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Lung squamous cell carcinoma (LSCC) is the most common subtype of non-small
cell lung cancer. Immunotherapy has become an effective treatment in recent years,
while patients showed different responses to the current treatment. It is vital to
identify the potential immunogenomic signatures to predict patient’ prognosis. The
expression profiles of LSCC patients with the clinical information were downloaded from
TCGA database. Differentially expressed immune-related genes (IRGs) were extracted
using edgeR algorithm, and functional enrichment analysis showed that these IRGs
were primarily enriched in inflammatory- and immune-related processes. “Cytokine-
cytokine receptor interaction” and “PI3K-AKT signaling pathway” were the most
enriched KEGG pathways. 27 differentially expressed IRGs were significantly correlated
with the overall survival (OS) of patients using univariate Cox regression analysis.
A prognostic risk signature that comprises seven IRGs (GCCR, FGF8, CLEC4M, PTH,
SLC10A2, NPPC, and FGF4) was developed with effective predictive performance by
multivariable Cox stepwise regression analysis. Most importantly, the signature could be
an independent prognostic predictor after adjusting for clinicopathological parameters,
and also validated in two independent LSCC cohorts (GSE4573 and GSE17710).
Potential molecular mechanisms and tumor immune landscape of these IRGs were
investigated through computational biology. Analysis of tumor infiltrating lymphocytes
and immune checkpoint molecules revealed distinct immune landscape in high- and
low-risk group. The study was the first time to construct IRG-based immune signature
in the recognition of disease progression and prognosis of LSCC patients.

Keywords: lung squamous cell carcinoma, immune-related genes, prognosis, signature, risk score

INTRODUCTION

Lung cancer is the second most prevalent human malignancy that arises from epithelial cells in
both men and women, and is by far the leading cause of cancer death worldwide, accounting
for 25% of all cancer deaths. It’s estimated that there are about 228,820 new diagnosed cases and
135,720 deaths from this disease in the United States in 2020 (Siegel et al., 2020). Lung cancers
are classified into two main types, non-small cell lung carcinoma (NSCLC) and small cell lung
carcinoma (SCLC). Lung squamous cell carcinoma (LSCC) is the second most common histologic
type of NSCLC followed adenocarcinoma (LADC) (Fernandez-Cuesta and Foll, 2019), causing
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FIGURE 1 | Identification of the differentially expressed immune-related genes. (A) Heatmap of differentially expressed genes between LSCC and non-tumors
tissues. (B) Heatmap of differentially expressed IRGs between LSCC and non-tumors tissues. (C) Volcano plot of all the differentially expressed genes. (D) Volcano
plot of the differentially expressed IRGs.
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about 30% of lung cancers. LSCC is strongly correlated with
tobacco smoking than other forms of NSCLC (Cipriano et al.,
2019). Although the incidence and mortality continues to
decrease partly due to less smoking and advances in early
diagnosis and treatment, patients still have a poor prognosis
and 5-year survival remains at a very low level (Lu et al.,
2019; Thomas et al., 2015). The main treatments of lung cancer
are surgical resection and chemotherapy, but vary for various
factors, including tumor stage, lung function and genomic
alterations. Early stage LSCC patients are typically receiving
resected surgically and chemotherapy and/or radiation could be
as an adjuvant therapy, while advanced LSCC are given the first-
line systematic therapy, commonly a platinum-based regimens
(Gandara et al., 2015).Compared to lung adenocarcinoma, much
less frequent mutations in EGFR and ALK rearrangements
for LSCC postponed the development of targeted therapies
(Derman et al., 2015; Yang et al., 2019). Therefore, identification
of novel and effective biomarkers will contribute to monitor
the progression of LSCC and reduce the numbers of patients
that not diagnosed before the onset of this aggressive disease.
Many online tools have been developed for identification of
biomarkers to assist the diangosis of cancer subtypes and provide
survival prediction for cancers based on massive genomic data in
recent years (Kamps et al., 2017). As an aggressive disease with
leading mortality and incidence worldwide, several databases
were constructed to find prognosis related biomarkers in lung
cancer, while few online survival analysis softwares available for
specific subtypes of lung cancer except than Kaplan-Meier plotter
(Gyõrffy et al., 2013) and OSluca (Yan et al., 2020).

Cancer immunotherapy has become a promising treatment
for different types of human cancers in recent years. Some
immunotherapies have been utilized to leverage the immune
system to fight tumors (Kobold et al., 2018; Popovic et al.,
2018). Immune checkpoint inhibitors (ICIs), such as anti-PD-
1/PD-L1, have emerged as an effective therapeutic selection
for advanced breast cancer, metastatic melanoma and NSCLC
(Wang et al., 2018; Ahern et al., 2019; Liu D. et al.,
2019). NSCLC is characterized by several mutations in the
immune system, making it possible that these patients may
benefit from immunotherapy. Several monoclonal antibodies
targeting the immune checkpoint pathways have been approved
for treatment of NSCLC. Anti-PD-1 agent (Nivolumb) could
improve the clinical outcome for LSCC. Despite the success of
immunotherapy, different patients showed diverse responses, and
only a small number of patients benefited from treatment with
ICIs agents. The prognostic significance of PD-1 expression in
patients with tumors are still controversial. This suggests that
it is essential to identify additional predictive biomarkers for
developing potential immunotherapy. Different studies proposed
models regarding the prognostic utility of immune-related genes

Abbreviations: CIBERSORT, Cell-type Identification By Estimating Relative
Subsets Of RNA Transcripts; DEGs, differentially expressed genes; GEO, Gene
Expression Omnibus; IRGs, Immune-related genes; LSCC, lung squamous
cell carcinoma; NSCLC, non-small cell lung carcinoma; PPI, protein-protein
interaction; ROC, the receiver operating characteristics curve; TCGA, The Cancer
Genome Atlas; TILs, Tumor infiltrating lymphocytes; TIMER, Tumor Immune
Estimation Resource; TME, Tumor microenvironment.

in various cancers, including papillary thyroid cancer (Lin
et al., 2019), bladder cancer (Song et al., 2019), head and
neck squamous cell carcinoma (Cao et al., 2018) and non-
squamous NSCLC (Li et al., 2017a). However, the clinical
relevance and prognostic significance of IRGs in LSCC has not
been well illuminated.

