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The adenohypophysis contains five secretory cell types (somatotrophs, lactotrophs,
thyrotrophs, corticotrophs, and gonadotrophs), each secreting a different hormone, and
controlled by different hypothalamic releasing hormones (HRHs). Exocytic secretion is
regulated by cytosolic Ca2+ signals ([Ca2+]C), which can be generated either by Ca2+ entry
through the plasma membrane and/or by Ca2+ release from the endoplasmic reticulum
(ER). In addition, Ca2+ entry signals can eventually be amplified by ER release via calcium-
induced calcium release (CICR). We have investigated the contribution of ER Ca2+ release
to the action of physiological agonists in pituitary gland. Changes of [Ca2+] in the ER
([Ca2+]ER) were measured with the genetically encoded low-affinity Ca2+ sensor GAP3
targeted to the ER. We used a transgenic mouse strain that expressed erGAP3 driven by a
ubiquitous promoter. Virtually all the pituitary cells were positive for the sensor. In order to
mimick the physiological environment, intact pituitary glands or acute slices from the
transgenic mouse were used to image [Ca2+]ER. [Ca

2+]C was measured simultaneously
with Rhod-2. Luteinizing hormone-releasing hormone (LHRH) or thyrotropin releasing
hormone (TRH), two agonists known to elicit intracellular Ca2+ mobilization, provoked
robust decreases of [Ca2+]ER and concomitant rises of [Ca2+]C. A smaller fraction of cells
responded to thyrotropin releasing hormone (TRH). By contrast, depolarization with high
K+ triggered a rise of [Ca2+]C without a decrease of [Ca2+]ER, indicating that the calcium-
induced calcium-release (CICR) via ryanodine receptor amplification mechanism is not
present in these cells. Our results show the potential of transgenic ER Ca2+ indicators as
novel tools to explore intraorganellar Ca2+ dynamics in pituitary gland in situ.
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INTRODUCTION

The anterior pituitary (AP) is a complex organ that controls a
broad array of physiological functions such as growth, lactation,
metabolism, or stress response (1). This functional heterogeneity
is conferred by the heterogeneity in cell populations, both
anatomically and functionally, that includes the core of the
different axes of the endocrine system. The AP contains five
endocrine cell types which control the secretion of different
hormones. These include: growth hormone (GH, from
somatotrophs), prolactin (PRL, from lactotrophs), follicle-
stimulating hormone and luteinizing hormone (FSH and LH,
from gonadotrophs), thyroid stimulating hormone (TSH, from
thyrotrophs), and adrenocorticotropic hormone (ACTH,
from corticotrophs).

According to the classical view, each AP cell type stores one
single hormone, (or two, in the case of gonadotrophs), whose
secretion is specifically regulated by a particular hypothalamic
releasing hormone (HRH) (2, 3). However, distinct cell
subpopulations expressing more than one single hormone have
been reported (4–8). These multifunctional cells can be
characterized by combining calcium imaging with labeling for
multiple hormones by immunofluorescence (9). In addition to the
polyhormonal cells, multi-responsive cells able to display Ca2+ and
secretory responses to more than one HRH have also been
identified by some authors (4, 10, 11). The subpopulations of
multifunctional cells exhibit a striking sexual dimorphism (9),
with changes during sexual cycle (12), cold stress, and along
lifespan (13). Multifunctional cells are also frecuently observed
in pituitary human adenomas (14, 15) and its existence may
provide the basis for the paradoxical secretion and
transdifferentiation (4, 16–18). However, all the above studies
have only been carried out in primary cultures of rat and mouse
AP cells where the interactions among different cell types and with
the extracellular matrix are lost.

Recent studies using single cell transcriptomics have
expanded our current knowledge on the gene expression
profile associated with specific cell subtypes or AP functions in
mice, rats or humans (8, 19–25).

AP provides an excellent model for endocrine excitation-
secretion coupling. In the last decades AP studies have provided
seminal insights into the mechanisms involved in endocrine
stimulus-secretion coupling and regulation by ion channels
activity. Exocytic secretion is regulated by cytosolic Ca2+

signals ([Ca2+]C), which can be generated either by Ca2+ entry
Abbreviations: ACTH, adrenocorticotrophic hormone; AP, anterior pituitary;
CICR, Ca2+-induced Ca2+-release; CRH, corticotropin releasing hormone; ER,
endoplasmic reticulum; FSH, follicle-stimulating hormone; GAP, GFP-Aequorin
Protein; GECI, genetically encoded calcium indicator; GFP, green fluorescent
protein; GH, growth hormone; GnRH, gonadotropin releasing hormone; HRH,
hypothalamic releasing hormone; LH, luteinizing hormone; LHRH, luteinizing
hormone releasing hormone; PRL, prolactin; SERCA, sarco-endoplasmic
reticulum Ca2+ ATPase; SNR, signal to noise ratio; TBH, 2,5-ditert-
butylbenzohydroquinone; TRH, thyrotropin-releasing hormone; TSH, thyroid
stimulating hormone; [Ca2+]C, [Ca

