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Preventing corneal blindness caused by keratitis
using artificial intelligence
Zhongwen Li1,2,4, Jiewei Jiang3,4, Kuan Chen2,4, Qianqian Chen2, Qinxiang Zheng1,2, Xiaotian Liu1,

Hongfei Weng1, Shanjun Wu1 & Wei Chen 1,2✉

Keratitis is the main cause of corneal blindness worldwide. Most vision loss caused by

keratitis can be avoidable via early detection and treatment. The diagnosis of keratitis often

requires skilled ophthalmologists. However, the world is short of ophthalmologists, especially

in resource-limited settings, making the early diagnosis of keratitis challenging. Here, we

develop a deep learning system for the automated classification of keratitis, other cornea

abnormalities, and normal cornea based on 6,567 slit-lamp images. Our system exhibits

remarkable performance in cornea images captured by the different types of digital slit lamp

cameras and a smartphone with the super macro mode (all AUCs>0.96). The comparable

sensitivity and specificity in keratitis detection are observed between the system and

experienced cornea specialists. Our system has the potential to be applied to both digital slit

lamp cameras and smartphones to promote the early diagnosis and treatment of keratitis,

preventing the corneal blindness caused by keratitis.
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Corneal blindness that largely results from keratitis is the
fifth leading cause of global blindness, often affecting
marginalized populations1–3. The burden of corneal

blindness on people can be huge, particularly as it tends to affect
an individual at a relatively younger age than other blinding
reasons such as cataract and glaucoma4. Early detection and
timely medical intervention of keratitis can deter and halt the
disease progression, reaching a better prognosis, visual acuity, and
even preservation of the ocular integrity3,5–7. Otherwise, keratitis
can get worse rapidly with time, potentially leading to permanent
vision loss and even corneal perforation8,9.

The diagnosis of keratitis often requires a skilled ophthalmol-
ogist to examine patients’ cornea through a slit-lamp microscope
or slit-lamp images10. However, although over 200,000 ophthal-
mologists around the world, there is a current and expected
future shortfall in the number of ophthalmologists in both
developing and developed countries11. This widening gap
between need and supply can affect the detection of keratitis in a
timely manner, especially in remote and underserved regions12.

Recent advances in artificial intelligence (AI) and particularly
deep learning have shown great promise for detecting some
common diseases based on clinical images13–15. In ophthalmol-
ogy, most studies have developed high-accuracy AI systems using
fundus images for automated posterior segment disease screen-
ing, such as diabetic retinopathy, glaucoma, retinal breaks, and
retinal detachment16–22. However, anterior segment diseases,
particularly various types of keratitis, which also require prompt
diagnosis and referral, are not well investigated.

Corneal blindness caused by keratitis can be completely pre-
vented via early detection and timely treatment8,12. To achieve
this goal, in this study, we developed a deep learning system for
the automated classification of keratitis, other cornea abnormal-
ities, and normal cornea based on slit-lamp images and externally
evaluated this system in three datasets of slit-lamp images and
one dataset of smartphone images. Besides, we compared the
performance of this system to that of cornea specialists of dif-
ferent levels.

Results
Characteristics of the datasets. After removing 1197 images
without sufficient diagnostic certainty and 594 poor-quality
images, a total of 13,557 qualified images (6,055 images of kera-
titis, 2777 images of cornea with other abnormalities, and 4725
images of normal cornea) from 7988 individuals were used to
develop and externally evaluate the deep learning system. Further
information on datasets from the Ningbo Eye Hospital (NEH),
Zhejiang Eye Hospital (ZEH), Jiangdong Eye Hospital (JEH),
Ningbo Ophthalmic Center (NOC), and smartphone is sum-
marized in Table 1.

