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In today’s world, mass-media and online social networks present
us with unprecedented exposure to second-hand, vicarious expe-
riences and thereby the chance of forming associations between
previously innocuous events (e.g., being in a subway station) and
aversive outcomes (e.g., footage or verbal reports from a violent
terrorist attack) without direct experience. Such social threat, or
fear, learning can have dramatic consequences, as manifested in
acute stress symptoms and maladaptive fears. However, most re-
search has so far focused on socially acquired threat responses
that are expressed as increased arousal rather than active behav-
ior. In three experiments (n = 120), we examined the effect of
indirect experiences on behaviors by establishing a link between
social threat learning and instrumental decision making. We con-
trasted learning from direct experience (i.e., Pavlovian condition-
ing) (experiment 1) against two common forms of social threat
learning—social observation (experiment 2) and verbal instruction
(experiment 3)—and how this learning transferred to subsequent
instrumental decision making using behavioral experiments and
computational modeling. We found that both types of social
threat learning transfer to decision making in a strong and surpris-
ingly inflexible manner. Notably, computational modeling indi-
cated that the transfer of observational and instructed threat
learning involved different computational mechanisms. Our re-
sults demonstrate the strong influence of others’ expressions of
fear on one’s own decisions and have important implications for
understanding both healthy and pathological human behaviors
resulting from the indirect exposure to threatening events.
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Pavlovian threat conditioning (1), based on the formation of
predictive associations between personally experienced

stimuli, has long been the standard model of how humans ac-
quire threat associations and learn to avoid threatening and fear-
inducing outcomes (2). However, in today’s ultra-social world,
mass-media and online social networks expose us to unprecedented
quantities of second-hand violence (3) and thereby the chance of
indirectly forming threat associations between previously innocuous
situations (e.g., a subway station) and unpleasant outcomes (e.g.,
newsreels including cell phone videos of bloody and screaming
people after a terrorist attack) without direct experience. Such
media-based exposure to violence and trauma is now known to be
associated with significant negative psychological outcomes (3). For
example, a recent study showed that extended exposure to television
newsreels from the Boston Marathon bombings resulted in higher
levels of acute stress and PTSD-like symptoms than actually having
personally experienced the bombings (4).
This sensitivity to second-hand forms of threat suggests that

modern media piggyback on a well-established capacity for social
learning, an adaption that allows the organism to avoid the
dangers, such as predation, associated with individual learning
(5–7). This capacity may cut across species. For example, rhesus
monkeys who observed conspecifics behaving fearfully toward
snakes readily acquired fear of snakes (8). Although rapid progress

has been made toward understanding the mechanisms underlying
social threat learning processes (9, 10), these studies have typically
focused on passive emotional arousal responses (as in Pavlovian
conditioning), and the relevance of such learning for human in-
strumental decision making is therefore unknown. In real life, threat
associations that are socially acquired are likely to shape behavior:
we might, for example, decide to avoid a certain subway station
because we saw it paired with threat reactions on the news.
Here, we describe this crucial link between social threat learn-

ing and instrumental decision making and provide a mechanistic
framework for understanding how different types of social infor-
mation (e.g., video vs. verbal) influence behavior. To experimen-
tally model the social threat learning, we used well-validated
paradigms based on threat conditioning (11, 12) rather than more
naturalistic material (e.g., actual news reels), as this allowed for
a high degree of experimental control while still capturing the
“one-to-many” transmission characteristic of mass-media and
social networks.
We contrasted the influence of threat learning from direct