2+]ER, Ca
2+ concentrations in cytosol or

ER, respectively.
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from the extracellular medium through the plasma membrane
and/or by Ca2+ release from the endoplasmic reticulum (ER)
(26). Ca2+ influx can occur as a consequence of the transient
depolarization of the plasma membrane, which opens the
voltage-activated Ca2+ channels present in AP cells. The ER is
the main Ca2+ store in most cells, including AP cells. The resting
ER Ca2+ concentration ([Ca2+]ER) approaches 10

-3 M, in contrast
to the resting [Ca2+]C, which is ~10-7 M (27). This high [Ca2+]ER
is maintained by the equilibrium between SERCA, pumping
inside the ER, and passive Ca2+ efflux from the ER to the
cytosol through non-specific leak channels and/or through
specific channels, such as the inositol trisphosphate receptor
channels (IP3Rs) and/or ryanodine receptors (RyRs) (28).
Binding of HRH to a G-protein coupled receptor (GPCR)
leads to the activation of phospholipase Cb (PLCb) which
hydrolyses phosphatidylinositol-4, 5- bisphosphate (PIP2) to
inositol-1, 4, 5-trisphosphate (IP3). Due to the large Ca2+

gradient between the ER and the cytosol, IP3 releases Ca2+

from the intracellular stores, and this elicits an increase in the
[Ca2+]C and secretion of the corresponding hormone.

At least 15 subtypes of Gq/11-coupled GPCRs have been
described in AP cells, as well as several receptor tyrosine kinases,
whose activation leads to the mobilization of intracellular Ca2+ in
an IP3-dependent manner (29). For example, lactotrophs and
thyrotrophs are primarily activated by thyrotropin-releasing
hormone (TRH) and gonadotrophs by luteinizing hormone
releasing hormone (LHRH, also named GnRH). Other ligands
that bind Gq/11-coupled receptors include ATP, acetylcholine,
angiotensin, endothelin, serotonin, substance P, or vasoactive
intestinal peptide/pituitary adenylate cyclase-activating peptide
(26, 29, 30). Emptying of the ER Ca2+ stores can trigger the
subsequent opening of the store-operated Ca2+ entry pathway in
the plasma membrane (31, 32). This is supported by the findings
that ER Ca2+ emptying by inhibitors of the SERCA pump (33) or
blockage of the store-operated Ca2+ channel (32), both
antagonized the secretion of adrenocorticotropin. In addition,
after the initial Ca2+ peak, some AP cell populations displayed an
oscillatory Ca2+ pattern. For example, in mammalian
gonadotrophs, the initial Ca2+ pulse triggered by LHRH is
typically followed by a large baseline of [Ca2+]C oscillations,
which are dependent on IP3 (34, 35). In GH3 pituitary cells,
emptying of the ER Ca2+ stores with thapsigargin produced a
sustained increase of [Ca2+]C attributable to Ca2+ release and
activation of store-operated calcium entry. Besides,
superimposed dihydropyridine-sensitive [Ca2+]C oscillations
attributable to L-channel activity are observed (31).

In addition to activation of GPCRs, ER Ca2+ release can be
generated by amplification of a small primary Ca2+ influx
through calcium-induced calcium release (CICR). In frog
melanotrophs, it appears that spontaneous voltage-activated
Ca2+ influx is coupled to CICR, presumably through IP3Rs
(36). Blocking Ca2+ entry, by removing external Ca2+ or
adding a Ca2+ channel blocker, for example, will also inhibit
Ca2+ release due to passive ER Ca2+ depletion. Hence,
monitoring exclusively cytosolic Ca2+ does not unequivocally
allow to discriminate between the two sources of Ca2+. It is,
February 2021 | Volume 11 | Article 615777

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Rojo-Ruiz et al. ER Ca2+ Release in Pituitary
therefore, necessary to make use of specific Ca2+ tools that
unambiguously allow identification of the origin of Ca2+ in
response to a secretagogue. This need is even more evident in
the case of endocrine AP cells, where the unique combination of
ion channels, excitability mechanisms and signaling pathways
determines hormone secretion in a cell specific manner. It is,
therefore, crucial to monitor directly ER Ca2+ dynamics to unveil
the unique and diverse Ca2+ signaling mechanisms underlying
anterior pituitary cell-specific regulation.