Performance of different deep learning algorithms in the
internal test dataset. Three classic deep learning algorithms,
DenseNet121, Inception-v3, and ResNet50, were used in this
study to train models for the classification of keratitis, cornea with
other abnormalities, and normal cornea. The t-distributed sto-
chastic neighbor embedding (t-SNE) technique indicated that the
features of each category learned by the DenseNet121 algorithm
were more separable than those of the Inception-v3 and ResNet50
(Fig. 1a). The performance of these three algorithms in the
internal test dataset is described in Fig. 1b and c, which illustrate
that the best algorithm is the DenseNet121. Further information
including accuracies, sensitivities, and specificities of these algo-
rithms is shown in Table 2. The best algorithm achieved an area
under the curve (AUC) of 0.998 (95% confidence interval [CI],
0.996–0.999), a sensitivity of 97.7% (95% CI, 96.4–99.1), and a

specificity of 98.2% (95% CI, 97.1–99.4) in keratitis detection. The
best algorithm discriminated cornea with other abnormalities
from keratitis and normal cornea with an AUC of 0.994 (95% CI,
0.989–0.998), a sensitivity of 94.6% (95% CI, 90.7–98.5), and a
specificity of 98.4% (95% CI, 97.5–99.2). The best algorithm
discriminated normal cornea from abnormal cornea (including
keratitis and other cornea abnormalities) with an AUC of 0.999
(95% CI, 0.999–1.000), a sensitivity of 98.4% (95% CI, 97.1–99.7),
and a specificity of 99.8% (95% CI, 99.5–100). Compared to the
reference standard of the internal test dataset, the unweighted
Cohen’s kappa coefficient of the best algorithm DenseNet121 was
0.960 (95% CI: 0.944–0.976).

Performance of different deep learning algorithms in the
external test datasets. In the external test datasets, the t-SNE
technique also showed that the features of each category learned
by the DenseNet121 algorithm were more separable than those of
Inception-v3 and ResNet50 (Supplementary Fig. 1). Corre-
spondingly, the receiver operating characteristic (ROC) curves
(Fig. 2) and the confusion matrices (Supplementary Fig. 2) of
these algorithms in the external datasets indicated that the
DenseNet121 algorithm has the best performance in the classi-
fication of keratitis, cornea with other abnormalities, and normal
cornea.

In the ZEH dataset, the best algorithm achieved AUCs of 0.990
(95% CI, 0.983–0.995), 0.990 (95% CI, 0.985–0.995), and 0.992
(95% CI, 0.985–0.997) for the classification of keratitis, cornea
with other abnormalities, and normal cornea, respectively. In the
JEH dataset, the best algorithm achieved AUCs of 0.997 (95% CI,
0.995–0.998), 0.988 (95% CI, 0.982–0.992), and 0.998 (95% CI,
0.997–0.999) for the classification of keratitis, cornea with other
abnormalities, and normal cornea, respectively. In the NOC
dataset, the best algorithm achieved AUCs of 0.988 (95% CI,
0.984–0.991), 0.982 (95% CI, 0.977–0.987), and 0.988 (95% CI,
0.984–0.992) for the classification of keratitis, cornea with other
abnormalities, and normal cornea, respectively.

In the smartphone dataset, the DenseNet121 algorithm still
showed the best performance in detecting keratitis, cornea with
other abnormalities, and normal cornea. The best algorithm
achieved an AUC of 0.967 (95% CI, 0.955–0.977), a sensitivity of
91.9% (95% CI, 89.4–94.4), and a specificity of 96.9% (95% CI,
95.6–98.2) in keratitis detection. The best algorithm discrimi-
nated cornea with other abnormalities from keratitis and normal
cornea with an AUC of 0.968 (95% CI, 0.958–0.977), a sensitivity
of 93.4% (95% CI, 91.2–95.6), and a specificity of 95.6% (95% CI,
94.1–97.2). The best algorithm discriminated normal cornea from
abnormal cornea (including keratitis and cornea with other
abnormalities) with an AUC of 0.977 (95% CI, 0.967–0.985), a
sensitivity of 94.8% (95% CI, 91.7–97.9), and a specificity of
96.9% (95% CI, 95.7–98.0).