This study aimed to investigate the prognostic utility of IRGs
on monitoring the prognosis, and identify novel biomarkers in
developing potential targeted therapies for LSCC patients. The
gene expression profile and clinical information of LSCC cohort
were downloaded from TCGA database. Differentially expressed
IRGs were identified, and the prognostic landscape of these
IRGs were comprehensively assessed through computational
biology. Importantly, we proposed a prognostic signature based
on the immunogenomic profile for predicting prognosis in LSCC
patients. The study may provide new insights into understanding
the functional regulatory mechanisms of IRGs, and help to
develop immune-related targeted therapy in the treatment of
LSCC in further in-depth work.

MATERIALS AND METHODS

Gene Expression Datasets and IRGs
Level 3 RNA-seq raw count data from 502 lung squamous cell
carcinoma patients (LSCC) and 49 non-tumor samples were
downloaded from the TCGA database. Clinical information of
these patients was also downloaded and extracted. Patients with
overall survival (OS) time less than 30 days were removed,
and finally 475 patients were employed in further analysis.
Immunology Database and Analysis Portal (ImmPort) is a
database that updates and shares immunology data accurately
and timely (Bhattacharya et al., 2014). More importantly, the
database provides a list of IRGs, which were identified to actively
participated in the process of immune activity, and were classified
into functional categories. A total of 2498 IRGs were derived from
the ImmPort for this study (Supplementary Table S1).

Identification of the Differentially
Expressed Genes (DEGs) and IRGs
The differentially expressed genes were identified between the
LSCC and adjacent non-tumor samples by edgeR R package
(Robinson et al., 2010). Genes with | log FC| > 2 and False
discovery rate (FDR) < 0.01 were selected as the DEGs. The
differentially expressed IRGs were extracted from the DEGs list.

Heatmap and Clustering Analysis
Heatmap and clustering were performed by the
pheatmap R package.

Gene Functional Enrichment Analysis
Functional enrichment analysis of the DEGs and the differentially
expressed IRGs were conducted using clusterProfiler R package
(Yu et al., 2012) to identify significantly enriched GO terms,
including biological process (BP), molecular function (MF),
and cellular components (CC). The pathway analysis with
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reference from KyotoEncyclopedia of Genes and Genomes
pathways (KEGG) was also performed. The p-value was adjusted
by Benjamini and Hochberg method and less than 0.05 was
considered as statistically significant.

Identification of Overall Survival
(OS)-Related IRGs
A log2 (normalized value + 1) expression matrix was used to
identify OS-related IRGs by univariate Cox regression analysis
using survival R package. IRGs that significantly associated with
the OS of patients were delivered to further functional analysis
and construct the prognostic risk signature.

Molecular Characteristics of the
Differentially Expressed IRGs
To explore the interplay between these OS-related IRGs,
the protein-protein interaction (PPI) network was assessed
from the STRING database (Franceschini et al., 2013). The
PPI network was reconstructed by the Cytoscape software
(Shannon et al., 2003).

In addition, transcription factors (TFs) have been known to
directly mediate the expression levels of the respective genes.
Cistrome Cancer database is an online resource that integrates
cancer genomics data from TCGA with over 23,000 profiles of
ChIP-seq and chromatin to provide the regulatory interactions
between TFs and transcriptomes (Mei et al., 2017). To investigate
the potential ability of TFs in regulating these clinically relevant
IRGs, a total of 318 TFs were downloaded from Cistrome. The
correlation between these IRGs with TFs was calculated, and
the Person correlation coefficient greater than 0.3 was set as the

cutoff value to construct the regulatory network of the IRGs
and potential TFs.

The database of Transcriptional Regulatory Relationships
Unraveled by Sentence-based Text mining (TRRUST) was used
to identify the key regulated factors of OS-related IRGs. TRRUST
is a reliable curated portal for human, and mouse transcriptional
regulatory networks, which contains 8,444 TFs-target regulatory
relationships of 800 human TFs (Han et al., 2018).

Construction and Validation of the
Immune Related Prognostic Risk
Signature for LSCC
OS-related IRGs were employed to construct the prognostic risk
signature using multivariate Cox stepwise regression analysis.
The minimum number of genes that comprised of the final
signature was determined by the Akaike information criterion
(AIC) criterion (Vrieze, 2012). The model discrimination
performance was assessed by the receiver operating characteristic
(ROC) curve using survivalROC R package. The patient’s
prognostic risk score was calculated based on the corresponding
gene expression data multiplied by the Cox regression coefficient.
Patients were divided into high- and low-risk group according
to the median risk score. The predictive utility of the prognostic
signature was evaluated by Kaplan-Meier curve and log rank test.

Subset analysis was conducted to see the utility of the risk score
for OS prediction of patients in different clinical parameters set,
including age, gender, tumor stage, TNM stage.

