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Abstract

Understanding the functionality of proteins has emerged as a critical problem in recent

years due to significant roles of these macro-molecules in biological mechanisms. However,

in-laboratory techniques for protein function prediction are not as efficient as methods devel-

oped and processed for protein sequencing. While more than 70 million protein sequences

are available today, only the functionality of around one percent of them are known. These

facts have encouraged researchers to develop computational methods to infer protein func-

tionalities from their sequences. Gene Ontology is the most well-known database for protein

functions which has a hierarchical structure, where deeper terms are more determinative

and specific. However, the lack of experimentally approved annotations for these specific

terms limits the performance of computational methods applied on them. In this work, we

propose a method to improve protein function prediction using their sequences by deeply

extracting relationships between Gene Ontology terms. To this end, we construct a condi-

tional generative adversarial network which helps to effectively discover and incorporate

term correlations in the annotation process. In addition to the baseline algorithms, we com-

pare our method with two recently proposed deep techniques that attempt to utilize Gene

Ontology term correlations. Our results confirm the superiority of the proposed method com-

pared to the previous works. Moreover, we demonstrate how our model can effectively help

to assign more specific terms to sequences.

Introduction

Proteins are one of the most important macro-molecule families in biology. Each protein is

responsible for one or more functions in biological pathways and discovering these functions

leads to a deeper understanding of biological mechanisms. This is also critical in designing dif-

ferent disease treatments. However, available in-laboratory techniques to discover protein

functions are expensive and time-consuming. Thus, researchers tend to employ computational

techniques which are able to infer protein functionalities from other biological data sources
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including protein structures [1], protein-protein interaction networks [2–4], protein sequences

[5], or any combination of them [6–9]. Nowadays, due to improvements in sequencing tech-

nologies, a large number of protein sequences are available. The UniProtKB database [10]

stores more than 70 million sequences where the functionality of around one percent of them

is experimentally approved [5]. Experimental methods for gathering other data sources like

interaction networks are more costly and noisier than current sequencing technologies and for

the majority of proteins the only available data is their sequence [5]. These facts imply the

importance of developing sequence-based computational methods for protein function pre-

diction, which is addressed in the current research.

The previous works on this topic can be divided into three categories [11]: The first cate-

gory contains alignment-based algorithms which assume that homologous protein sequences

have the same functionalities [12–14]. The second group is based on finding specific motifs in

sequences. These motifs are functional sites, which are considered as signatures of special func-

tions [11]. The last group includes those methods that are based on machine learning and also

are able to extract meaningful and high-level features from raw sequences. The well-known

benchmarks for computational methods in protein function prediction, like Critical Assess-

ment of Functional Annotation (CAFA) [15], confirm the superiority of machine learning

methods compared to the other categories because machine learning techniques are capable to

extract higher level features from raw protein sequences [11].

The most well-known database for annotating proteins is Gene Ontology (GO) [16] which

was introduced in 1998 to describe the functionality of genes and their products including pro-

teins. This database includes more than 40000 terms in a Directed Acyclic Graph (DAG). A

protein can be assigned to more than one GO term. For example, in SwissProt [17], as the

most important annotated subset of UniProtKB, around 71 GO terms are assigned to each

human protein on average [5]. Moreover, in the GO structure, every term is a more specific

version of its parents and whenever a term is assigned to a protein, all of its parents should also

be assigned to it. In this context, protein function prediction can be described as a multi-label

classification problem in which the DAG structure of GO imposes a redundancy in the label

space. Moreover, there are semantic relations between GO terms which can help to increase

the accuracy of an annotating model that incorporates these relations.

Until now, several works that consider the GO term relations in their protein function pre-

diction methods have been introduced [18]. The work in [19] obtains the principal directions

in the GO term space by Singular Value Decomposition (SVD) to filter out noisy annotations.