The details on the performance of each algorithm (Dense-
Net121, Inception-v3, and ResNet50) in the external test datasets
are shown in Table 3. Compared to the reference standard of the
ZEH dataset, JEH dataset, NOC dataset, and smartphone dataset,
the unweighted Cohen’s kappa coefficients of the best algorithm
DenseNet121 were 0.933 (95% CI, 0.913–0.953), 0.947 (95% CI,
0.934–0.961), 0.926 (95% CI, 0.915–0.938), and 0.889 (95% CI,
0.866–0.913), respectively.

The performance of the best algorithm DenseNet121 in the
external test datasets with and without poor-quality images is
described in Supplementary Fig. 4. The AUCs of the best
algorithm in the datasets with poor-quality images were slightly
lower than the datasets without poor-quality images. Besides, a
total of 168 images were assigned to the category of mild keratitis.
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The best algorithm DenseNet121 achieved an accuracy of 92.3%
(155/168) in identifying mild keratitis.

Classification errors. In both internal and external test datasets, a
total of 346 images (4.3% of the 7976 images) had discordant
findings between the deep learning system and the reference
standard. In the category of keratitis (3359), 87 images (2.6%)
were misclassified by the system as cornea with other abnorm-
alities, and 31 images (0.9%) were misclassified as the normal
cornea. For the keratitis incorrectly classified as cornea with other
abnormalities, 56.3% (49/87) images showed keratitis with cornea
neovascularization. These cases often have similar features of the
pterygium, and it might be a possible contributor for this mis-
classification. For the keratitis misclassified as the normal cornea,

54.8% (17/31) images were underexposed, affecting the clarity of
the lesions. In the category of cornea with other abnormalities
(2056 images), 77 images (3.8%) were misclassified by the system
as keratitis and 44 images (2.1%) were misclassified as normal
cornea. For the cornea with other abnormalities misclassified as
keratitis, 76.6% (59/77) images showed leukoma and macula
which is similar to the features of the keratitis at the reparative
phase. For the cornea with other abnormalities misclassified as
the normal cornea, the most common reason was the small lesion
of keratitis close to the corneal limbus, which was shown in 50%
(22/44) images. In the category of normal cornea (2,561 images),
40 images (1.6%) were misclassified by the system as keratitis and
67 images (2.6%) were misclassified as cornea with other
abnormalities. For the normal cornea incorrectly classified as
keratitis and cornea with other abnormalities, over half of images

Keratitis

DenseNet121 ResNet50Inception-v3

lamroNsrehtO

a

b

c

Fig. 1 Performance of deep learning algorithms in the internal test dataset from Ningbo Eye Hospital. a Visualization by t-distributed stochastic
neighbor embedding (t-SNE) of the separability for the features learned by deep learning algorithms. Different colored point clouds represent the different
categories. b Confusion matrices describing the accuracies of three deep learning algorithms. c Receiver operating characteristic curves indicating the
performance of each algorithm for detecting keratitis, cornea with other abnormalities, and normal cornea. “Normal” indicates normal cornea. “Others”
indicates cornea with other abnormalities.
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(57.9%, 62/107) had cataracts. The appearance of cataract in a
two-dimensional image often resembles that of some keratitis and
leukoma located at the center of the cornea. The details regarding
classification errors by the deep learning system are described in
Supplementary Fig. 3. Typical examples of misclassified images
are shown in Fig. 3.

The relationship between the misclassification rates and
predicted probability values of the best algorithm DenseNet121
was shown in Supplementary Fig. 5, which indicated that the
misclassification rates of each category and total misclassification
rates both increased with the decline of the predicted probability
values. When the predicted probabilities are greater than 0.866,
the misclassification rates for all categories are less than 3%.
When the probabilities are less than 0.598, the misclassification
rates of the normal cornea are about 12% and the misclassifica-
tion rates of the other two categories are greater than 20%. As our
model is a three-category classification model, the lowest
predicted probability value of the model’s output is greater
than 0.33.

Heatmaps. To visualize the regions contributing most to the
system, we generated a heatmap that superimposed a visualiza-
tion layer at the end of the convolutional neural network (CNN).
For abnormal cornea findings (including keratitis and cornea
with other abnormalities), heatmaps effectively highlighted the
lesion regions. For normal cornea, heatmaps displayed high-
lighted visualization on the region of the cornea. Typical exam-
ples of the heatmaps for keratitis, cornea with other
abnormalities, and normal cornea are presented in Fig. 4.