To validate the prognostic capability of the immune related
risk signature, two independent LSCC cohorts with clinical
information, including GSE4573 (n = 130) and GSE17710

FIGURE 2 | GO terms and pathways analysis of the differentially expressed IRGs. (A) The significant enriched biological processes. (B) The significant enriched
molecular functions. (C) The significant enriched cellular components. (D) The significant enriched KEGG pathways.
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(n = 56), were downloaded from the GEO database. The risk
scores and clinical pathological characteristics for LSCC patients
from TCGA and these two validation cohorts were summarized
in Supplementary Table S2.

Association of Risk Score With Tumor
Immune Landscape Using CIBERSORT
and TIMER Database
The CIBERSORT was developed to accurately quantify the
abundance of distinct cell types within a complex mixture of
gene expression data using deconvolution algorithm (Newman
et al., 2015). We performed CIBERSORT analysis to calculate the
proportions of 22 immune cell subtypes, including seven T cell
types, naïve and memory B cells, plasma cells and NK cells, of
LSCC patients in high- and low-risk groups, the samples with
p< 0.05 were selected for further analysis.

Tumor Immune Estimation Resource (TIMER) is an online
database to estimate the abundances of 6 subtypes of tumor
infiltrating immune cells in 32 cancer types from TCGA database,
including B cells, CD4 T cells, CD8 T cells, macrophages,
neutrophils, and dendritic cells via gene expression data. Immune
infiltration levels of LSCC patients were calculated, and the
Pearson correlation between the risk score and immune cell
infiltration was analyzed. Additionally, the correlation of seven-
model genes expression with the immune cell infiltration levels in
LSCC patients was assessed (GraphPad Prism 8.3.0).

RESULTS

Identification of the Differentially
Expressed IRGs
To delineate gene expression profiles between normal and lung
squamous cell carcinoma, 6,678 DEGs were identified using the
edgeR algorithm (Robinson et al., 2010). Among these DEGs,
4,905 genes were up-regulated and 1,703 genes were down-
regulated (Figure 1A). A distinct gene expression pattern was
observed in the normal and tumor cases (Figure 1C). 250
IRGs were referenced from ImmPort, including 128 down-
regulated and 122 up-regulated (Figure 1B). A similar gene
expression difference that defines by IRGs was also apparent
in normal and tumor groups (Figure 1D). GO terms analysis
showed that these DEGs were significantly enriched in epidermal
cell differentiation, keratinization, extracellular matrix and cell-
cell injections (Supplementary Figures S1A–C). Cytokine-
cytokine receptor interaction and alcoholism ranked the top
pathways (Supplementary Figure S1D). As to the IRGs,
inflammatory processes were the most frequently implicated
through functional enrichment analysis, such as “leukocyte
migration,” “cell chemotaxis,” “receptor ligand activity,” “cytokine
activity,” and “cytoplasmic vesicle lumen” (Figures 2A–C).
“Cytokine-cytokine receptor interaction,” “PI3K-AKT signaling
pathway,” and “MAPK signaling pathway” were most enriched
pathways by the differentially expressed IRGs (Figure 2D).

Correlation of Individual Differentially
Expressed IRGs With OS
To determine the potential prognostic utility of individual
differentially expressed IRGs for patients, the clinical information
of LSCC patients was downloaded. 27 differentially expressed
IRGs were found to be significantly associated with the OS
of LSCC patients (P < 0.05, Table 1) using univariate Cox
regression analysis. As expected, we found that these OS-
associated IRGs were significantly involved in the similar GO
terms and pathways that seen in the enrichment analysis
using the differentially expressed IRGs, such as “epithelial cell
proliferation,” “mesenchyme development,” and “regulation of
ERK1 and ERK2 cascade” (Figure 3A). “Hormone activity,”
“growth factor activity,” “cytokine receptor binding” (Figure 3B)
were the most significant molecular functions. The “Rap1, Ras
signaling pathway” and “MAPK signaling pathway” were the top
enriched pathways (Figure 3C).

PPI network analysis of these IRGs identified three modules
that defined by the number of nodes greater than 10, and
named as SIPR1, EDNRB, and FGFR4, respectively. These three
module genes were most significantly increased expression in
LSCC cases (Figure 4), and have been implicated in cancer
cell proliferation and migration (Tanaka et al., 2014; Liu Y.

TABLE 1 | OS-related differentially expressed IRGs in LSCC patients by univariate
Cox regression hazard analysis (P < 0.05).

Gene HR Z P-value

RETN 1.140202 3.264169 0.001098

BMP2 1.161624 3.049499 0.002292

GCGR 0.911235 −2.75875 0.005802

PTH1R 1.15991 2.699299 0.006949

FGF8 0.88845 −2.65865 0.007845

SEMA3B 1.131694 2.61468 0.008931

CLEC4M 1.139322 2.583223 0.009788

PTH 1.177088 2.497194 0.012518

FLT4 1.205449 2.486447 0.012903

SLC10A2 1.138967 2.484331 0.01298

AGRP 1.141067 2.472845 0.013404

NPPC 0.935714 −2.45588 0.014054

PPBP 1.079465 2.412894 0.015826

FGF4 1.089114 2.260932 0.023763

ACVRL1 1.202202 2.24414 0.024823

HGF 1.10855 2.173913 0.029712

NTS 0.966758 −2.1379 0.032525

APLN 1.129638 2.089128 0.036696

GALR3 0.879853 −2.07556 0.037934

FGF9 1.085816 2.070424 0.038413

AMH 0.934864 −2.03968 0.041382

TIE1 1.158155 2.022781 0.043096

EDNRB 1.115529 2.019389 0.043447

TNFSF12 1.184515 2.018298 0.04356

NR0B2 1.075512 1.986496 0.046978

ANGPTL1 1.099632 1.984636 0.047185

ICAM-1 1.110156 1.975964 0.048159
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FIGURE 3 | GO terms and pathways analysis of the differentially expressed OS-related IRGs. (A) The significant enriched biological processes. (B) The significant
enriched molecular functions. (C) The significant enriched KEGG pathways.

et al., 2019; Huang et al., 2015). In addition, a comprehensive
exploration of the molecular characteristics of these OS-related
IRGs found that amplification, deep deletion, and mRNA high
expression were the three most commonly types of mutations
(Figure 5). FGF4 was the gene with the highest mutation
frequency, and there were 12 genes with a mutation rate greater
or equal to 5%.