We have recently described a new generation of ratiometric
Ca2+ indicators (GAP, for GFP-Aequorin-Protein) that can be
targeted to various organelles (37). GAP3 is optimized for
measuring intraluminal Ca2+ in the ER matrix (38). Here we
exploited the fact that erGAP3 transgenic mice express the ER-
Ca2+ indicator GAP3 in pituitary gland, to study the contribution
of the ER Ca2+ stores to the Ca2+ signals elicited by a distinct
hypothalamic secretagogue. By simultaneously imaging
cytosolic- and ER Ca2+ signals at the single cell level in an
intact gland preparation, we compared the ER Ca2+ responses to
different releasing hormones in a variety of AP preparations. Our
study demonstrates the potential of a genetically encoded Ca2+

sensor expressed in transgenic mice for recording intraorganellar
Ca2+ responses in intact AP.
METHODS

Transgenic Mice
All the procedures concerning mice were approved by the animal
care committee of the University of Valladolid. The generation of
erGAP3 mice was described elsewhere (38). To target GAP3 to
the ER (erGAP), the calreticulin signal peptide and the KDEL
ER-retention peptide, were fused in frame to the 5’- and the 3’-
end of the GAP gene, respectively. erGAP3 was controlled by the
CAG-GS promoter (39). Mice were housed under specific
pathogen-free (SPF) conditions. Tail DNA was routinely
screened by PCR using two oligonucleotides, forward and
reverse primers for GAP3, 5 ’-GATGGCAACATCCT
CGGACA-3’ and 5’-GTCCTTGCTCAGGGCTGATT-3’ (234
bp product), respectively. Lines 1 and 10 of erGAP3 mice were
used. Mice were maintained in heterozygosity.

Immunofluorescence
Male and female mice were anesthetized with ketamine (80 mg/
Kg) and xylazine (10 mg/Kg) and transcardially perfused with
0.9% physiological saline followed by a solution of 4%
paraformaldehyde (~20 ml) and then overnight post-fixed in
the same solution at 4°C. The tissue was cryoprotected in 30%
sucrose and then processed for immunohistochemistry. Glands
were cryosectioned (10–15 mm thick) and stored at −80 °C until use.
Slides were permeabilized in PBS containing 0.5% Triton X-100 for
1 h and blocked in PBS with 10% goat serum. Slides were incubated
overnight with specific antibodies against each hormone (ACTH,
FSH, TSH, PRL, LH and GH) diluted (1:1,000; 1:100; 1:2,000
1:1,000; 1:1,000; 1:1,000; respectively) in fresh blocking buffer.
Antisera was a generous gift from Dr. Parlow (National Hormone
Frontiers in Endocrinology | www.frontiersin.org 3
& Peptide Program Harbor-UCLA Medical Center, Torrance, CA).
As a secondary antibody, an anti-rabbit antibody coupled to Alexa
Fluor 568 (Roche) diluted 1:500 in fresh blocking buffer was used,
which was incubated for 30 min. Staining controls with secondary
antibody alone elicited no fluorescent signal. Nuclei were stained
with Hoechst 33342. Fluorescence images were collected on a Zeiss
upright Axioplan 2 microscope, using a 63X W “C-Apochromat”
objective (N.A. 1.2). The fluorescence filters used were: red
fluorescence: Ex 546/12, Em LP590; green fluorescence: Ex
470DF35, Em 535DF35; blue fluorescence: Ex 390/22, Em 460/50
nm. For cell quantification, positive cells randomly chosen within
various fields per section corresponding to various sections per
gland were analyzed using the ImageJ software. For each hormone,
the percentage of labeled cells was calculated by dividing by the total
number of cells, evaluated from the labeled nuclei.

Calcium Imaging in Dissociated AP Cells
The basic protocol was previously described elsewhere (9).
Briefly, mice were euthanized by cervical dislocation and the
AP glands were quickly removed and digested with trypsin (1
mg/ml, Sigma) in Minimum Essential Medium (S-MEM; Gibco)
for 30 min at 37°C. Dispersed cells were plated onto coverslips
previously coated with poly-L-lysine-coated (0.01 mg/ml) and
cultured in Dulbecco’s modified Eagle’s medium (DMEM;
Gibco) supplemented with 10% fetal bovine serum and
antibiotics. Experiments were performed after 2–6 h of culture.
Imaging was performed as described below for slices.