Comparison of the deep learning system against corneal spe-
cialists. In the ZEH dataset, for the classification of keratitis,
cornea with other abnormalities, and normal cornea, the cornea
specialist with 3 years of experience achieved accuracies of 96.2%
(95.0–97.5), 95.2% (93.8–96.5), and 98.3% (97.4–99.1), respec-
tively, and the senior cornea specialist with 6 years of experience
achieved accuracies of 97.3% (96.3–98.3), 96.6% (95.4–97.7), and
98.6% (97.8–99.4), respectively, while the deep learning system
achieved accuracies of 96.7% (95.5–97.8), 96.3% (95.1–97.5), and
98.2% (97.3–99.0), respectively. The performance of our system is
comparable to that of the cornea specialists (På 0.05) (Supple-
mentary Table 1).

Discussion
In this study, our purpose was to evaluate the performance of a
deep learning system to detect keratitis from slit-lamp images
taken at multiple clinical institutions using different commercially
available digital slit-lamp cameras. Our main finding was that the
system based on deep learning neural networks could dis-
criminate among keratitis, cornea with other abnormalities, and
normal cornea and the DenseNet121 algorithm had the best
performance. In our three external test datasets consisting of slit-
lamp images, the sensitivity for detecting keratitis was 96.0–97.7%
and the specificity was 96.7–98.2%, which demonstrated the
broad generalizability of our system. In addition, the unweighted
Cohen’s Kappa coefficients showed a high agreement between the
outcomes of the deep learning system and the reference standard
(all over 0.88), further substantiating the effectiveness of our
system. Moreover, our system exhibited comparable performance
to that of cornea specialists in the classification of keratitis, cornea
with other abnormalities, and normal cornea.

In less developed communities, corneal blindness is associated
with older age, the lack of education, and being occupied in
farming and outdoor jobs12,23. People there show little knowledge
and awareness about keratitis and few of them choose to go to the
hospital when they have symptoms of keratitis (e.g., eye pain and
red eyes)4,24. Patients usually present for treatment only after the
corneal ulcer is well established and visual acuity is severely
compromised4,25. In addition, less eye care service in these
regions (low ratio of eye doctors per 10,000 inhabitants) is
another important reason that prevents patients with keratitis
from visiting eye doctors in a timely manner11,12,23. Therefore,
the corneal blindness rate in these underserved communities is
often high. As an automated screening tool, the system developed
in this study can be applied in the aforementioned communities
for identifying the keratitis at an early stage and providing a
timely referral for the positive cases, which has the potential to
prevent corneal blindness caused by keratitis.

For the cornea images that were captured by a smartphone
with super macro mode, our system still performed well in
detecting keratitis, cornea with other abnormalities, and normal
cornea (all accuracies over 94%). This result indicates that we
have the potential to apply our system to smartphones, which
would be a cost-effective and convenient procedure for the early
detection of keratitis, making it especially suitable for the high-
risk people, such as farmers who live in resource-limited settings
and the people who often wear contact lens4,26,27.

Table 2 Performance of three deep learning algorithms in the internal test dataset.

One-vs.-rest classification NEH internal test dataset

Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Keratitis vs. others+ normal
DenseNet121 97.7% (96.4–99.1) 98.2% (97.1–99.4) 98.0% (97.1–98.9)
Inception-v3 95.0% (93.1–97.0) 98.4% (97.3–99.5) 96.8% (95.6–97.9)
ResNet50 96.7% (95.1–98.3) 95.0% (93.1–96.9) 95.8% (94.6–97.1)

Others vs. keratitis+ normal
DenseNet121 94.6% (90.7–98.5) 98.4% (97.5–99.2) 97.9% (97.0–98.8)
Inception-v3 93.1% (88.7–97.4) 97.2% (96.1–98.3) 96.7% (95.5–97.8)
ResNet50 81.5% (74.9–88.2) 97.5% (96.5–98.6) 95.4% (94.1–96.7)

