important advantages in
the completion of the infective cycle. First of all, it efficiently
ensures the propagation of undamaged, full-length genomes
(Hahn et al., 1987). Further, the initiation of protein synthesis
and the replication process is governed by the establishment
of a closed loop topology. Transitions between different steps
of the viral cycles are directly dependent on the existence of
complex networks of RNA–RNA contacts (Romero-López and
Berzal-Herranz, 2013).

The acquisition of the circular topology is mediated
by direct, long distance RNA–RNA interactions between
different complementary sequence motifs at the 5′ and 3′
ends of the genome (Figure 4). Such interactions have been
probed by psoralen/UV crosslinking assays (You et al., 2001),
electrophoretic mobility shift assays (Alvarez et al., 2005; Zhang
et al., 2008a), atomic force microscopy (Alvarez et al., 2005),
and structure probing (Dong et al., 2008; Polacek et al., 2009a).
Though some of the complementary sequence motifs involved
in genome cyclization show low conservation rates across the
flaviviruses, the circularization mechanism is ubiquitous and
required for flaviviral propagation (Khromykh et al., 2001; Song
et al., 2008).

In MBFV, at least three pairs of sequence motifs have been
shown to participate in the cyclization process (Figures 4, 5).
These include:

(i) A highly conserved motif – the so-called 3′ cyclization
sequence (3′CYC) – is included in the conserved sequence
CS1 (Figure 3) just upstream of the sHP domain at the
3′ terminus of the genome. It contains an 8 nt-long stretch
conserved across the MBFVs. The 3′CYC perfectly matches
its complementary partner in the cHP domain at the
extreme 5′ end (5′CYC) (Hahn et al., 1987) (Figure 2).
The 5′–3′CYC interaction (Figure 4) must be preserved for
efficient virus replication (Khromykh et al., 2001; Corver
et al., 2003; Lo et al., 2003; Kofler et al., 2006). Different
studies have reported sequence preferences in the 5′–3′CYC
pairs (Suzuki et al., 2008; Basu and Brinton, 2011).
Flipping specific base pairs can have different effects on
virus replication depending on their position within the
interacting domain. Mutations affecting the central positions
of the CYC sequence, but with maintained base pairing
at the points of 3′–5′ interaction, have little or no effect
on replication, whereas base pairs flipped in the terminal
positions severely affect viral replication. The role of the
terminal and flanking CYC residues seems to be critical
for initiating the interaction between the complementary
sequences and for the preservation of the stability of the
replication competent circular form.
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(ii) The UAR pair, which involves residues upstream of the AUG
start codon at the 5′ end of the viral genome, 5′UAR, and a
complementary sequence located within the basal portion of
the stem in the 3′SL element, 3′UAR (Alvarez et al., 2005;
Zhang et al., 2008c) (Figures 2–4). It has been suggested
that switching from the formation of the stem to the long-
distance interaction with the 5′UAR releases the 3′ terminus
of the viral genome for recognition by the flaviviral RNA
polymerase (NS5) during the initiation of the minus-strand
RNA synthesis (Zhang et al., 2008c; Polacek et al., 2009a;
Filomatori et al., 2011; Davis et al., 2013) (Figure 5).

(iii) The DAR sequences motifs. In the DENV group, a single
sequence motif 5′DAR within the linker between the SLB and
cHP stems (at the 5′ end of the genome) interacts with the
corresponding complementary 3′DAR sequence (included
in the CS1 sequence) within the sHP stem at the genome
3′ terminus. In the JEV group (Table 1), two DAR motifs
have been described – 5′DAR I and 5′DAR II – within
the stem and the base of the SLB domain, which interact,
respectively, with 3′DARI and 3′DARII (Dong et al., 2008;
Friebe and Harris, 2010; Friebe et al., 2011) (Figures 2–5).
During the initiation of minus-strand RNA synthesis, NS5
first recognizes the SLA element and the 5′DARII in the
context of a circular RNA, and interacts with 3′DARI and II,
probably leading to the initiation of viral replication (Dong
et al., 2008) (Figure 5). These findings suggest a role for
protein recruitment in DAR interactions and the subsequent
genome cyclization process.

Data derived from structural, phylogenetic and functional
analyses have allowed a theoretical model of the genomic
cyclization process to be proposed (Friebe et al., 2011).
Accordingly, the latter is initiated via the interaction between
the 5′ and the 3′CYC motifs (Polacek et al., 2009a). The duplex
then further extends via the DAR contacts which “open” the
sHP element (Friebe and Harris, 2010; Friebe et al., 2011).
Additional UAR-mediated interactions help to unwind the basal
portion of the 3′SL domain to further promote conformational
rearrangements within the 3′ end of the viral genome. Recently,
a cis-acting element present in the capsid coding sequence of
DENV was found to interact with 5′DB at the 3′UTR, forming
a PK structural element. This interaction was proven to have
a different effect on viral RNA replication in mosquito and
mammalian cells (de Borba et al., 2015).