Construction of Transcription Factors
(TFs) Regulatory Network
To explore the potential molecular mechanisms corresponding
to the clinical significance of the OS-related IRGs, the regulatory
network of these genes with TFs was investigated. We examined
the expression profile of 318 TFs, and found 50 TFs were
differentially expressed between LSCC and normal samples
(Figures 6A,B). Among these 50 TFs, 3 genes (TCF21, HNF1B,
and SOX2) were significantly correlated with the OS of LSCC

patients (Supplementary Table S3). A regulatory network based
on the Pearson correlation between 27 OS-related IRGs and
50 differentially expressed TFs was constructed using Cytoscape
software. A correlation score more than 0.3 was set as the
cut-off value. The TFs based regulatory network illustrated the
regulatory relationships among these IRGs (Figure 6C).

We identified the key regulated factors of OS-related
IRGs using the TRRUST database. Seven key transcription
factors (RELA, NFKB1, SP1, VDR, FOS, PPARG and STAT3)
were found to be associated with the regulation of these
IRGs (Table 2).

Development and Validation of the
Immune Related Prognostic Signature
To establish an optimal prognostic immune related signature
to define the patients’ risk, multivariate Cox stepwise regression
analysis was performed that employed the 27 OS-related IRGs,
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FIGURE 4 | Three modules identified through protein-protein interaction network analysis. (A) S1PR1 module. (B) EDNRB module. (C) FGFR4 module. The color of
a node in each module reflects its log transformed fold change, and the circle size represented as adjusted P-value.
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FIGURE 5 | Mutation landscape of OS-related differentially expressed IRGs.

we develop a prognostic risk signature that consists of 7 genes
(GCCR, FGF8, CLEC4M, PTH, SLC10A2, NPPC, and FGF4)
for predicting the OS of patients using the survival R package
(Figure 7A). The signature was as follows:

Prognostic risk score = [Expression level of
GCCR *(−0.0855)] + [Expression level of FGF8
*(−0.1171)] + [Expression level of CLEC4M
*(0.1312)] + [Expression level of PTH *(0.1251)] + [Expression
level of SLC10A2 *(0.1082)] + [Expression level of NPPC
*(−0.0525)]+ [Expression level of FGF4 *(0.0912)].

Based on the patients’ risk score calculated by the signature,
the patients were divided into high- and low-risk groups
according to the median value of risk score (Figures 7B,C), and
three model genes (GCGR, FGF8 and NPPC) were significantly
up-regulated in low-risk patients (Figure 7D and Supplementary
Figure S2), while two genes (SLC10A2 and CLEC4M) were
markedly down-regulated (Supplementary Figures S2C,E).
Additionally, five model genes were up-regulated in LSCC
patients (Supplementary Figure S3), while the remaining two
genes (SLC10A2 and CLEC4M) were observed to be increased
expression in normal cases (Supplementary Figure S3C,E).
Kaplan-Meier curve showed that patients in high-risk group have
worse OS than that of patients in low-risk group (P < 0.0001,
Figure 8A). The area under curve (AUC) value of the receiver
operating characteristics (ROC) curve was 0.7 (Figure 8B) for
5 years, and 3-year AUC was 0.67 (Figure 8C), suggesting
the prognostic signature based on IRGs has moderate capacity
for monitoring prognosis. Furthermore, in order to minimize
potential over-fitting, we used the least absolute shrinkage and
selection operator (Lasso) regression model to select the model

genes from 27 IRGs. A signature that comprises of seven IRGs
(BMP2, GCGR, PTH, SLC10A2, PPBP, FGF9, and AMH) was
constructed using multivariate Cox stepwise regression analysis.
The patients were divided into low- and high-risk groups
according to the median risk score. The patients in high-risk
group have significant shorter OS than that of patients in low-
risk group (P = 4.2e-03), while the AUC of ROC curve of
prognostic utility of this risk signature for 3 and 5 years were
0.62 and 0.61, respectively. This indicated that our signature show
better predictive performance for LSCC patients. In addition, we
made an attempt to develop several immune related signatures
by increasing or decreasing the number of OS-related IRGs.
The predictive performance of our signature is superior to these
signatures (data not shown).

To evaluate predictive capability of the signature for patients’
prognosis independently, univariate Cox regression analysis
found that age, pathological M and T stages, Tobacco smoking
history, tumor stage, and patient’s risk score were significantly
associated with the OS of LSCC patients (Table 3). Multivariate
Cox regression analysis showed that the risk signature could serve
as an independent predictor after adjusting for other clinical
parameters, including age, gender, tumor stage, pathological
stage, tobacco smoking history and cigarette exposure per
day (Table 3).