CSSAG [20] proposes a greedy hierarchical multi-label classification algorithm which can be

used in both tree and DAG structured output spaces. To find the optimal solution, CSSAG

searches for the best subgraph in the GO hierarchy. Inspired by the topic modeling studies in

the text analysis field, [21] model GO terms as words that are from special topics. In fact, they

consider these topics as new representations of functions. In [13], a label space dimensional

reduction (LSDR) method which considers both the GO structure and the label distribution is

introduced. By incorporating the label distribution in calculating latent representations for

GO terms, it is able to consider semantic similarities which can not be necessarily derived

from the GO DAG. GO2Vec [22] exploits a graph embedding algorithm, and node2vec [23],

tries to obtain a vector representation for each GO term based on the structural information of

GO graph. The authors in [22] also apply their method to GOA graph which includes both

term-term, from the GO graph, and the term-protein, from the annotation information rela-

tions. They use these representations to calculate semantic similarities between GO terms and

functional similarities between proteins. Onto2Vec [24] constructs a corpus of axioms based

on the GO graph. These axioms describe the hierarchical relations in the GO DAG. It then

uses the Word2Vec [25] algorithm to find feature vectors for GO terms by this corpus of
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sentences. Onto2Vec finds feature vectors for proteins by adding new axioms describing the

annotating relations to the corpus or by a linear combination of feature vectors of terms in the

protein’s GO annotations.

On the other hand, some researches have focused on introducing new methods for extract-

ing features from raw protein sequences. The work in [26] extends the classical linear discrimi-

nant analysis to multi-label problems. They find the best subspace that discriminates samples

from different classes and exploit it to obtain feature vectors for protein sequences. The recent

success of deep learning algorithms in a large number of applications including bioinformatics

[27] motivates researchers to adopt it in the computational protein function prediction.

Inspired by the natural language processing concepts [28], use the Word2Vec [25] algorithm

to extract a vector representation for protein sequences. They also experimentally show how

their method successfully capture meaningful chemical and physical properties of proteins. In

[29], the Long-Short-Term-Memory (LSTM) deep network is utilized to extract features from

protein sequences and classify them into four functional categories. In addition to the power

of deep learning models to extract complex features from input samples, the structure of

LSTM allows the model to keep important features across long distances of sequences. How-

ever, none of the aforementioned deep models considers label correlations during feature

extraction.

DeepGO [30] attempts to incorporate the structural information of the gene ontology to a

deep feature extractor by explicitly enforcing the true-path-rule of the GO graph to the output.

Their deep network includes an embedding layer followed by convolutional and fully con-

nected layers. At the final step, they define an architecture of maximization layers that consid-

ers and propagates the GO structural information in the final results. However, using

successive max layers in the final part of the network may not provide sufficient gradient (dur-

ing the training process) to impose the structural constraints of the GO terms into the net-

work. To utilize GO term correlations during the training process, the work in [31] employs

multi-task deep neural networks for protein function prediction. In this architecture, some lay-

ers of the network are shared through the tasks, i.e. different GO terms. These layers help to

extract more generalized and meaningful features from proteins. However, the loss function of

this method is a sum of the prediction loss over all the tasks and does not include any informa-

tion about the task correlations. In [32], authors claim that the transformer [33] model can

extract more relevant features from amino acid sequences compared to convolutional layers.

This is because the transformer is able to model all pairwise interactions between amino acids

of a protein sequence. They also show by feeding the embedding of GO terms as the input, it is

able to extract co-occurrence relations of the true-path-rule and use them for its final

prediction.

In this paper, we propose to employ a Generative Adversarial Network (GAN) [34] to

improve protein function prediction by simultaneously extracting GO term correlations.

GANs were initially introduced for training a deep neural network to produce synthetic sam-

ples from a desired distribution [34]. These networks have generally two building blocks, gen-

erator and discriminator, which are trained in an adversarial training paradigm. The generator

block synthesizes samples of a desired distribution and the discriminator assesses the generator

outputs to distinguish them from real samples of the target distribution. During the training

process, these two blocks fight against each other until an equilibrium point where the genera-

tor can fool the discriminator by its synthetic products. The considerable performance of

GANs in the field of image processing [35, 36] motivates researchers to exploit them for other

data types including biological ones. Works in [37, 38] use GANs to analyze gene expression

profiles and works in [39, 40] attempt to synthesize genes and promoters by GANs. Recently
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authors in [41] have been proposed to perform data augmentation to generate synthetic train-

ing samples by a GAN to improve a classifier accuracy for annotating proteins.