Calcium Imaging in Pituitary Slices or
Entire Gland
Mice (P7-5 months) from transgenic line erGAP3 (L1 or L10)
were sacrificed by cervical dislocation. AP gland was dissected
out and sliced into 350–400 µm thick sections with a Mcllwain
Tissue Chopper and quickly transferred to a fine-meshed
membrane filter and maintained in artificial cerebrospinal fluid
(ACSF) containing: 125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2,
26 mM NaHCO3, 1 mM CaCl2, 10 mM glucose, 1.25 mM
NaH2PO4, pH 7.4, continuously bubbled with a 95% O2/5%
CO2 gas mixture at 25 °C. Slices were mounted onto the stage of a
Zeiss Axioplan upright microscope equipped with a 20X
objective (W-achroplan, Zeiss; NA= 0.5) and a Zeiss AxioCam
camera MRm (12 bit) connected through a software interface
(Axiovision, Zeiss) to a Xenon fluorescent excitation source and
a filter wheel. GAPs were sequentially excited at 405 and 470 nm
and acquired at 518–553 nm. For simultaneous measuring of
[Ca2+]ER and [Ca2+]C, slices were incubated for 1 h at room
temperature with 8–12 µM Rhod-2 AM in bubbled ACSF
medium. Rhod-2 was excited at 545 nm (546/12) using a
dichroic mirror FT580 and light emitted was recorded above
590 nm (LP590). Pituitary slices were sequentially excited at 405,
470 (GAP) and 540 nm (Rhod). All the experiments were
performed at 22–25 °C in a custom-made chamber of 42 µl
volume under constant perfusion at 3 ml/min with an
‘extracellular-like solution’ containing 145 mM NaCl, 5 mM
KCl, 1 mMCaCl2, 1 mMMgCl2, 10 mM glucose, and 10 mMNa-
HEPES (pH 7.4). All stimuli were diluted in this extracellular-like
February 2021 | Volume 11 | Article 615777
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medium and perfused for 30 s or the time indicated. Imaging of
erGAP3 in the whole pituitary gland were performed similarly.
Output images were captured with the AxioVision Rel 4.6.3 (Zeiss)
software and pixel-to-pixel ratio analysed with ImageJ (https://
imagej.nih.gov/ij/). The erGAP3 ratio R (F470/F405) was used as
an index of [Ca2+]ER, and was expressed as R/R0. F540 was an index
of [Ca2+]C, expressed as F/F0. R0 (or F0) was computed as the mean
of the ratios (or F540) obtained during the first five to 10 frames of
each experiment.

Statistical Analysis
The data were analysed using Origin 7 (OriginLab™) and excel.
Results are expressed as mean ± SEM, as indicated
RESULTS

Transgenic Mice Express erGAP3 in
AP Cells
In order to monitor [Ca2+]ER in intact AP glands we used erGAP3
expressing transgenicmice inwhich thebiosensorwas controlledby
the ubiquitous promoter CAG-GS (38). Using fluorescence
stereomicroscopy, we easily detected the endogenous green
fluorescence of erGAP3 in the pituitary gland of erGAP3
Frontiers in Endocrinology | www.frontiersin.org 4
transgenic mice (Figure 1). The pars anterior (PA) displayed a
strong green fluorescence, in contrast to the neurohypophysis (N),
which was negative for erGAP. The transgene was expressed in two
independent transgenic mouse lines (lines 1 and 10). Virtually all
the cells were positive (mean ± SEM: 97% ± 0.2; 1,312 cells, line 10;
and 788 cells, line 1). The erGAP3 fluorescence was visible both in
newborn (9 days; Figures 1A, B) and in adult mice (3 months;
Figures 1C, D), indicating that the transgene expression is stable
along the lifespan of the mouse line.

The low Ca2+ affinity GAP3 (Kd~ 489 µM) was specifically
targeted to the ER using the well-established strategy based on
adding the signal peptide of calreticulin and the KDEL retention
motif to the N-terminal and the C-terminal of the GAP gene,
respectively (37, 40). The GFP positive cells showed a reticular
pattern that extended throughout the entire cell and was
excluded from the nucleus, as expected for localization to the
endoplasmic reticulum (Figures 1B, D). Importantly, the GFP
fluorescence was homogeneously distributed throughout the ER
and no precipitates or punctate fluorescence were visible.

The cells in the AP can be classified on the basis of the stored
hormone into somatotrophs (50%), lactotrophs (20%–25%),
corticotrophs (10%–20%), gonadotrophs (10%), and thyrotrophs
(5%) (41, 42). No apparent structural alterations were found in the
pituitary gland of the erGAP3 transgenic mouse. When we
FIGURE 1 | Expression of erGAP3 in the anterior pituitary (AP) of transgenic mice. (A) Dorsal view of an intact live pituitary isolated from a 9-day-old mouse of
transgenic line L1. Image was taken at 470 nm excitation. N, neurohypophysis; PA, pars anterior. (B) Higher magnification view of (A). (C) Dorsal view of intact live
pituitary of a 3-months-old mouse of transgenic line L10 pituitary. (D) Confocal image of a cryosection (10 µm) of a fixed AP corresponding to (C). Scale bar
indicates 500 µm in (A, C); 100 µm in (B); and 20 µm in (D).
February 2021 | Volume 11 | Article 615777