The proposed signature was tested using external LSCC
cohorts from GSE4573 (n = 130) and GSE17710 (n = 56). The
risk scores of patients were calculated. Patients were divided into
high- and low-risk group according to the median risk score
in both validation datasets. Patients in high-risk group have
significant shorter OS than that of patients in low-risk group
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FIGURE 6 | Transcription factors-mediated regulatory network.
(A) Differentially expressed TFs. (B) Heatmap of differentially expressed TFs
between LSCC and non-tumors tissues. (C) The transcription regulatory
network according to the clinically relevant IRGs and differentially expressed
TFs. The circle in a node reflects clinically relevant IRGs and triangle
represented as differentially expressed TFs. The shades of color reflect the
correlation.

in GSE4573 (Figure 8D, P = 0.0405). Similar observation was
seen in GSE17710 LSCC cohort (Figure 8E, P = 0.0168) both
validation cohorts. This demonstrated that our signature has
good ability of risk stratification for LSCC patients.

In addition, the tumor infiltration levels among the somatic
copy number alternations category (deep deletion, arm-level
deletion, diploid/normal, arm-level gain, and high amplification)
for the model genes varies in each immune subset compared
with the normal using two sided Wilcoxon rank sum test
(Supplementary Figures S4A–G).

The Utility of the Prognostic Signature in
OS Prediction for Patients With Different
Clinicopathological Factors
The subset analysis was performed to determine the utility
of our signature in predicting patient’s OS in different
clinicopathological parameters. According to the Kaplan-Meier
analysis, the risk score has potential prognostic values for the
different subsets of LSCC patients (Figures 9A–F), such as
patients with pathological T2 and T3 stages, N0-1 stages, M0-
1, early tumor clinical stages (stage 1/2), age greater than
60 years old, and male patients. Patients with high-risk patients
did have significantly worse outcome than those of low-risk
groups. Furthermore, the risk score in high- and low-risk groups
with different clinical parameters show significant difference
(Supplementary Figures S5A–D).

The Relevance of the Prognostic
Signature and Tumor Immune Landscape
Much attention has been paid to develop anti-tumor immune
therapies for lung cancers recently, and major advances have
been made, especially for immune checkpoint blockade, such
as anti-PD1 antibodies Nivolumab and Pembrolizumab (Tanaka
et al., 2014; Sul et al., 2016), and anti-PD-L1 Atezolizumab (No
Authors Listed, 2016). The expression of immune checkpoint
molecules, involving cytotoxic T-lymphocyte-associated protein
4 (CTLA4), programmed cell death 1 ligand (PD-L1), lymphocyte
activation gene-3 (LAG-3), and T cell immunoglobulin-3 (TIM-
3) of LSCC patients stratified by the prognostic signature, showed
that CTLA4 and TIM-3 were significantly increased expression
in high-risk patients (Figures 10A–D), suggesting patients in
high-risk group might have poor response to the targeted
molecular immunotherapy.

Tumor infiltrating lymphocytes (TILs) have been proposed to
play a vital role in regulating tumor immune microenvironment
(TME), treatment response and clinical outcome. CIBERSORT
was applied to calculate the proportions of 22 immune cells
types in high- and low-risk LSCC patients. Low-risk patients had
remarkably higher fraction of plasma cells, memory activated
CD4 T cells, and follicular helper T cells, whereas CD4 memory
resting T cells, monocytes cells, macrophages M2 and neutrophils
were in high levels (Figure 11).

To see if the immunogenome accurately reflected the status of
TME, we found that the infiltration level of five immune cell types
(Figures 12A–F), including CD4 T cell, CD8 T cell, neutrophil,
macrophage and dendritic cells, are significantly associated with
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TABLE 2 | Key regulated factor of OS-related IRGs in LSCC patients.

Key TFs Description Regulated genes P-value FDR

RELA v-rel reticuloendotheliosis viral oncogene homolog A (avian) FLT4, ICAM1, BMP2, FGF8, AMH 6.04E-05 0.000218

NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 FLT4, AMH, ICAM1, BMP2, FGF8 6.23E-05 0.000218

SP1 Sp1 transcription factor ACVRL1, ICAM1, EDNRB, HGF, RETN 0.00049 0.00114

VDR Vitamin D (1,25- dihydroxyvitamin D3) receptor AMH, PTH 0.00164 0.00287

FOS FBJ murine osteosarcoma viral oncogene homolog SLC10A2, NTS 0.003 0.0042

PPARG Peroxisome proliferator-activated receptor gamma RETN, ICAM1 0.004 0.00466

STAT3 Signal transducer and activator of transcription 3 (acute-phase response factor) HGF, ICAM1 0.0175 0.0175

patient’ risk score. In addition, infiltration levels of macrophage
and dendritic cells ranked the top among the immune cells of the
seven model genes (Supplementary Figures S6A–G).

DISCUSSION

Squamous cell carcinoma is one of the most frequently diagnosed
histologic subtype of NSCLC, representing 20–30% of all the
NSCLC cases (Travis, 2020). The majority of patients with this
disease were closely correlated with the history of cigarette
smoking, although the condition is improved alongside cancer
incidence. The significance of TME in cancer development,
progression and treatment response has been attracted great
attention (Chen and Mellman, 2017). Patients with LSCC
have benefited from an expanding immunotherapies, such as
programmed cell death-1 (PD-1)/programmed cell death ligand
1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) inhibition, VEGFR inhibition, and targeted therapies
matched to fibroblast growth factor receptor (FGFR) and PI3K-
AKT (Derman et al., 2015). However, only a small number
of patients showed effective remission to immune checkpoint
blockade (Wei et al., 2018) or chimeric antigen receptor
(CAR) T cell therapy (Mohanty et al., 2019). Identification of
strong gene signature to trace the immune status of cancer
patients would be vital to establish reliable immune prognostic
biomarkers, and to enable stratification of patients into high-
and low-risk groups that might be beneficial or responsive
to immunotherapy. Several gene signatures that could be
representative of tumor immune status have been proposed,
and demonstrated to have potential prognostic utility in some
cancers, such as non-squamous NSCLC (Li et al., 2017a),
hepatocellular carcinoma (Long et al., 2019), renal papillary
cell carcinoma (Wang et al., 2019), and renal cancer (Geissler
et al., 2015). Although insights into the roles of IRGs in
tumor progression and immunotherapeutic have been seen in
many types of cancers, a comprehensive and transcriptome-
wide profile investigation for their clinical significance and
molecular mechanisms in LSCC are yet to be described. In the
present study, we developed a prognostic risk signature that
comprised of seven IRGs, which demonstrated to be a reliable
predictor in identifying LSCC patients with an unfavorable
prognosis. In addition, the clinical significance and potential
tumor immune landscapes of these IRGs in LSCC patients were
also well illuminated.