Here we learn the mapping from the input protein to a binary vector of annotated GO

terms by utilizing a conditional generator such that the resulted vector cannot be distinguished

from valid annotating vectors by a discriminator. The feedback that is provided by the discrim-

inator during the training process is imposed as a loss function to the deep neural network

which is used to predict protein functions. By simultaneous training of the above networks, we

learn a customized loss function for the annotating model, by considering available training

data.

Moreover, considering term correlations helps to overcome noisy annotations that may

corrupt the performance of a prediction model. We show that the proposed method is able to

model co-occurrence relations that are not necessarily available in the current DAG model

between GO terms. An important issue of computational prediction of protein functions is the

shortage of positive samples for terms in the deeper levels of the GO DAG which are more spe-

cific and informative. Thus, considering semantic similarities is more critical for deeper GO

terms. The proposed method achieves higher accuracy compared to the existing methods with

the same number of training data and decreases the sample complexity of the problem. We

demonstrate that the distance between the proposed and previous methods increases when

moving through deeper terms which confirms the importance of incorporating the semantic

and architectural similarities for deeper GO terms.

Materials and methods

In the proposed method, functionalities of a protein are described as a binary assignment vec-

tor whose elements show whether or not a protein is responsible for a GO term. Without the

loss of generality, we can describe all correlations between GO terms as a joint distribution

over the assignment vector of all proteins. For instance, let us consider it is impossible for a

protein to be responsible for two special GO terms simultaneously. Then, the probability of

assignment vectors in which the elements corresponding to these two special terms are active

at the same time is zero. The proposed model learns a joint distribution over the function

assignment vectors given the input protein sequence. It helps to extract semantic relations

between GO terms for special sequence patterns. Hence, our model is capable of extracting

more complicated relations. In the following subsections, we show how we learn the condi-

tional joint distributions and utilize them to annotate protein sequences.

Let x denote a protein sample that contains either hand-crafted features of a protein

sequence or a raw protein sequence itself and y 2 Rc denote an assignment vector where c
shows the number of GO terms. We denote the conditional distribution over assignment vec-

tors y, conditioned on the protein x distribution over the GO term assignments, by pGO(y|x).

We define a distribution pm(y|x) that is modeled by a deep neural network to estimate pGO(y|

x).

Wasserstein generative adversarial network

Motivated by the success of GAN networks, many extensions have been introduced. Here, we

adopt the Wasserstein Generative Adversarial Network (WGAN) [42]. Indeed, considering

the arguments of [42] into account, we believe WGAN has better performance for learning a

distribution over our discrete space, i.e. the space of all function assignment vectors. The loss

function of a WGAN is defined as follows:

arg min
G

arg max
D2Lð1Þ

Ey�pr
½DðyÞ� � Ey�pm

½DðyÞ�; ð1Þ
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where pr is the desired distribution to be modeled, pm is the distribution trained by the genera-

tor G, and L(1) shows the family of 1-Lipschitz functions. Moreover, D and G denote the dis-

criminator and generator networks, respectively. The term inside the argmin measures

implicitly the distance between the two distributions pr and pm by utilizing the discriminator

network. Hence, the model attempts to find a generator with distribution pm that provides a

good estimate for pr.