aversive experience (Pavlovian threat conditioning, experiment
1) against two common forms of social threat learning in human
culture—social observation (observational threat learning, ex-
periment 2) and verbal instruction (instructed threat learning,
experiment 3)—on subsequent decision making using behavioral
experiments and computational modeling. Together, these types
of learning correspond to the three archetypal pathways to hu-
man fears and phobias as described in the clinical literature (13–
15) and reliably induce conditioned physiological and neural
threat responses in humans (11).
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In today’s world, indirect exposure to threatening situations is
more common than ever, as illustrated by footage of terror and
disaster in social media. How do such social threat learning
experiences shape our decisions? We found that learning about
threats from both observation and verbal information strongly
influenced decision making. As with learning from our own ex-
perience, this influence could be either adaptive or maladaptive
depending on whether the social information provided accu-
rate expectations about the environment. Our findings can help
explain both adaptive and pathological behaviors resulting from
the indirect exposure to threatening events.
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Despite their apparent similarity, the mechanisms underly-
ing the two types of social threat learning—observational and
instructed—might be very different (11). While learning via obser-
vation of conspecifics is phylogenetically widespread and conserved
(9), linguistically mediated learning is unique to humans. Indeed,
instruction can flexibly modify learned associations. For example,
verbal instructions about changed threat contingencies can cause
rapid updating of conditioned physiological responses (16, 17),
which is reflected by prefrontal cortex activity (while, in contrast, the
amygdala tracks direct experience) (17). Misleading advice, how-
ever, can result in long-lasting maladaptive influences on reward-
based decision making, which are thought to be underpinned by
prefrontal and hippocampal influences on the striatum (18).
Whether such putative differences in the mechanisms underlying
the two forms of social threat learning are expressed as different
influences on decision making is currently unknown.
Computational learning theory provides a framework for pre-

dicting how different learning mechanisms should affect decision
making. An influential account posits that behavior is controlled by
at least two interacting valuation systems (henceforth “controllers”)
with distinct properties (19–22). The Pavlovian controller assigns
value to a limited number of behaviors, such as avoidance, in re-
sponse to biologically relevant stimuli (e.g., pain) (20, 22, 23). In
classical conditioning, the Pavlovian controller learns to predict the
outcome [the unconditioned stimulus (US), e.g., an electric shock]
from a cue [the conditioned stimulus (CS)]. Characteristic condi-
tioned responses (such as increased arousal) reflect these predic-
tions (19). In contrast, the instrumental controller flexibly assigns
value to arbitrary actions based on their reinforcement history to
guide adaptive selection of the most appropriate action (21). The
interaction of these systems is revealed, for example, in the phe-
nomenon of Pavlovian Instrumental Transfer (PIT) (24–27), where
the presentation of a Pavlovian CS comes to bias instrumental be-
havior. Importantly, if the response tendency of the Pavlovian
controller (e.g., avoidance) and the optimal instrumental action
are a mismatch, this interaction can cause maladaptive conse-
quences (20, 28).
Notably, recent studies have demonstrated strong similarities

in the neural and computational mechanisms involved in Pav-
lovian and observational threat learning (10), suggesting that
these forms of learning are based on the same computational
system (9, 11). By extension, biases arising from the Pavlovian
controller might transfer to decisions involving observationally
conditioned cues. We therefore predicted that observational
threat learning, in analogy to direct Pavlovian conditioning (29),
would transfer to later instrumental decision making. In contrast,
instructed threat conditioning, which by definition entails an
explicit “model” of the environment (30, 31), is thought to be
based on mechanisms that are distinct from basic Pavlovian
computations (11, 31–33). We therefore expected that threat-
ening information learned via verbal instruction would be more
flexibly adjusted to match changing contingencies, as observed in
learning about both threats and rewards (17, 34, 35). We tested
these predictions in three main experiments, and several control
experiments, using a novel version of a PIT task (27, 29).

Results
In our experiments, participants first underwent a conditioning
block (with two cues, yellow and blue shapes serving as CSs) and
subsequently an instrumental decision-making block, involving
the same two cues as the conditioning block (Fig. 1). The deci-
sions were probabilistically punished with electric shocks. For
half of the participants, the environment was stable: the same
cue was most likely to be paired with shocks in both parts of the
experiment (No Change groups). For the other half, the envi-
ronment changed: the cue most likely to be paired with shocks
differed between the two parts of the experiment (Change
groups) (Fig. 1A). Our experiments build on the logic of PIT