GO terms enrichment analysis indicated that these
differentially expressed IRGs are mainly involved in the process
of inflammatory responses, such as “leukocyte migration,” “cell
chemotaxis,” “cytokine activity.” “PI3K-AKT signaling pathway”
and “cytokine-cytokine receptor interaction” were significantly
enriched in the LSCC progression, which is line with previous
studies reported that these biological processes and pathways
play a crucial role in the proliferation, angiogenesis, immune
responses and progression in various cancers (Pons-Tostivint
et al., 2017; Zhang et al., 2017; Gao J. et al., 2018). Cancer
progression is associated with a pro-inflammatory environment
(Lin and Karin, 2007; Lippitz, 2013). Dysregulation of cytokine
interactions was involved in the pathogenesis of lung cancer
(Zhang et al., 2016; Ozawa et al., 2019). High cytoplasmic RAP1
can increase cisplatin resistance of NSCLC combined with
increased NF-κB activity (Xiao et al., 2017), and RAS-RAF-
MEK-ERK signaling was a vital pathway that mediates ALK
positive tumor cell survival in lung cancer (Hrustanovic and
Bivona, 2016). ALK inhibitors, such as crizotinib and ceritinib,
have been applied to treat the ALK positive subset of patients
(Hrustanovic et al., 2015). These differentially expressed IRGs in
our study provided the clues of densely infiltrated inflammatory
microenvironment that occurs often in the initiation of cancer
cells, and the correlations between activation of immune-related
pathways and disease progression and treatment response.
Univariate Cox regression analysis showed that 27 IRGs were
significantly correlated with patient’s OS, suggesting that
these genes could be prognostic biomarkers for their potential
predictive utility. Further exploration of these OS-related IRGs
observed that amplification, deep deletion, and mRNA high
expression were the dominantly molecular traits. For example,
Bone morphogenetic protein-2 (BMP2) is overexpressed in
the majority of human lung carcinomas independent of cell
types (Langenfeld et al., 2005). Previous study indicated that the
expression pattern induced by BMP2 in lung fibroblasts may
predicts patients’ prognosis in lung adenocarcinoma (Rajski
et al., 2015). Consistent with previous evidence, interleukin-33
(IL33) and interleukin 1 receptor-like 1 (IL1RL1) were found
to be increased in lung cancer and associated with disease
clinical stage (Wang et al., 2016). IL-33/ST2 signaling pathway
has been implicated in tumor-associated immune response and
inflammatory disease of the lung (Casciaro et al., 2019), and
IL-33 could significantly promote the migration and invasion of
lung cancer cells through alpha serine/threonine-protein kinase
(AKT) pathway activation (Yang et al., 2018). As an attractant,
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FIGURE 7 | Development of the prognostic signature based on the clinically
relevant IRGs. (A) The hazard ratio of model genes. (B) Distribution of
patients’ risk scores. (C) Patients’ survival time along with risk score. (D) The
expression of the seven model genes in high- and low-risk groups.

IL-33 can promote the recruitment of Th2-associated cytokines,
which act as key mediators for the recruitment of neutrophils,
monocytes, NK cells, dendritic cells or T lymphocytes in
inflammatory conditions at the site of tumor (Brabcova et al.,
2014). Some chemokines were increased in LSCC samples, such
as CCL2, CCL15, CCL16, and these chemokines were implicated
in the angiogenesis or angiostasis balance and promoted tumor
infiltrating hematopoietic cells in the pathophysiology of NSCLC
(Rivas-Fuentes et al., 2015). The interaction network among
these IRGs and the impact of the mutations might shape the
LSCC immune microenvironment. In turn, the TME mediated
disease progression and the response to treatment.