Since we are trying to find the function assignment vector given the input protein sequence,

inspired by the idea of conditional GAN [43], we design a conditional generator and a condi-

tional discriminator. The real distribution that we try to learn is the distribution over assign-

ment vectors conditioned on the protein sample, which is denoted by pGO(y|x). The

discriminator also takes the protein sequence and a function assignment vector (that can be a

generated vector by the generator network or the real target vector for the protein sequence)

and distinguishes whether this vector is real or fake (i.e. a generated one). Therefore, the loss

function of the conditional WGAN for this problem can be defined as follows:

arg min
G

arg max
D2Lð1Þ

Ex�px
½ Ey�pGOðyjxÞ

½Dðx; yÞ� �

Ey�pmðyjxÞ
½Dðx; yÞ� �

ð2Þ

Eq (2) shows the general conditional WGAN loss function. In the following subsections, we

explain structures and detailed loss functions of the generator for the protein function predic-

tion problem. The proposed method is called PFP-WGAN, since the Protein Function Predic-

tion is accomplished by a conditional WGAN in our method.

Generator structure and loss function

The generator structure which we use for assigning functions to raw protein sequences

directly, is depicted in Fig 1. The raw sequence is represented as a set of 8000 dimensional one-

hot vectors to the model. These vectors are too sparse. Therefore, we put an embedding func-

tion at the first layer of the generator which converts the one-hot input into a vector of length

128. To have a stochastic generator we add a dropout layer with the rate of 0.2. It also decreases

the probability of over-fitting.

For the next layer, we use 32 one-dimensional convolution filters which extract meaningful

patterns from the sequence of amino acids. After the training process, each filter is responsible

for detecting a specific pattern. By patterns we mean the existence of special sequence of

amino acids in specific positions. Meaningful patterns are those which are correlated with dif-

ferent GO terms. When a sequence is passed through these filters an activation map, which

shows the matching score between patterns and input sequence, is obtained. These filters are

followed by a LeakyReLU activation function. To keep the resulted activation maps smaller

and more manageable, they are then passed from an average-pooling layer with the filter size

of 64 and stride of 32. We then send activation maps through two fully connected layers. These

layers learn nonlinear functions of activation maps. If the model has been trained successfully,

outputs of these functions are evidence of biochemical and biophysical features of a protein

which are related to its functionalities and the generator is able to annotate protein sequences

according to them. The size of the last layer is equal to the number of GO terms and this layer

shows the resulting assignment vector. A Tanh activation function is utilized in this layer.

We also compare our method with a recent method that does not work on the raw sequence

of proteins. There, we use hand-crafted features of sequences obtained by experts (similarly as

in the compared method) and extract protein functionalities from them. Therefore, in this sce-

nario, the generator takes hand-crafted features and without using embedding and
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Fig 1. The proposed method for protein function prediction. Given the input sequence of amino acids, the generator has an

embedding as its first layer which converts one-hot vectors to more compact representations. Then, one dimensional convolution

filters are employed to explore meaningful sequential patterns. Then biochemical and biophysical features of the input are extracted

from obtained activation maps. These features are used to predict GO annotations by the last fully connected layer. A discriminator

judges about the validity of the obtained annotation for this sequence by observing pairs of protein sequences and their

experimentally approved annotations in SwissProt. By observing proteins which are annotated by a common set of GO terms,

discriminator could extract correlations between GO terms.

https://doi.org/10.1371/journal.pone.0244430.g001
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convolutional layers yields the function assignment vector. This generator includes 3 fully con-

nected layers with the LeakyReLU activation function and another fully connected layer with

the Tanh activation function to find the output.

In order to train the generator, we use the following loss function:

argmin
G
Ex�px

½Ey�pGOðyjxÞ
½Lðy;DðGðxÞÞÞ� � l1Dðx;GðxÞÞ�; ð3Þ

where the first term is the binary cross entropy loss function which directly compares the gen-

erator output for a special sample with its ground truth. The second term is the Wasserstein

loss for the generator which is equal to the first term in Eq (2), since y * pm(y|x) shows the

generator output and we can replace it with G(x). Finally, λ1 is a hyper-parameter which is set

to 0.03 in the first experiment and 0.00001 in the second experiment that is chosen according

to the performance on the validation set.