Tick-borne genomic cyclization occurs by the formation of at
least the two long-distance interactions 5′–3′CSA and 5′–3′CSB
(Mandl et al., 1993; Khromykh et al., 2001). The sequence
motifs involved in these interactions are unrelated to those
in MDFVs. The 5′–3′CSA interaction is the equivalent of the
5′–3′UAR interaction in MBFV, despite being located at different
positions (Mandl et al., 1993) and is also crucial for RNA synthesis
(Khromykh et al., 2001). The 5′CSB and 3′CSB motifs are located
at genomic positions similar to 5′CYC and 3′CYC in MBFVs,
but their interaction is not essential in TBFV replication (Kofler
et al., 2006). Genome circularization in TBFVs is also enhanced
by a kissing-loop contact involving two stem-loops, 5′SL6 and
3′SL3, located in the capsid coding region at the 5′ and 3′ ends,

respectively (Tsetsarkin et al., 2016). The 5′SL6 domain was
previously shown to be required for efficient replication (Tuplin
et al., 2011).

In NKV flaviviruses, two interactions have been predicted
involved in genome cyclization. The first involves a sequence
motif located upstream of the AUG start codon and a
complementary one within the 3′SL; the second is established
between a motif within the capsid coding region and the
corresponding counterpart upstream of the 3′SL (Leyssen et al.,
2002).

In addition to the RNA–RNA interactions, genomic
cyclization might be stabilized by viral and host protein
factors recruited by different genomic RNA structural domains
(Blackwell and Brinton, 1997; Ta and Vrati, 2000; De Nova-
Ocampo et al., 2002; Garcia-Montalvo et al., 2004). These factors
include the La protein (De Nova-Ocampo et al., 2002; Vashist
et al., 2009), polypyrimidine-tract binding protein (PTB) (De
Nova-Ocampo et al., 2002; Kim and Jeong, 2006) or translation
elongation factor 1α (eEF-1α) (De Nova-Ocampo et al., 2002).
Interestingly, such proteins are involved, at different extent,
with the progression of the translation process, which points to
cyclization as a feasible strategy to control viral protein synthesis.
Different RNA helicases as FBP1 (far upstream element-binding
protein), DDX3, DDX5, and DDX6 have also been proved to bind
to both the 5′ and the 3′UTRs of the flavivirus genome, and affect
replication in opposite ways (Chien et al., 2011; Ward et al., 2011;
Li et al., 2013, 2014). These findings demonstrate that the control
of the cyclization event is mediated by the RNA recruitment of
host factors. They also show that flaviviruses can use the genome
cyclation for regulating transitions between different steps of the
infective cycle. Finally, host proteins related to mRNA splicing
such as hnRNPA2 (Katoh et al., 2011) or Lsm1 (Dong et al.,
2015) interact with the cyclization sequence motifs and/or with
functional RNA domains located in the untranslated regions.
The recruitment of these proteins is required for and efficient
viral replication process though their molecular mechanism is
still unknown.

A proper balance between linear and circular forms of the
genome is required to ensure the initiation of plus-strand RNA
synthesis, encapsidation, and even the switch from translation
to replication. This is because sequences involved in the
cyclization process overlap with essential structural domains
that cannot be formed in the circular topology. In this context,
the thermodynamic stability of the single structural domains
is critical for efficient transition from one conformation to
another. Thus, mutations that stabilize the circular or the linear
form spontaneously revert to “less stable” architectures (Clyde
et al., 2008; Villordo et al., 2010; Iglesias et al., 2011). The
genome cyclization operates as a control system regulating the
progression of the flavivirus infective cycle.

NUCLEIC ACIDS TARGETING
FLAVIVIRUS GENOMES

The information and functions encoded in structural genomic
RNA domains render interference with the proper folding of
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these elements a candidate means of interfering with viral
propagation. In this context, the use of nucleic acids as
therapeutic agents is of growing interest. The development of any
such therapy, however, must overcome a number of challenges,
including the maintenance of the stability of the nucleic acid
agents and efficient delivery to the target cell. These problems
have been largely addressed by combinatorial chemistry, and
a range of chemical nucleotide substitutions are now available.
The use of chemically modified oligonucleotides has resulted in
the improvement of the pharmacodynamic and pharmacokinetic
properties of these antiviral nucleic acids-based antiviral agents
(Haasnoot and Berkhout, 2009).

In recent decades, pioneering work into antisense
oligonucleotide-based inhibitors has laid the ground for the
design of thus-based antiviral compounds (Haasnoot and
Berkhout, 2009). Antisense oligonucleotides are short nucleic
acids with sequences complementary to those of their targets.
They interfere with the function of essential regions within RNA
molecules by different mechanisms. The first attempt to design
antisense oligonucleotides against a flavivirus RNA genome used
the DENV genome as a model (Raviprakash et al., 1995). A set of
propynil-phosphorothioate-modified antisense oligonucleotides
targeting five regions throughout the viral RNA showed that
interfering with the sequence motif surrounding the translation
initiation codon and the SL-IV domain within the 3′UTR was an
effective antiviral strategy in cell culture.