paradigms, but differ in several important ways from previous
studies. These studies typically either measured the Pavlovian
influence in the absence of external reinforcement (i.e., in ex-
tinction) (25–27, 36) or arranged the task so that specific actions
(e.g., withholding a response to get a reward) revealed the
Pavlovian influence indirectly (22). In contrast, manipulating
whether Pavlovian associations were reliable or outdated allowed
us to use a standard probabilistic two-choice decision-making task
with tangible reinforcement (electric shocks) that provided a
direct and general measure of the maladaptiveness/adaptiveness
of Pavlovian transfer. To derive clear predictions for when and
how learned Pavlovian associations should influence decision-
making, we first developed a simple formal model (see SI Appendix
available online for details), building on previous models of PIT
(20, 28, 36),
Our competing systems model assumes that the Pavlovian and

instrumental controllers learn independently (Fig. 2) (20, 36).
The Pavlovian controller learns about the predictive value of
cues (e.g., CSs) during conditioning, and the instrumental con-
troller learns about the expected value of choices (e.g., between
the same CSs) during decision making. Finally, the learned cue
values (VPavlovian and QInstrumental) from both systems compete to
determine choices because the decision cues have both Pavlovian
and instrumental values. The relative influence of the Pavlovian
controller is determined by a weight (ω, 0 ≤ ω ≤ 1) (20). If this
weight is positive, the Pavlovian value associated with a cue will
bias the probability of choosing it. The model predicts that
changing the environment, as for the Change groups in our ex-
perimental task, will result in impaired decision making (Fig.
2C), as the Pavlovian associations then are outdated, relative to a
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Fig. 1. Experimental design. We conducted three independent experi-
ments, in which a conditioning block (A–C) was followed by a decision
making block (D and E). The conditioning block of the experiments con-
sisted of (A) Pavlovian (classical) threat conditioning (experiment 1), (B)
observational threat learning (experiment 2), or (C) instructed threat
learning (experiment 3). In the conditioning block, one stimulus (CS+), but
not another (CS−), was paired with shocks for the participant (experiment 1),
for another person (experiment 2), or verbally associated with the possibility
of shock (experiment 3) (Methods). Next, participants made 70 decisions
between the same two cues (CS+, CS−), which were both probabilistically
punished with electric shocks to the participants (see SI Appendix, Fig. S1 for
a trial timeline). In each experiment, the participants were divided into two
subgroups. The shock probabilities differed between the (D) No Change
groups, and (E) the Change groups. In the No Change groups, the CS+ from
the conditioning block had a higher probability of being followed by shocks
in the Transfer phase of the decision making block, while in the Change
groups, the CS+ had a lower probability of being followed by shocks. After
35 trials, the outcome contingences reversed (Reversal phase). CS, condi-
tioned stimulus.
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stable environment (see SI Appendix for data and simulations
assessing the influence of Pavlovian transfer relative to a control
condition without conditioning preceding decision making).
Furthermore, because our implementation of the competing

systems model predicts that the magnitude of Pavlovian transfer
should be largely unchanged throughout the decision-making
block (SI Appendix), we included an additional experimental
manipulation that provided a strong test of this prediction: after
the first 35 decision trials (Transfer phase), the outcome prob-
abilities were suddenly reversed (Reversal phase). If the Pav-
lovian influence is constant, as predicted by the model, a reversal
of the contingencies should lead to a reversal of this influence
(see Fig. 2C for model-based predictions and SI Appendix, Figs.
S4 and S5). In contrast, if the underlying computational mech-
anisms are more flexible—which would be the case if, for ex-
ample, the same controller system were learned during both
conditioning and decision making—the reversal should attenu-
ate the difference between the groups (SI Appendix, Fig. S3,
shows how a one-system model predicts a diminishing difference
between groups during the transfer phase and no difference in
the reversal phase). Finally, the competing systems model also
provides a framework for interpreting differences between the
two types of social learning (observation vs. instruction). To this
end, we quantitatively compare the competing systems model
with previously established models of social influences on
decision making, which are based on non-Pavlovian mechanisms
(18, 34, 37).