Discriminator structure and loss function

We use two sets of real and fake pairs for training our conditional discriminator. The first one

is the real set that includes pairs of input x and the corresponding vector assignment in train-

ing data. The second set includes fake pairs which consists of x and the corresponding genera-

tor’s output. The discriminator structure is shown in Fig 1. We extract a feature vector from

raw sequences x by adding embedding, convolutional, max-pooling, and fully connected layers

(exactly the same as the first four layers of the generator) to fulfill the condition for the dis-

criminator. In the discriminator network, we first use a fully connected layer to extract features

from assignment vectors. The discriminator then concatenates this feature vector with the pre-

pared condition (from the input) and sends them through 5 fully connected layers. The last

layer involves a single neuron which scores (protein,function) pairs to distinguish between

fake or real ones. The discriminator loss function is formulated as:

argmin
D
Ex�px

�
Dðx;GðxÞÞ � Ey�pGOðyjxÞ

½Dðx; yÞ�
�

þl2 Eð~x ;~yÞ2~p

h
ðkr~yDð~x; ~yÞk2 � 1Þ

2
i
;

ð4Þ

where the first line is the Wasserstein loss for the discriminator that is obtained from Eq (2). In

Eq (4), we omit the constraint of L(1) from the search space of D(.) and replace it by the term in

the second line of Eq (4) that is proposed by [44]. This term is a gradient penalty which keeps

the gradient norm of the discriminator around 1. The pairs ð~x; ~yÞ are produced by weighted

averaging (random weights from a uniform distribution) of real and fake pairs and ~p describes

the resulted distribution. Finally, λ2 is a hyper-parameter which is set to 10 in both experi-

ments that is chosen according to the performance on validation set.

Training and optimization

We train the generator and the discriminator networks alternatively by a training ratio of 10.

It means for each iteration of training the generator, the discriminator training is achieved by

10 iterations. The loss functions are optimized by an Adam optimizer with the learning rate of

0.00001, and 20% of the training data is used for validation. Thus, we find the network’s

weights by 80% of data and then evaluate the resulted model by the remaining 20% to tune the

hyper-parameters. The algorithm has been implemented by the Keras deep learning library

and trained and tested on a Nvidia gpu GeForce GTX 1080 Ti system.
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Dataset and data representation

We report our results via testing on two different datasets. In the first experiment, we use the

data gathered and filtered by [30] in which protein sequences are obtained from SwissProt

downloaded on 2016-01. In this dataset, sequences with the length greater than 1002 and

ambiguous amino acids are filtered out and sequences with the initial length that is less than

1002 are padded with zeros. In addition, similar to [30], we just keep annotated sequences

with experimental evidence code (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC). The GO terms [16]

are downloaded in OBO format http://geneontology.org/page/download-ontology on 2016-01

and similar to [30], terms with less than 250, 50, and 50 annotated proteins for each group of

biological processes (BP), molecular functions (MF), and cellular components (CC) are omit-

ted, respectively. This results in 932, 589, and 436 terms in each group. Finally, proteins are

randomly divided into training (80%) and test (20%) sets. To represent raw sequences to our

model (Fig 1), we divide them into trigrams of amino acids with the overlapping size of two.

Considering a dictionary of all possible trigrams, we can show each trigram with a one-hot

vector with length 8000. Therefore, each protein sequence is presented by 1000 vectors of

length 8000.

The second dataset is identical to the one used in FFPred3 [45]. Protein sequences are from

SwissProt’s version 2015-5 which are encoded to 258 features including 14 structural and func-

tional aspects. The GO terms are downloaded on 2015-02 and include 605 BP terms, 158 MF

terms, and 102 CC terms.