To explore the potential molecular mechanisms, a TF-
mediated network was used to identify vital TFs that might
regulate these IRGs. S1PR1, EDNRB and FGFR4 were
predominantly signatures that represented the modules.
They are tightly correlated with cancer development and
progression (Tanaka et al., 2014; Lang and Teng, 2019; Liu Y.
et al., 2019), and involved in the egress of T cells from lung
tissue in tumor infiltrating lymphocytes conditions (Mackay
et al., 2015). Seven TFs were found to be key regulators of these
OS-related IRGs. Of these TFs, as a subunit of NF-κB complex,
the phosphorylation of RELA was associated with disease
progression, inflammatory regulation and various cancers
through NF-κB signaling pathway (Lu and Yarbrough, 2015).
NFKB1 exerted an inhibitory function in the tumorigenesis and
progression of different types of cancers through alleviating
the abnormal activation of the NF-κB signaling (Concetti and
Wilson, 2018). NF-κB activity in lung cancer was significantly
associated with T cell infiltration, suggesting this pathway
may mediate immune surveillance and promote antitumor
T cell response (Hopewell et al., 2013). Our results may
provide some clues that these IRGs (FLT4, AMH, ICAM1,
BMP2, and FGF8) regulated by NFKB1 could be potentially
implicated in the immune regulation of LSCC. Growing
evidence has indicated that STAT3 signaling was involved
in carcinogenesis, and immunotherapy response through
regulating cancer cell differentiation and proliferation in
human squamous cell carcinoma (Zhou et al., 2015; Zhao
et al., 2018). Growing evidence showed that ICAM-1, a specific
ligand for leukocyte-function associated antigen-1, interleukin-
1, tumor necrosis factor-1 and interferon-γ, participates in
various inflammatory immune processes through stabilizing
T cell receptor-mediated binding between antigen-presenting
cells and T-lymphocytes, including cell-cell interaction and
leukocyte transmigration (Kotteas et al., 2014). ICAM-1
blockade inhibited lung cancer cell invasion in vitro and tumor
metastasis in vivo. Tumor necrosis factor-α (TNF-α) induced
ICAM-1 can be suppressed by thalidomide administration
through inhibition of NF-κB binding to the ICAM-1 promoter
(Lin et al., 2006). This suggested targeting ICAM-1 could be a
potentially effective therapy for LSCC patients. Previous studies
provided limited direct information about these TF-mediated
differentially expressed IRGs in LSCC development. Hence,
the immunomodulatory role of these genes in monitoring
LSCC progression and prognosis prediction remain to be
fully investigated.
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FIGURE 8 | The prognostic signature predicted the OS of LSCC patients. (A) Patients in high-risk groups have shorter OS. (B) The receiver operating characteristics
(ROC) curve of prognostic utility of the signature for 5 years. (C) The receiver operating characteristics (ROC) curve of prognostic utility of the signature for 3 years.
(D) The prognostic utility of the signature in test LSCC cohort (GSE4573, n = 130). (E) The prognostic utility of the signature in test LSCC cohort (GSE17710, n = 56).
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TABLE 3 | Univariate and multivariate Cox regression analysis of the risk score and clinical parameters in LSCC patients.

Variables Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Age 1.0189 (1.0042–1.0338) 0.0116 1.0158 (1.0007–1.0311) 0.0405

pM 1.2810 (1.0533–1.5580) 0.0131 1.2609 (1.0328–1.5395) 0.0228

pN 1.1680 (0.9839–1.3866) 0.0761 1.0929 (0.8826–1.3533) 0.415

pT 1.3538 (1.1272–1.6259) 0.0012 1.3019 (1.0287–1.6476) 0.0281

Gender 0.8031 (0.5752–1.1213) 0.1978 0.8395 (0.5981–1.1783) 0.3118

Tobacco_smoking_history 0.8829 (0.7805–0.9987) 0.0476 0.8667 (0.7634–0.9841) 0.0273

Tumor_stage 1.2859 (1.1008–1.5020) 0.0015 1.0861 (0.8593–1.3729) 0.4895

Tigarettes_exposures (per_day) 1.0021 (0.9295–1.0803) 0.9571 1.0079 (0.9345–1.0870) 0.8388

Risk score 1.5196 (1.3462–1.7155) 1.32E–11 1.5480 (1.3577–1.7649) 6.62E-11

FIGURE 9 | Prognostic utility of signature in LSCC patients with different clinical parameters. (A) The prognostic utility of the signature in LSCC patients with different
T stages. (B) The prognostic utility of the signature in LSCC patients with different node statuses. (C) The prognostic utility of the signature in LSCC patients with
different M stages. (D) The prognostic utility of the signature in male and female LSCC patients. (E) The prognostic utility of the signature in LSCC patients with
different clinical tumor stages. (F) The prognostic utility of the signature in LSCC patients with different age groups.
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FIGURE 10 | The expression of immune checkpoint molecules in high- and low-risk groups. (A) CTLA-4; (B) PD-L1; (C) LAG-3; (D) TIM-3.

Recent years have witnessed a boom of gene signatures
in clinical practice. Oncotype DX provided a breast cancer
recurrence score based on the expression of 21 genes (Siow
et al., 2018), and Colorant also represented a recurrence score
tool for colon cancer patients constructed by the expression
of 18 genes (Tan and Tan, 2011). These signatures developed
based on gene expression profiles suggested that screening
new prognostic cancer biomarkers is a promising approach
to identify high-risk patients for subsequent clinical decision-
making, such as therapy selection, outcome prediction and
disease progression tracking. As regard to lung cancer, Wan
et al. (2012), identified a smoking-associated 7-gene signature
for predicting patient’s diagnosis and prognosis in smokers.
Similarly, the authors also developed a smoking-associated 6-
gene signature that predicts patient’s risk and survival by
modeling crosstalk with major lung cancer signaling pathways
(Guo and Wan, 2012). Zhang et al. (2019), constructed a
5-microRNA signature based on serum microRNA profiling
to predict survival for patients with advanced-stage NSCLC.
However, there are few rigorously classifiers that use to predict
prognosis for LSCC patients. Although 14-gene signature was
developed for LSCC prognosis, the moderate large number
of genes make it difficult for clinical use (Li et al., 2017b).
Here, we developed an immune related prognostic risk
signature with seven OS-related IRGs for LSCC patients.