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Rojo-Ruiz et al. ER Ca2+ Release in Pituitary
examined each cell type by immunofluorescence for the presence of
the stored hormones, we found that the proportions were within the
expected range (Figure 2). Importantly, the erGAP3 indicator was
expressed in all five AP cell types (between 87 and 97% for each
cell type).

erGAP3 Is Functional in Dissociated
AP Cells
The functionality of erGAP3 in pituitary cells was first examined
in cultured cells dissociated from the pituitary gland of
transgenic mice, since single cell imaging allows to record
fluorescence changes with better optical conditions. Cultured
cells displayed a robust erGAP3 expression in the ER. In the
pituitary gonadotrophs, binding of LHRH to its receptor
activates the Ca2+/inositol phosphate signaling cascade (43,
44). Cell stimulation with LHRH (100 nM) provoked the
Frontiers in Endocrinology | www.frontiersin.org 5
expected reciprocal fluorescent signals of the two individual
GAP excitation wavelengths, with an increase of the light
emission when excited at 405-nm and a decrease when excited
at 470-nm that reflects the decrease of [Ca2+]ER (Figures 3A, B).
Calculating the ratio between the two fluorescence emission
values (F470/F405) yielded a net ER Ca2+ decrease, a
consequence of the release of Ca2+ from the ER into the
cytosol (Figure 3C). This response is expected for a factor
coupled to the Ca2+/inositol phosphate cascade. We observed a
fractional decrease in the GAP3 ratio value of around 40%. The
transient decrease returned to baseline levels upon agonist
removal, demonstrating the reversibility of the response. In
some cells, however, the ER Ca2+ dropped but it did not
recover the initial ER Ca2+ level after washing. In other few
cells, LHRH provoked a refilling of the ER Ca2+ store (not
shown). Taken together, these results show that erGAP3
FIGURE 2 | Immunohistochemical characterization of the pituitary in erGAP3 transgenic mice. An anterior pituitary (AP) cryosection was fixed and immunostained
with specific antibodies against the AP hormones (ACTH, FSH, TSH, PRL, LH and GH). Nuclei were stained with Hoechst. Scale bar is 20 mm.
February 2021 | Volume 11 | Article 615777
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expression in pituitary gland displays a performance of the Ca2+

indicator comparable to that previously obtained in other cells
types such as HeLa cells, HEK293 cells, astrocytes, or
hippocampal neurones (38, 45–47).

Simultaneous Imaging of [Ca2+]ER
and [Ca2+]C in Acute Pituitary Slices
We next explored the ER Ca2+ signals in acute AP slices obtained
from erGAP3 transgenic mice, where tissue structure is better
preserved than in dispersed single cell cultures. Also, we recorded
Ca2+ dynamics simultaneously in the ER and the cytosol by using
erGAP3 in combination with Rhod-2, a high affinity cytosolic
Ca2+ indicator, whose red fluorescence is spectrally compatible
with that of GAP3 (Figure 4). The results show that most of the
cells analysed (97%; 69 of 71 cells; five slices; three mice)
exhibited responses to LHRH (100 nM) with a strong and
rapid decrease in [Ca2+]ER (Figure 4A, gray trace) and a
coordinated transient in the cytosolic Ca2+ (Figure 4A, pale
red trace). The addition of LHRH triggered an ER Ca2+ release of
~30% (the R/R0 mean ± SEM decreased from 1 down to 0.77 ±
0.01; n=69 cells) and reached a lower steady-state level. Washout
Frontiers in Endocrinology | www.frontiersin.org 6
of LHRH during 5 min generally failed to refill the ER, which
remained half-filled after the washout. This occurred even after
the stimulation of Ca2+ entry with a depolarizing pulse of high K+