Evaluation measures

The main measure used to assess different methods is protein-centric Fmax which was utilized

in CAFA challenge [15] and in many recent related works [30, 31]. To calculate it, we define

100 different thresholds t 2 [0, 1]. Then, for each protein and threshold t, we obtain the num-

ber of labels truly assigned to the protein (tp), the number of protein’s labels which are not

assigned to it by the model (fn), and the number of labels which are falsely assigned to this pro-

tein by the model (fp). Then, the precision and recall are calculated as follows:

Precisiont ¼
tpt

tpt þ fpt
; ð5Þ

Recallt ¼
tpt

tpt þ fnt
; ð6Þ

We average the above measures among all proteins to obtain AvePrt and AveRet in each

interval. Finally, Fmax is calculated as follows:

Fmax ¼ max
t
f
2� AvePrt � AveRet
AvePrt þ AveRet

; g : ð7Þ

The other measure which we use is term-centric F1 which is calculated for each label, sepa-

rately. By defining tp as the number of samples truly assigned to a label, fn as the number of

samples which are wrongly not assigned to that label, and fp as the number of samples wrongly

assigned to it, we then use Eqs (5) and (6), to calculate the term-centric F1 as:

F1 ¼ max
t
f
2� Precisiont � Recallt
Precisiont þ Recallt

g : ð8Þ
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We also use three other term-centric measures which are useful for evaluating methods on

imbalanced classification problems in which the number of available training samples in one

class is much less than the number of samples in another class. The first measure is the Area

Under Precision Recall (AUPR) that is obtained for each label as follows:

AUPR ¼
Z 1

� 1

Precisiont � Recall0t dt: ð9Þ

Then, we average these values through all the labels and report it. The second and third

ones are the Area Under ROC Curve (AUC-ROC) and the Mathews Correlation Coefficient

(MCC) which are computed as in [30].

Finally, to check the consistency of results with the true-path-rule, we define the TPR score.

We calculate this measure as follows:

TPR ¼
1

N

XN

n¼1

X

ti2annotðpnÞ

card ancðtiÞ � ancðtiÞ \ annotðpnÞ½ �ð Þ ð10Þ

where card(.) shows the cardinality of a set, annot(.) is the set of terms in the annotation of a

protein and anc(.) is the set of ancestors of a GO term. According to the true path rule of GO

annotations, when a protein is annotated with a GO term, it should also be annotated with the

corresponding ancestor terms. A conflict occurs when a protein is not annotated by one of the

ancestors of the terms in its annotation. The TPR score calculates the expected number of con-

flicts in the annotation of a protein.

Results and discussions

Experiment 1

In this section, we evaluate PFP-WGAN on the first data set used in [30], and employ similar

settings as those used in [30]. The end-to-end structure of the proposed model enables us to

extract features from protein sequences and learning GO term correlations, simultaneously.

Here, we utilize raw amino-acid sequences as the input to the model. In this part, we compare

PFP-WGAN with BLAST [12] and DeepGO-Seq [30]. Setting of these algorithms are exactly

as in [30]. DeepGO [30] utilizes a deep network to extract features from protein sequences and

protein-protein interaction (PPI) networks and finds the proteins’ functions. Authors in [30]

attempt to incorporate the structural information about GO by adding a maximization layer

which explicitly enforce the “true path rule” at the final step of the network. However, for most

of the known protein sequences, the information of protein-protein interaction network is not

available. They discuss that in this situation one can use the PPI information of the most simi-

lar protein to the query sequence which is found by BLAST [12]. However, they did not report

their method’s performance for this situation. In addition, this approach limits the algorithm

to predict functions of only those sequences for which there is a sufficiently similar protein

among those having the PPI information. Here, the DeepGO-Seq as a version of DeepGO that

just uses protein sequences to extract functions [30] is compared with our method which only

utilizes protein sequences as input. The results of BLAST [12], DeepGO-Seq [30], and

PFP-WGAN are compared in Fig 2. In all three branches of GO, PFP-WGAN has better per-

formance compared to BLAST and DeepGO-Seq. Despite the strength of deep network to

extract features, in Biological Process (BP) and Molecular Function (MF) branches, DeepGO--

Seq performs worse than BLAST. However, as shown in Fig 2, PFP-WGAN obtains a better

Fmax value than the other two competing algorithms. It is worth to mention that the proposed
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method, as opposed to [30], does not employ any additional knowledge (like GO DAG) and

automatically discover the relations between different labels (i.e. GO terms).