Normal vs. keratitis+ others
DenseNet121 98.4% (97.1–99.7) 99.8% (99.5–100) 99.3% (98.8–99.8)
Inception-v3 98.7% (97.5–99.8) 99.0% (98.2–99.8) 98.9% (98.2–99.5)
ResNet50 97.1% (95.3–98.8) 99.2% (98.5–99.9) 98.4% (97.6–99.2)

“Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. NEH, Ningbo Eye Hospital. CI, confidence interval.
NEH Ningbo Eye Hospital, CI confidence interval.
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Keratitis Others Normal
a. ZEH

Keratitis Others Normal
b. JEH

Keratitis Others Normal

c. NOC

Keratitis Others Normal
d. Smartphone

Fig. 2 Receiver operating characteristic curves of three deep learning algorithms in the external test datasets. a Zhejiang Eye Hospital (ZEH) dataset. b
Jiangdong Eye Hospital (JEH) dataset. c Ningbo Ophthalmic Center (NOC) dataset. d “Smartphone” indicates the smartphone dataset. “Normal” indicates
normal cornea. “Others” indicates cornea with other abnormalities.
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Keratitis, especially microbial keratitis, is an ophthalmic
emergency that requires immediate attention because it can
progress rapidly, even results in blindness9,28,29. The faster
patients receive treatment, the less likely they are to have serious
and long-lasting complications29. Therefore, our system is set to
inform patients to visit ophthalmologists immediately if their
cornea images are identified to have keratitis. For the image of
other cornea abnormalities, our system will advise the corre-
sponding patients to make an appointment with ophthalmolo-
gists to clarify whether they need further examination and
treatment. The workflow of our system is described in Fig. 5.

Recently, several reports of automated approaches for keratitis
detection have been published. Gu et al.30 established a deep
learning system that could detect keratitis with an AUC of 0.93 in
510 slit-lamp images. Kuo et al.31 used a deep learning approach
for discerning fungal keratitis based on 288 corneal photographs,
reporting an AUC of 0.65. Loo et al.32 proposed a deep learning-
based algorithm to identify and segment ocular structures and
microbial keratitis biomarkers on slit-lamp images and the Dice
similarity coefficients of the algorithm for all regions of interests
ranged from 0.62 to 0.85 on 133 eyes. Lv et al.33 established an
intelligent system based on deep learning for automatically
diagnosing fungal keratitis using 2088 in vivo confocal micro-
scopy images and their system reached an accuracy of 96.2% in
detecting fungal hyphae. When compared to the previous studies,
our study had a number of important features. First, for the
screening purpose, we established a robust deep learning system
that could automatically detect keratitis and other cornea
abnormalities from both slit-lamp images (all AUCs over 0.98)
and smartphone images (all AUCs over 0.96). Second, to enhance
the performance of our system, the datasets that we utilized to
train and verify the system were substantially larger (13,557
images from 7988 individuals) than those of previous studies.
Finally, our datasets were acquired at four clinical centers with
different types of cameras and thereby were more representative
of data in the real world.

To make the output of our deep learning system interpretable,
heatmaps were generated to visualize where the system attended
to for the final decisions. In the heatmaps of keratitis and other
cornea abnormalities, the regions of cornea lesions were high-
lighted. In the heatmaps of normal cornea, the highlighted region
was colocalized with almost the entire cornea region. This
interpretability feature of our system could further promote its
application in real-world settings as ophthalmologists can
understand how the final output is made by the system.

Although our system had robust performance, misclassification
still existed. The relationship between the misclassification rate
and predicted probability of the system was analyzed and the
results indicated that the lower the predicted probability is, the
higher the misclassification rate is. Therefore, the image with a
low predicted probability value needs the attention of a cornea
specialist. An ideal AI system should minimize the number of
false results. We expect more studies to investigate how this
happened and to find strategies to minimize errors.