(80 mM), that provoked a large cytosolic transient with no ER
Ca2+ changes. The typical protocol finished with the perfusion of
an ER depletion cocktail, used to determine the Rmin of erGAP3,
thatwascomposedof the sarco-endoplasmic reticulumCa2+-ATPase
(SERCA) inhibitor 2,5-ditert-butyl-benzo-hydro-quinone (TBH;
10 mM) in Ca2+-free medium. Interestingly, a quarter of the
LHRH-responsive cells (25%; 17 of 71; five slices; three mice) also
responded to thyrotropin-releasing hormone (TRH, 100 nM)
with a rapid lumenal Ca2+ release (R/R0 (mean ± SEM)
decreased from 1 down to 0.88 ± 0.05; n=18 cells; Figure 4A,
black trace) and a coordinated small cytosolic Ca2+ increase
(Figure 4A, red trace). In general, the ER Ca2+ drop elicited by
TRH was smaller than that provoked by LHRH and, after
washing out, it recovered the basal [Ca2+]ER value observed
prior to the stimulus. Moreover, the amplitude of the LHRH-
induced drop was smaller in these multireceptorial cells than that
observed in the LHRH-responsive monoreceptorial cells (Figure
4A, black and gray drops). Furthermore, most LHRH positive
cells did not exhibit any response to GHRH or to CRH, although
a few cells showed a minute drop in the ER Ca2+ not correlated
with any cytosolic Ca2+ changes (Figure 4B). We also found
some exceptional cells that showed a response exclusively to
TRH but not to LHRH (Figure 4C). Addition of acetylcholine
(100 µM) triggered moderate opposing Ca2+ transients in all
cells, temporally coincident in the ER and the cytosol. It is
noticeable that the depolarizing high K+ medium induced an
increase in the cytosolic Ca2+ without exhibiting any significant
change in the ER Ca2+ store. We did not find any ER Ca2+ release
parallel to the increase in the cytosol, indicating that CICR
mechanism acting through ryanodine receptors is not active in
these cells.

Although no significant ER Ca2+ changes were found upon
addition of the corticotropin-releasing hormone (CRH), this factor
provoked a small and sustained increment in the cytosolic Ca2+ in a
fraction of cells (F/F0 mean ± SEM; 1.03 ± 0.02; 24 of 76 cells; five
slices; three mice; Figure 5A). This result is in agreement with the
primary signaling cascade triggered by CRH, which is coupled to
cAMP/PKA. Interestingly, the cells that showed a response to CRH
also responded to TRH with a small but visible cytosolic Ca2+

transient and to LHRH with a clear spike. This result indicates the
presence of multireceptorial cells. These CRH-positive cells also
displayed a large Ca2+ spike in response to depolarizationwith high
K+ and to stimulationwith acetylcholine. Finally, no responseswere
observed to growth-hormone releasing hormone (GHRH), neither
in the cytosolnor in theER. SpontaneousorHRH-inducedcytosolic
Ca2+ oscillations, eitherwithTRHorLHRH,were observed in some
cells but no ER Ca2+ changes were associated with them
(Figure 5B).

Imaging of [Ca2+]ER in Intact Pituitary
Gland
A higher level of tissue preservation was achieved by imaging ER
Ca2+ signals in the whole intact pituitary gland, where erGAP3
reported changes in 80% of the cells analysed (42 of 52 cells)
A

B

C

FIGURE 3 | Functional expression of erGAP3 in dissociated anterior pituitary
(AP) cells. (A, B) Individual excitation fluorescence channels (405 and 470 nm).
(C) Ratiometric fluorescence response of erGAP3 (R) in dissociated pituitary
cells isolated from transgenic line L10 (P6 mouse). Decrease of [Ca2+]ER evoked
by LHRH (100 nM). Note that the fluorescence signals at each wavelength
change in the opposite direction. The decrease in the Ratio (R), expressed as
R/Ro, indicates a decrease in the [Ca2+]ER. Representative trace of responses in
a single cell (out of 266 erGAP3 expressing cells from 13 independent
experiments from two mice) are shown. The pseudo-color images correspond
to the R/R0 values at the time points in the graph (before stimuli; peak; after
washing out).
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A

B

C

FIGURE 4 | Simultaneous responses of [Ca2+]ER and [Ca2+]C in pituitary slices of the erGAP3 transgenic mice. Acute pituitary slices isolated from a 5-months-old
erGAP3 transgenic mouse (L10) were loaded with Rhod-2. [Ca2+]ER (black and gray traces) is represented as F470/F405 ratio (R) normalized to R0 (erGAP3; R/R0)
and [Ca2+]C represented as F/F0 (Rhod-2; red traces). Single cell traces are representative for at least three similar experiments. GHRH, growth hormone releasing
hormone; CRH, corticotropin-releasing hormone; TRH, thyrotropin-releasing hormone; LHRH, LH releasing hormone (each hormone, 100 nM); 80K, KCl (80 mM);
ACh, acetylcholine (100 mM); Fmin, depletion cocktail composed of TBH (10 mM) in Ca2+-free medium (EGTA 0.5 mM). (A) Mean traces (12 cells in the same field)
that only exhibited ER Ca2+ changes to LHRH (grey and pale red traces). Mean traces (five cells in the same field) that exhibited ER Ca2+ changes to TRH and LHRH
(black and intense red). (B) Representative traces of a LHRH-responsive cell exhibiting a small response to GHRH and to CRH. (C) Representative traces of a cell
exclusively responsive to TRH in the same microscopic field as in B.
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(Figure 6). Three distinct patterns of ER Ca2+ release were
observed. First, some cells (23%; 10 out of 42) responded
exclusively to TRH with a rapid and large ER Ca2+ drop and
this decrease was reversible by washing out the stimulus,
allowing the refilling of the ER. A second group of cells (57%;
24 out of 42) only responded to LHRH, but not to TRH. The
amplitude of the ER Ca2+ release triggered by LHRH is
comparable to that of TRH (~30% R/R0 change) and the ER
also recovered the basal [Ca2+]ER (average ± SEM; t= 6.7 ±
0.8 min for LHRH and t =12.3 ± 5.8 min for TRH). A third
population (12%; five cells out of 42) responded to both factors,
TRH and LHRH, indicating the presence of multiresponsive cells
bearing several types of HRH receptors. Addition of TRH as the
first stimulus released a fraction of the stored ER Ca2+, and the
second stimulus, LHRH, released an additional fraction.
Interestingly, the three types of cells responded to a high K+