Association analysis combining with the model risk score and
clinicopathological characteristics indicated that a higher risk
score was significantly correlated with advanced stage, older age
and poor prognosis. This is in keeping with higher risk score
representing an immunosuppressive tumor microenvironment.
This, in turn, promotes tumor progression and worse response
to therapies. The seven-gene signature remained an independent
prognostic predictor after adjusting for clinicopathological
variables. Considering that a robust prognostic signature could
be risk-stratify indicator in other independent cohorts, we
used two LSCC datasets to validate the predictive efficacy, and
found that the signature performed well in classifying high-
and low-risk prognostic groups (P = 0.0405 for GSE4573,
and P = 0.0168 for GSE17710). Additionally, our prognostic
signature has a moderate high AUC using seven genes when
compared to other signatures developed by greater than or
less than seven IRGs, which make it more implementable in
clinical practice.

Immune escape of tumor cells is a big bugbear to antitumor
immune response during cancer progression (Dunn et al.,
2002). This process was mediated by several immunosuppressive
mechanisms, including increased immunosuppressive cells, and
overexpression of immune checkpoint molecules (e.g., PD-
1, CTLA-4, LAG3, and TIM-3) in the TME. In this study,
the immune cell infiltration landscape in high- and low-risk
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FIGURE 11 | Relative infiltrating proportion of immune cells in high- and low-risk groups. Blue violin reflects high-risk groups, and red violin represents low-risk
groups.

LSCC patients and the correlation between risk score with
the expression of immune checkpoint genes, including PD-L1,
CTLA-4, LAG3, and TIM-3 (Woo et al., 2012), were assessed.
Consistent with TIM-3 was up-regulated in LSCC and positively
correlated with malignant parameters (Gao J. et al., 2018).
Our analysis indicated that CTLA-4 and TIM-3 expression were
significantly higher in high-risk LSCC groups. Patients in the
low-risk group possessed higher plasma cells, CD4 memory
activated T cells, T follicular helper cells, macrophage M0 and
M1 as well as other immune cells infiltration. Clinical studies
demonstrated that tumor-infiltrating lymphocytes (TILs) have
a major impact on the disease progression in various cancers
(Al-Shibli et al., 2008; Granetto et al., 2017), and increased
infiltration of TILs, such as cytotoxic T cells, memory T cells,
and T helper cells 1, was associated with favorable prognosis
(Bremnes et al., 2016). Previous reports revealed that different
subsets of cells differentiating from CD4 + T-cells can promote
the inactivation of CD8 T cells, the killing effect of NK cells,
enhance the cytotoxicity of CD8 T cells in immune response
(Pinto et al., 2018). Significant positive association of six types

of immune cell infiltration with risk score indicated that high-
risk LSCC patients tended to have more CD4, CD8, neutrophil,
macrophages and dendritic cells than patients in low-risk group.
This may mean the anti-tumor response in high T cell infiltration
is neutralizing through immunosuppressive TME shaped by
increased expression of immune checkpoint molecules. These
results might help to explain poor prognosis of high-risk patients,
and the seven-gene risk signature may provide the potential
immunotherapeutic insight for immune checkpoint inhibitor
therapies, while the underlying interactions of the IRGs and
immune mediators in LSCC need further identification.

Among the seven genes, the expression level of four genes
(GCGR, FGF8, CLEC4M, and SLC10A2) were associated with
patients’ OS using the median expression value as cutoff
in OSluca database (Supplementary Figure S7). CLEC4M,
SLC10A2 and FGF4 have been found to be involved in lung
cancer progression and the regulation of treatment resistance.
CLEC4M is associated with worse prognosis and inhibition of
CLEC4M showed potential clinical relevance in counterbalancing
cisplatin resistance in NSCLC patients (Tan et al., 2019).
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FIGURE 12 | Pearson’s correlation of the risk score and infiltration abundance of six types of immune cells. (A) B cell; (B) CD4 cell; (C) CD8 cell; (D) neutrophil cell;
(E) macrophage cell; (F) dendritic cell.

Fibroblast growth factor (FGF) isoforms, such as FGF4, FGF19
and FGF7, promoted epithelial-mesenchymal transition (EMT),
cell proliferation and migration during cancer progression by
inducing store-operated calcium entry in lung carcinoma (Qi
et al., 2016). In addition, combination therapy of tyrosine kinase
inhibitors, such as FGFR and CFS1R inhibitors, with anti-
PD-1 or anti-CTLA-4 antibodies showed promising benefit for
cancer patients (Katoh, 2016). As a protective factor, increased
expression of SLC10A2 is closely related to suppression of

NSCLC cell proliferation and migration, and promote apoptosis
under bexarotene treatment (Ai et al., 2018). Consistent with
evidence that reduction of glucagon receptor, GCGR, in papillary
thyroid carcinoma resulted in the inactivation of EMT and
P38/ERK pathways (Jiang et al., 2020), GCGR was down-
regulated in LSCC and may serve as a potential prognostic
biomarker and therapeutic target for LSCC. NPPC and PTH
have not been previously reported being related to lung cancer,
PTH related protein mediated energy wasting in fat tissues,
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and neutralization of this protein can ameliorate cancer cachexia,
which improves patient’s survival (Kir et al., 2014). Our study is
the first time to suggest their predictive potential as prognostic
markers for LSCC patients.

CONCLUSION

In the present study, we developed a seven-gene risk signature
for LSCC patients based on differentially expressed IRGs, which
could serve as an independent prognostic predictor, and an
indicator of tumor immune landscape. The patients divided by
the risk score have markedly different prognoses. Correlation
analysis of the risk score with clinicopathological factors showed
that the signature has potential utility of estimating LSCC
patients’ prognosis and guiding clinical use. The data presented
may provide insight into developing novel therapeutic strategies.
Further work should concentrate on uncovering the molecular
mechanisms of these IRGs in regulating LSCC progression and
outcome, as well as validating our signature in clinical setting.
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