Table 1 shows the comparison of DeepGO-Seq and PFP-WGAN with three term-centric

measures. PFP-WGAN shows better performance in all situations. Considering the fact that

both methods utilize a deep network, this result confirms that our discriminator block can

effectively extract the GO term correlations and impose them to the generator in order to find

more accurate annotations.

Table 2 compares the average prediction time that each of DeepGO-Seq and PFP-WGAN

needs. There is not a considerable difference between prediction times. However as the num-

ber of terms is increased, the growth of averaged prediction time in DeepGO is more than

Fig 2. Comparison of BLAST, DeepGO-Seq and PFP-WGAN on dataset 1. The Fmax measure shows the superiority

of PFP-WGAN in all three parts of the GO.

https://doi.org/10.1371/journal.pone.0244430.g002

Table 1. Three term-centric measures suitable for unbalanced data.

BP MF CC

Method AUPR AUC MCC AUPR AUC MCC AUPR AUC MCC

DeepGO-Seq 0.232 0.82 0.269 0.28 0.88 0.336 0.522 0.926 0.519

PFP-WGAN 0.241 0.830 0.281 0.302 0.891 0.347 0.535 0.932 0.524

https://doi.org/10.1371/journal.pone.0244430.t001
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PFP-WGAN. So PFP-WGAN is more scalable for predicting a large number of GO terms

simultaneously.

We also calculate F1 for each GO term and average them through functions in each height

of the GO graph. The differences between these averages for PFP-WGAN and DeepGO-Seq as

a function of the height of terms in the GO graph are presented in Fig 3. As a general trend, we

can observe differences between the results of these two methods increase when going through

deeper terms. This confirms our intuition about incorporating structural information between

output variables (GO terms) during the learning process. Interestingly, terms in higher levels

show general functions and positive samples of all their child terms can also be considered as

the positive samples of themselves too. In the GO DAG, there is no further valuable correlation

between the terms and their child terms which can help to increase the accuracy. Nonetheless,

deeper terms can make complicated relations with non-descendant and non-ancestors terms

in the GO graph. Thus, extracting correlations between deeper terms is more informative and

has higher impact on the classification accuracy. A main bottleneck of deeper terms in the GO

graph is the shortage of positive samples which limits the performance of prediction models

for these important terms. Fig 4 shows F1 measures for GO terms as a function of positive

training samples. The improvement which is obtained by PFP-WGAN for rare terms is more

considerable comparing to terms with large numbers of positive samples. It confirms that by

incorporating the GO term correlations (more general than the GO DAG) we can compensate

this shortage and obtain a better accuracy. Finally, the TPR score of the PFP-WGAN on this

dataset is 0.78, 0.3 and 0.11 for BP, MF and CC branches respectively. In addition the total

number of grandchild and ancestor pairs of the tree of each branch is 8323, 3266 and 3106.

Experiment 2

Here, we compare PFP-WGAN with a recently proposed multi-task deep neural network for

protein function prediction, MTDNN [31], and a shadow and greedy hierarchical multi-label

Table 2. Average prediction time in seconds for 1000 sequences.

Method BP (932) MF (589) CC (436)

DeepGO-Seq 1.01 0.67 0.45

PFP-WGAN 0.96 0.84 0.73

https://doi.org/10.1371/journal.pone.0244430.t002

Fig 3. Differences between average F1 obtained for PFP-WGAN and DeepGO-Seq for the GO terms in each height (�FP and �FD).

In the BP branch (as the most important part of GO with a large number of terms) differences are increased when moving through

the deeper terms. In the most and half parts of the charts for CC and MF branches we can observe this pattern too.

https://doi.org/10.1371/journal.pone.0244430.g003
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classification strategy called CSSAG [20]. We evaluate the performance of algorithms on the

dataset introduced in FFPred [45]. This dataset includes 258 sequence-derived features of each

protein sample and maps them to 605 BP, 158 MF, and 102 CC GO terms. The obtained Fmax

measure for PFP-WGAN, MTDNN, CSSAG and 3 baseline algorithms is shown in Fig 5.