(80 mM) depolarization stimulus with a transient increase of
0.1 ± 0.01 (R/R0 mean ± SEM; n=42 cells), as a consequence of a
transient Ca2+ uptake into the ER, and the signal quickly
returned to the resting ER levels. This last result indicates that
the erGAP3 sensor was not saturated at resting ER level and no
sign of CICR were observed, in agreement with the results shown
in slices (Figure 4A).
DISCUSSION

Dissecting Ca2+ dynamics and elucidating the Ca2+ signals
interacting between organella require specific localization of the
Ca2+ sensors, especially in complex tissues and organs. Genetically
encoded Ca2+ indicators (GECIs) provide a powerful tool that
A

B

FIGURE 5 | [Ca2+]C responses in pituitary slices of erGAP3 transgenic mice.
(A) Representative trace of [Ca2+]C mean of the cells responsive to
corticotropin-releasing hormone (CRH). Shading corresponds to SEM, n= 14
cells (out of 22 of the same experiment). Other experimental details as in
Figure 4. (B) Example trace of cytosolic Ca2+ oscillations displayed in some
cells. Individual traces have been displaced vertically for a better visibility.
A B

FIGURE 6 | [Ca2+]ER responses in intact pituitary gland of erGAP3 transgenic mice. (A) Fluorescence image (470 nm excitation) of the intact pituitary gland isolated
of a P17 erGAP3 mouse. (B) Three different representative responses of ER Ca2+ corresponding to the three cells are indicated in (A). Note the presence of two
cells (pink and green) that each responded to only one HRH and a third cell (blue) to two hypothalamic releasing hormones (HRHs). Other experimental details as in
Figure 4.
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overcomes some of the disadvantages of the synthetic probes, such
as their lackof subcellular specificityor thedifficultyof loading thick
tissuepreparations.Transgenicmice expressingGECIshaveproven
to be a particularly useful technology for being minimally invasive,
its ease of use and its stability andwidth of expression.Although the
number ofGECIs have dramatically increased in recent years, those
optimized for high Ca2+ compartments such as the ER are more
limited. Even less frequent is the application of low Ca2+ affinity
indicators to transgenics, which is mostly restricted to non-
mammalian organisms (48). The generation of transgenic lines
expressing functionalCa2+ indicators canbeproblematic, especially
in mammals. One of the drawbacks frequently encountered is the
reduced sensitivity of the sensor in GECI transgenic lines in
comparison with that obtained in vitro. Some indicator proteins
displayed a punctate fluorescence, often visible as nuclear
precipitates, a sign of immobile, sequestered, and non-functional
indicators. One possible explanation is that many of the existing
GECIs use calmodulin as Ca2+-sensitive motifs. Calmodulin is a
highly expressed protein with a wide array of effectors, and its
overexpression can be problematic and can result in embryonic
lethality or in insufficient signal-to-noise ratio (SNR) (49, 50). We
used here a low-Ca2+ affinity variant of the GAP indicators, based
on the jellyfish aequorin instead of the mammalian calmodulin as
the moiety providing the Ca2+ binding sites. This property makes
the binding or the sequestration of the indicator to endogenous
proteins less likely, thus avoiding possible perturbations of the
signal. In the two transgenic lines generated for erGAP3, expression
of the indicator in pituitary gland was robust and SNR allowed
readily imaging of Ca2+ signals in a HRH–specific manner. The
changes observed in the Rmin were close to those previously
reported in vitro (Figure 3) (46). We did not observe
abnormalities in the pituitary gland morphology and,
importantly, no nuclear fluorescent precipitates were visible
(Figure 1).