Our study has several limitations. First, two-dimensional
images rather than three-dimensional images were used to train
the deep learning system, thus making a few misclassifications
due to the image lacking stereoscopic quality. For example, in
two-dimensional images, some normal cornea images with cat-
aract were misclassified as keratitis probably because the white
cloudy area of keratitis in some cases appeared in the center of the
cornea, which was similar to the appearance of the cataract with
the normal cornea. Second, our system cannot make a specific
diagnosis based on a slit-lamp image or a smartphone image.
Notably, for the screening purpose, it is more reasonable and
reliable to detect keratitis instead of specifying the type of keratitisT
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Fig. 3 Typical examples of misclassified images by the deep learning system. a Images of “keratitis” incorrectly classified as “cornea with other
abnormalities”. b Images of “keratitis” incorrectly classified as “normal cornea”. c Images of “cornea with other abnormalities” incorrectly classified as
“keratitis”. d Images of “cornea with other abnormalities” incorrectly classified as “normal cornea”. e Images of “normal cornea” incorrectly classified as
“keratitis”. f Images of “normal cornea” incorrectly classified as “cornea with other abnormalities”.
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only based on an image without considering other clinical
information (e.g., age, predisposing factors, and medical history)
and examination7. In addition, the case with keratitis infected by
multiple microbes (e.g., bacteria, fungus, and ameba) is not
uncommon in clinics, which is difficult to be diagnosed merely
through a cornea image. Third, due to a limited number of poor-
quality images in the development dataset, this study did not
develop a deep learning-based image quality control system to
detect and filter out poor-quality images, which may negatively
affect the subsequent AI diagnostic systems. Our research group
will keep collecting more poor-quality images and further develop
an independent image quality control system in the near future.
Fourth, as eyes with keratitis in a subclinical stage often don’t
show clinical manifestations (signs and/or symptoms), patients
with subclinical keratitis rarely visit eye doctors, making the
collection of subclinical keratitis images difficult. Therefore, this
study did not evaluate the performance of the system in

identifying subclinical keratitis due to the lack of subclinical
keratitis images. Instead, we evaluated the performance of our
system in detecting mild keratitis, which could usually be effec-
tively treated without loss of vision.

In conclusion, we developed a deep learning system that could
accurately detect keratitis, cornea with other abnormalities, and
normal cornea from both slit-lamp and smartphone images. As a
preliminary screening tool, our system has the high potential to
be applied to digital slit-lamp cameras and smartphones with
super macro mode for the early diagnosis of keratitis in resource-
limited settings, reducing the incidence of corneal blindness.

Methods
Image datasets. In this study, a total of 7120 slit-lamp images (2584 × 2000 pixels
in JPG format) that were consecutively collected from 3568 individuals at NEH
between January 2017 and March 2020 were employed to develop a deep learning
system. The NEH dataset included individuals who presented for ocular surface

Fig. 4 Heatmaps demonstrating typical findings, shown in pairs of original images (left) and corresponding heatmaps (right) for each category. a
Filamentary keratitis. b Bacterial keratitis. c Pterygium. d Leukoma. e, f Normal cornea.

Fig. 5 Workflow of the deep learning system in clinics for detecting abnormal cornea findings. Patients with keratitis detected by the system are advised
to visit ophthalmologists immediately. Patients with other cornea abnormalities detected by the system are advised to make an appointment with
ophthalmologists.
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disease examination, ophthalmology consultations, and routine ophthalmic health
evaluations. The images were captured under diffused illumination using a digital
slit-lamp camera.

Three additional datasets encompassing 6925 slit-lamp images drawn from
three other institutions were utilized to externally test the system. One was
collected from the outpatient clinics, inpatient department, and dry eye center at
ZEH, consisting of 1182 images (2592 × 1728 pixels in JPG format) from 656
individuals; one was collected from outpatient clinics and health screening center at
JEH, consisting of 2357 images (5784 × 3456 pixels in JPG format) from 1232
individuals; and the remaining one was collected from the outpatient clinics and
inpatient department at NOC, consisting of 3386 images (1740 × 1536 pixels in
PNG format) from 1849 individuals.