These preliminary but promising results in DENV prompted
further efforts to develop other antisense oligonucleotides against
other flaviviruses, such as WNV. The use of phosphorodiamidate
morpholino oligomers (PMOs) as potential anti-WNV drugs has
been reported (Deas et al., 2005). Two oligonucleotides targeting
the extreme 5′ end of the viral genome and the 3′CYC motif were
found to efficiently interfere with viral translation and replication.
Further, the conjugation of these PMOs at their 5′ end with an
arginine-rich peptide (PPMO) improved uptake by cells, yielding
an agent capable of strongly suppressing the viral cycle. It was
suggested that the high conservation rate of the targeted regions
allowed the design of sets of PPMOs targeting a spectrum of
related flaviviruses belonging to the JEV group (Deas et al., 2007).
This could lead to important advances in the use of nucleic acid-
based compounds, not only as inhibitory molecules but also as
biotechnological tools for the detection of different viruses in
biological samples. In addition, modified PMOs could help us
understand the molecular mechanisms underlying the function
of the targeted structural RNA domains.

Cellular RNA interference (RNAi) has also been widely
examined in recent years as a means of generating novel antiviral
RNA molecules. This strategy is based on the design of short,
double-stranded RNA molecules (the so-called small interfering
RNAs or siRNAs), which are loaded into the RNA-induced
silencing complex (RISC). The sense strand of the duplex then
guides the complex to the target region, where it base-pairs
fully to induce degradation of the target RNA molecule. As
antisense oligonucleotides, siRNAs can be chemically produced
or endogenously synthesized from appropriate expression
vectors. Numerous authors have reported the use of siRNAs –
both in cell culture and in infected mice – against the coding

region of the WNV genome (Mccown et al., 2003; Bai et al., 2005;
Geiss et al., 2005; Kumar et al., 2006; Ong et al., 2006, 2008; Yang
et al., 2008) and the conserved functional domains within the
3′UTR (Zhang et al., 2008b; Anthony et al., 2009). The results
confirm the potential of this strategy in the development of new
antiviral compounds.

The use of RNA or DNA aptamers (short oligonucleotides that
efficiently and specifically bind to a target molecule) represents
another promising strategy for developing antiviral agents against
flaviviruses. They also provide an interesting means of developing
molecular tools for deciphering the functional role of genomic
structural elements, and therefore the identification of potential
therapeutic targets. This has already been shown for other,
closely related viruses such as HCV (Marton et al., 2011, 2013;
Fernández-Sanlés et al., 2015) as well as non-related viruses such
as HIV (Sánchez-Luque et al., 2014). Aptamers can be chemically
modified quite easily to increase their stability and improve their
efficiency.

The successful clinical use of any of the above strategies is
conditioned by the appearance of resistant mutants. In fact,
WNV particles resistant to PMOs targeting the conserved 3′UAR
sequence motif have already been isolated (Zhang et al., 2008b).
They contained a single nucleotide mutation in the target
sequence that impaired or weakened the PMO interaction, while
the 5′UAR–3′UAR base-pairing was restored by the selection
of a compensatory mutation. Novel strategies are therefore
required, based on combining antiviral compounds with different
specificities, including recognition of specific structural features,
and even different mechanisms of action. In this context, the
use of antisense oligonucleotides, siRNAs and other nucleic acid
molecules (e.g., aptamers) in combination with other drugs, such
as interferon or neutralizing antibodies, may provide effective
and potent antiviral cocktails.

CONCLUDING REMARKS

The acquisition of compact genomes was an important
evolutionary achievement of RNA viruses; these genomes can
store all the information required for the completion of the
infectious cycle in reduced packages. This is possible due to
the existence of a supracoding system beyond the nucleotide
sequence, defined by discrete, folded domains, and higher-
order structures. These elements operate both alone and in
combination to create complex networks of contacts that regulate
multiple steps of the viral cycle, and to recruit host and viral
factors. Understanding how host–virus interactions shape viral
evolution will help to elucidate the factors that govern the
emergence of new viruses and the expansion of already known
RNA viral pathogens. The lack of technics or experimental
approaches to determine the RNA structure and to analyze
the kinetics of RNA–RNA interactions in cell culture, together
with the lack of experimental strategies to specifically interfere
with the folding of the RNA genomic elements, represent an
important limitation for understanding their function in the
viral cycle. Importantly, the phylogenetic conservation of the
genomic RNA structural domains and their interactions across
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members of Flavivirus, provide alternative and complementary
potential targets to the viral proteins for novel antiviral
compounds. Advances made in the field of nucleic acid synthesis
have provided excellent candidate molecules for fighting RNA
viruses by interfering with the essential functions performed
by their genomic functional domains. Different pharmaceutical
companies are now investigating the potential of nucleic acid
therapeutic strategies, assessing long-term antiviral responses
and trying to minimize secondary effects.
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