We show here that the erGAP3 transgenicmouse lines provide
auseful andnovel tool in the study of pituitaryCa2+ dynamics. The
advantages of imaging [Ca2+]ER using these transgenic mice are
several: simple tissue preparation and imaging procedures;
preservation of pituitary gland organization; and sensitive,
highly efficient and simultaneous ER Ca2+ imaging of multiple
pituitary cells. It is well known that cell to cell contact in the intact
tissue is crucial to retain many of the Ca2+ signaling patterns (51,
52). Most of previous work on pituitary excitability was
undertaken on dissociated cells in short term primary cultures
or in a variety of immortalized clonal cell lines, e.g., GH3 or AtT-
20 cells (53). Given the heterogeneity of the pituitary gland and the
cell to cell interactions, it is advantageous using an intact
preparation that preserves the spatial architecture of the original
gland. A few reports have been performed in acute slices (41, 54–
56). In the present study, Ca2+ imaging was performed both in
gland slices and in whole intact gland. In both preparations we
detected robust and reproducible ER Ca2+ signals in a HRH
specific manner (Figures 4–6). The combination of cytosolic
and ER Ca2+ measurements in pituitary slices demonstrated that
the ER Ca2+ is the main source of the cytosolic Ca2+ response to
TRH and LHRH, in accordance with the signaling cascade
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triggered by these factors (44, 57) (Figures 4 and 5). By
contrast, ER Ca2+ would contribute minimally to the signals
elicited by GHRH or CRH. Finally, we identified some cells that
released ERCa2+ in response to two secretagogues. This result was
observed in the three preparations studied and confirmed the
presence of multi-responsive cells bearing multiple types of
receptors cells, as previously described by our and others groups
(4, 10, 11). Interestingly, in a recent study using sc-transcriptome,
the authors found a cell population with a unique multi-hormone
gene expression profile that would reveal an unanticipated cellular
complexity and plasticity in adult pituitary (8). Finally, our data
indicate that ryanodine receptors are not operative in AP cells, a
finding consistent with recent scRNAseq analyses of AP cells (58).

In this study, we did not focus on the exact quantification of each
specific subpopulation within the gland. Instead other methods like
immunohistochemistry and immunocytochemistry have been used
to assess the proportions of each cell population. Probably due to
limitations in the spatio-temporal resolution of our imaging
equipment, our study might favor recording the LHRH-
responsive cells. These cells are larger than other AP cells and
displayed stronger fluorescence changes. These two factors probably
led to a higher signal-to-noise ratio (SNR). In this context, the
numbers of cells reported to respond to each HRH give an
indication on the approximate fractions of each population but a
more detailed study with a confocal or two-photon microscope
would add spatial resolution required for an exact quantification.
More recently, transcriptomics studies and single cell RNA-
sequencing (sc-RNA) analysis of AP have proven to be excellent
tools to gain insights into the expression profiles specific for each AP
population (8, 19–25, 59). The combination of this powerful
methodology with organellar Ca2+ imaging will help to correlate
specific expression patterns with Ca2+ signaling pathways and will
expand our present knowledge on the identities of AP cell types and
their functions.

The identification of each of the five AP cell types during
calcium imaging studies has proven to be a challenging task. In
some protocols, cells are fixed and stained at the end of the
calcium imaging experiment (9, 60). This method, although it
has provided relevant insights into pituitary physiology, is
technically challenging and it can affect the native features of
the cell. More recently, an increasing number of studies have
begun to exploit mouse models in which a specific cell type is
genetically labeled with a fluorescent protein under the control of
specific promoters. This allows the visualization of a specific cell
type and its recording in real time, and does not require its
posterior manipulation. One of the promoters often used is the
proopiomelanocortin (POMC) promoter, that can label an
ACTH population (14, 59, 60). However, some endogenous
promoters might be too weak, limiting their usage, e.g., the
gonadotropin-releasing hormone promoter, that formerly failed
to generate a transgenic mouse for the Ca2+ indicator inverse
pericam due to a poor SNR (61). Given the good performance
reflected here by the expression of transgenic erGAP3 controlled
by a ubiquitous promoter, it seems worth generating transgenic
lines of erGAP3 for specific pituitary subpopulations in
future studies.
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Garcıá-Sancho J. Nuclear calcium signaling by inositol trisphosphate in GH3
pituitary cells. Cell Calcium (2008) 43:205–14. doi: 10.1016/j.ceca.2007.05.005

54. Bonnefont X, Fiekers J, Creff A, Mollard P. Rhythmic bursts of calcium
transients in acute anterior pituitary slices. Endocrinology (2000) 141:868–75.
doi: 10.1210/endo.141.3.7363
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