Besides, 1303 smartphone-based cornea images (3085 × 2314 pixels in JPG
format) from 683 individuals were collected as one of the external test datasets.
This smartphone dataset was derived from Wenzhou Eye Study which aimed to
detect ocular surface diseases using smartphones. These images were captured
using the super macro mode of HUAWEI P30 through the following standard
steps: (1) Open super macro mode and camera flash; (2) Put the rear camera 2–3
cm in front of the cornea; (3) Ask individuals to look straight ahead and open their
both eyes as wide as possible; (4) Take an image when the focus is on the cornea.
Typical examples of the smartphone-based cornea images were shown in Fig. 6.

All deidentified, unaltered images (size, 1–6 megabytes per image) were
transferred to research investigators for inclusion in the study. The study was
approved by the Institution Review Board of NEH (identifier, 2020-qtky-017) and
adhered to the principles of the Declaration of Helsinki. Informed consent was
exempted, due to the retrospective nature of the data acquisition and the use of
deidentified images.

Reference standard and image classification. A specific diagnosis provided by
cornea specialists for each slit-lamp image was based on the clinical manifestations,
corneal examination (e.g., fluorescein staining of the cornea, corneal confocal
microscopy, and specular microscopy), laboratory methods (e.g., corneal scraping
smear examination, the culture of corneal samples, PCR, and genetic analyses), and
follow-up visits. The diagnosis based on these medical records was considered as
the reference standard of this research. Our ophthalmologists (ZL and KC) inde-
pendently reviewed all data in detail before any analyses and validated that each
image was correctly matched to a specific individual. Images without sufficient
evidence to determine a diagnosis were excluded from the study.

All images with sufficient diagnostic certainty were screened for quality control.
Poor-quality and unreadable images were excluded. The qualified images were
classified by the study steering committee into three categories, consistent with the
reference diagnosis: keratitis caused by infectious and/or noninfectious factors,
cornea with other abnormalities, and normal cornea. Infectious keratitis included
bacterial keratitis, fungal keratitis, viral keratitis, parasitic keratitis, etc.
Noninfectious keratitis included ultraviolet keratitis, inflammation from eye

injuries or chemicals, autoimmune keratitis, etc. The cornea with other
abnormalities includes corneal dystrophies, corneal degeneration, corneal tumors,
pterygium, etc.

Image preprocessing. During the image preprocessing phase, standardization was
performed to downsize the image to 224 × 224 pixels and normalize the pixel
values from 0 to 1. Afterward, data augmentation techniques were applied to
increase the diversity of the dataset and thus alleviate the overfitting problem in the
deep learning process. The new samples were generated through the simple
transformations of original images, which was consistent with “real-world”
acquisition conditions. Random cropping, horizontal and vertical flipping, and
rotations were applied to the images of the training dataset to increase the sample
size to six times the original size (from 4526 to 27,156).

Development and evaluation of the deep learning system. The slit-lamp images
drawn from the NEH dataset were randomly divided (7:1.5:1.5) into training,
validation, and test datasets. Images from the same individual were assigned to only
one same set for preventing leakage and biased assessment of performance. The
training and validation datasets were used to develop the system and the test
dataset was used to evaluate the performance of the system.

For obtaining the best deep learning model to classify cornea into one of the
three categories: keratitis, cornea with other abnormalities, and normal cornea,
three state-of-the-art CNN architectures (DenseNet121, Inception-v3, and
ResNet50) were investigated in this study. Weights pre-trained for ImageNet
classification were employed to initialize the CNN architectures34.

Deep learning models were trained using PyTorch (version 1.6.0) as a backend.
The adaptive moment estimation (ADAM) optimizer with a 0.001 initial learning
rate, β1 of 0.9, β2 of 0.999, and weight decay of 1e-4 was used. Each model was
trained for 80 epochs. During the training process, validation loss was assessed on
the validation dataset after each epoch and used as a reference for model selection.
Each time the validation loss decreased, a checkpoint saved the model state and
corresponding weight matrix. The model state with the lowest validation loss was
saved as the final state of the model for use on the test dataset.