Pavlovian Threat Conditioning Transfers to Decision making. The
first experiment (n = 40) verified that Pavlovian threat condi-
tioning transfers to decision making, which is required for eval-
uating the predictions about the transfer of social threat
learning. The participants first underwent Pavlovian (classical)
threat conditioning, where one (CS+), but not the other (CS−),
stimulus was followed by electric shocks. This procedure is the
quintessential example of Pavlovian learning in the aversive
domain. Skin-conductance responses (SCR), a standard measure

of autonomic arousal, demonstrated successful threat condi-
tioning [CS+ > CS−, one sample t test: t(38) = 2.33, P = 0.025].
To test the core prediction that Pavlovian threat learning

would transfer to decision making, we first focused on the per-
formance during the Transfer phase of the decision-making
block. As outlined (cf. Fig. 2C), our model (building on previous
PIT research) predicts that transfer of Pavlovian threat condi-
tioning should lead to impaired decision making (i.e., more
shocks) if the environment changes between the conditioning
and decision-making blocks. Indeed, the Change group had a
much decreased probability of making the optimal (with lowest
probability of shock) decision relative to the No Change group
[random-effects logistic regression: β = −1.28, SE = 0.34, z =
−3.81, P = 0.0001, 95% CI (−1.94, −0.62) (Fig. 3A)]. These re-
sults are predicted by previous work on PIT (25, 36) and thereby
validate our experimental model. In SI Appendix, we in addition
compare Pavlovian transfer to a control experiment without a
conditioning block preceding the decision making and find that
Pavlovian transfer has both beneficial (No Change group) and
maladaptive (Change group) effects on decision making relative
to this baseline. In other words, the relative difference between
the Change and No Change groups reflects the combined effect
of these influences.
Next, we tested the strong model prediction that the difference

between the Change and No Change groups would be reversed
when the outcome probabilities were reversed after the first 35
decision-making trials (Fig. 2C). As shown in Fig. 3A, the data
(bullet points) confirmed this prediction: the difference between
the No Change and Change groups reversed after the contin-
gency reversal [Group*Reversal interaction: χ2(1) = 6.86, P =
0.009, simple effects contrast Change > No Change in Transfer
phase: β = 0.62, SE = 0.34, z = 1.86, P = 0.06, 95% CI (−0.033,
1.29)]. The magnitude of the transfer was not explained by indi-
vidual differences in conditioned threat responses (SI Appendix).
To verify that these results cannot be accounted for sim-

ply by a difference in the expected values at the outset of the
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Fig. 2. Model framework for the influence of Pavlovian control on decision making. The structure of the competing systems model, involving a Pavlovian
and one instrumental controller. The controllers were implemented as simple, independent reinforcement learning algorithms (see SI Appendix for details).
(A) The Pavlovian controller learns to predict outcomes from cues during conditioning. (B) During decision making, the Pavlovian and instrumental controller
compete for control of behavior (see SI Appendix for details) because the decision cues have both Pavlovian and instrumental values. Only the instrumental
values are differentially updated based on the outcome of the decision. The Pavlovian values are updated together, which in practice results in an unchanged
Pavlovian influence during decision making (denoted by the dashed gray line). (C) Predictions of the competing systems model. A priori asymptotic model
predictions (SI Appendix) for the No Change and Change conditions. The Pavlovian weight ω was fixed to 0.5 (equal influence of both controllers on decision
making). The dashed vertical line denotes the reversal point. If Pavlovian associations transfer from the conditioning to the decision-making block, the model
predicts that the performance in Change groups will be reduced relative to the No Change group. After the reversal of the outcome probabilities (Reversal
phase), the model predicts that this group difference should be reversed.
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decision-making phase, we next turned to quantitative model
comparison. We contrasted the competing systems model with
the alternative models that postulated only one system that
learned during both conditioning and decision making (cf. SI
Appendix, Fig. S3). However, these models provided an inferior
quantitative account of the data, corroborating the involvement
of Pavlovian mechanisms (SI Appendix, Table S1).
Taken together, these results show that Pavlovian threat

learning transfers to decision making in line with theoretical
predictions and previous research. The results of experiment 1
thereby provide a baseline for evaluating Pavlovian transfer of
social threat learning to decision making.