Fig 4. F1 obtained for PFP-WGAN and DeepGO-Seq for GO terms as a function of number of available positive training

samples. The improvement which is obtained by PFP-WGAN for rare terms is more considerable comparing to terms with large

numbers of positive samples.

https://doi.org/10.1371/journal.pone.0244430.g004

Fig 5. Comparison of BLAST, FFPRED, CSSAG, STDNN, MTDNN and PFP-WGAN on dataset 2. The Fmax
measure shows the superiority of PFP-WGAN in all three parts of the GO.

https://doi.org/10.1371/journal.pone.0244430.g005
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BLAST and FFPred are the first two baseline algorithms. STDNN uses a single fully connected

feedforward deep neural network for each GO term separately. Results of baselines and

MTDNN are reported from [31]. As shown in Fig 5, the proposed PFP-WGAN has the highest

score in all three BP, MF and CC domains.

We also calculate a binary heatmap from results of PFP-WGAN and PFP-S. PFP-S is

obtained by omitting the discriminator block, which is responsible for extracting GO term cor-

relations, from PFP-WGAN. For each of these annotation results, this heatmap shows whether

each pair of GO terms appear in at least one protein simultaneously or not. We also calculate

this heatmap for the training data as the grandtruth which shows two GO terms are as consis-

tent as that a protein can be annotated by both of them simultaneously. Table 3 compares the

heatmap of PFP-WGAN and PFP-S against the grandtruth by the mean squared error (MSE).

The MSE of PFP-WGAN is less than the MSE of PFP-S in all three branches. This fact con-

firms that PFP-WGAN has more ability to explore and utilize such relations from the training

data.

Fig 6 shows the sensitivity of the PFP-WGAN on parameter λ1. This parameter is chosen

according to three measures Fmax, micro F1 and averaging F1 through all terms on validation

data. We sum these measures to obtain F and find best value for λ1.

Table 3. MSE of PFP-WGAN and PFP-S against grandtruth.

BP MF CC

PFP-S 0.46 0.41 0.51

PFP-WGAN 0.38 0.39 0.46

https://doi.org/10.1371/journal.pone.0244430.t003

Fig 6. Sensitivity of the PFP-WGAN on parameter λ1.

https://doi.org/10.1371/journal.pone.0244430.g006
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Finally, the TPR score of the PFP-WGAN on this dataset is 0.55, 0.11 and 0.13 for BP, MF

and CC branches respectively. In addition the total number of grandchild and ancestor pairs

of the tree of each branch is 292, 84 and 44.

Conclusion

As a consequence of improvements in high throughout sequencing technologies, we are faced

with a large number of protein sequences in the nature about which there is no other available

knowledge. This fact increases the importance of developing techniques to determine these

protein’s functionalities just with their sequences. An early introduced track of designing such

methods is based on finding the most similar protein in a database with known annotations to

a query sequence [11] and assigning functions of the retrieved protein to the query. A main

limitation of such algorithms occurs for sequences for which we do not have an adequately

similar protein in the database. Thus, another trend is based on proposing algorithms which

are able to extract biologically meaningful features form a sequence. Deep networks are the

most powerful among the currently known models for feature extraction. Here, we propose a

new deep architecture for protein function prediction, which uses the protein sequences only

and is able to increase the annotation accuracy. The main strength of our model is its ability to

extract function correlations and impose them to the annotating process. To the best of our

knowledge, this is the first time that a conditional GAN architecture is used to improve the

accuracy of a multi-label classification problem. Another advantage of our model corresponds

to deeper terms in the GO graph. By extracting term correlations, we are able to decrease the

sample complexity of deep terms and obtain higher accuracy. Therefore. we can find more

detailed and specific annotations for proteins. The main drawback of our proposed model is

that it requires relatively more computational resources, similar to other deep networks.

Our future work include trying to interpret extracted features by our deep network, which

would help us to annotate proteins. Considering the ability of deep models in feature extrac-

tion we hope to find important biochemical and biophysical meaningful features.
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