The diagnostic performance of the three-category classification model was then
evaluated on four independent external test datasets. The process of the
development and evaluation of the deep learning system is illustrated in Fig. 7. The
t-SNE technique was used to display the embedding features of each category
learned by the deep learning model in a two-dimensional space35. In addition, the
performance of the model on the external test datasets that included poor-quality
images was also assessed.

As detecting keratitis at an early stage (mild keratitis) when clinical features
were not obvious was critical for improving vision prognosis, all the mild keratitis
images were screened out manually from external test datasets in terms of the
criteria used to grade the severity of keratitis cases (mild: lesion outside central 4
mm, <2mm in diameter)36,37 and the performance of the model in identifying
mild keratitis was evaluated.

Visualization heatmap. Gradient-weighted Class Activation Mapping (Grad-
CAM) technique was employed to produce “visual explanations” for decisions from
the system. This technique uses the gradients of any target concept, flowing into the
last convolutional layer to produce a localization map highlighting important areas
in the image for predicting the concept38. Redder regions represent more sig-
nificant features of the system’s classification. Using this approach, the heatmap
was generated to illustrate the rationale of the deep learning system on the dis-
crimination among keratitis, cornea with other abnormalities, and normal cornea.

Characteristics of misclassification by the deep learning system. In a post-hoc
analysis, a senior corneal specialist reviewed all misclassified images made by the
deep learning system. To interpret these discrepancies, the possible reasons for the
misclassification were analyzed and documented based on the observed char-
acteristics from the images. Besides, the relationship between the misclassification
rate and predicted probability of the system was investigated.

Deep learning versus cornea specialists. To assess our deep learning system in
the context of keratitis detection, we recruited two cornea specialists who had 3 and
6 years of clinical experience. The ZEH dataset was employed to compare the
performance of the best system (DenseNet121) to that of corneal specialists with
the reference standard. They independently classified each image into one of the
following three categories: keratitis, cornea with other abnormalities, and normal
cornea. Notably, to reflect the level of the cornea specialists in normal clinical
practices, they were not told that they competed against the system to avoid bias
from the competition.

Statistical analysis. The performance of the deep learning model for the classi-
fication of keratitis, cornea with other abnormalities, and normal cornea was
evaluated by utilizing the one-versus-rest strategy and calculating the sensitivity,
specificity, accuracy, and AUC. Statistical analyses were conducted using Python
3.7.8 (Wilmington, Delaware, USA). The 95% CIs for sensitivity, specificity, and

c Normal cornea 

b Cornea with other abnormities

a Keratitis

Fig. 6 Typical examples of the smartphone-based cornea images. a
Keratitis. b Cornea with other abnormalities: the left image shows cornea
dystrophy, the middle image shows leukoma, and the right image shows
pterygium. c Normal cornea.
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accuracy were calculated with the Wilson Score approach using a Statsmodels
package (version 0.11.1), and for AUC, using Empirical Bootstrap with 1000
replicates. We plotted the ROC curves to show the ability of the system. The ROC
curve was created by plotting the ratio of true positive cases (sensitivity) against the
ratio of false-positive cases (1-specificity) using the packages of Scikit-learn (ver-
sion 0.23.2) and Matplotlib (version 3.3.1). A larger area under the ROC curve
indicated better performance. Unweighted Cohen’s kappa coefficients were calcu-
lated to compare the results of the system to the reference standard. The differences
in the sensitivities, specificities, and accuracies between the system and corneal
specialists were analyzed using the McNemar test. All statistical tests were two-
sided with a significance level of 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated and/or analyzed during the current study are available upon
reasonable request from the corresponding author. Correspondence and requests for data
materials should be addressed to WC (chenwei@eye.ac.cn). The data can be accessed
only for research purposes. Researchers interested in using our data must provide a
summary of the research they intend to conduct. The reviews will be completed within
2 weeks and then a decision will be sent to the applicant. The data are not publicly
available due to hospital regulation restrictions.

Code availability
The code and example data used in this study can be accessed at GitHub (https://github.
com/jiangjiewei/Keratitis-Source).
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