Observational Threat Learning Transfers to Decision making. Having
established that Pavlovian threat conditioning transfers to
decision making as expected by PIT theory, we next compared
the two paradigmatic types of social threat learning—observa-
tional (experiment 2) and instructed learning (experiment 3)—
against this Pavlovian baseline.
In experiment 2 (n = 40), we tested our hypothesis that ob-

servational threat learning would transfer to, and thereby bias,
decision making in the same way as Pavlovian learning. Experi-
ment 2 was identical to experiment 1 apart from one key differ-
ence: instead of directly experiencing shocks during conditioning,
participants underwent a standard observational threat learning
procedure (12), where a video depicted how one (CS+), but not
the other (CS−), stimulus was followed by electric shocks to an-
other person, the demonstrator (Fig. 1A). Mean SCRs across the
conditioning block were higher during presentation of the social
CS+ than CS−, confirming social threat learning [one-sample
t test: t(38) = 2.36, P = 0.02, 95% CI (0.054, 0.7)].
We next tested our central prediction that observationally

learned threat associations would transfer to decision making. In
analogy to the analyses for experiment 1 (above), we first con-
trasted decision-making performance between the No Change
and Change groups. Mirroring the results from experiment 1,
transfer from observational threat learning to decision making
resulted in markedly impaired decision making when the envi-
ronment had changed, relative to if it was stable [β = −1.73, SE =
0.32, z = −5.38, P < 0.0001, 95% CI (−2.36, −1.1) (Fig. 4A)].
Accordingly, the Change group received 20.4% more shocks
during the Transfer phase than the No Change group (two-
sample Wilcox test: W = 295.5, P = 0.009) (see also SI Appendix
for comparison with a control experiment without a conditioning

phase preceding decision making). As for experiment 1, the
magnitude of the transfer was not explained by individual dif-
ferences in conditioned defensive responses (SI Appendix). How-
ever, individual differences in empathy with the demonstrator,
and the subjective unpleasantness of observing the demon-
strator receive electric shocks, slightly moderated transfer strength
(SI Appendix).
Finally, we tested the prediction that the effect of transfer

would be reversed after reversing the outcome contingencies
during decision making (cf. Fig. 2C) as in experiment 1. The data
agreed with this prediction [Group*Reversal interaction: χ2(1) =
18.54, P < 0.0001, simple effects contrast of Change > No
Change in the Reversal phase: β = 1.09, SE = 0.40, z = 2.72, P =
0.007, 95% CI (0.31, 1.88) (Fig. 4B)].
Moreover, in line with our hypothesis that Pavlovian and ob-

servational threat learning are driven by the same Pavlovian
controller, there were no reliable differences in the size of the
transfer effect [Group*Experiment interaction in Transfer phase:
χ2(1) = 1.39, P = 0.24] or its reversal [Group*Reversal*Experiment:
χ2(1) = 1.72, P = 0.19] between experiments 1 and 2. Quantitative
estimation of the Pavlovian weight (ω) parameter showed that it
was highly similar in both experiments [experiment 1: M = 0.49,
experiment 2: M = 0.5, t(76.13), P = 0.96] and in neither was
different from 0.5 (smallest P = 0.49). As for experiment 1, we
also used a quantitative model comparison to verify that these
results are not well described by a one-system model (SI Ap-
pendix, Table S2). Together, these results show how observa-
tionally acquired threat associations can transfer to, and thereby
bias, decision making.

Instructed Threat Learning Transfers to Decision making. In our third
experiment (n = 40), we tested how the second paradigmatic type
of social threat learning—instructed threat learning—influenced
subsequent decision making. We predicted that this type of social
threat learning would not transfer to decision making because it
is likely not based on the Pavlovian controller (11, 32).
At the start of the experiment, and before each trial, partici-

pants were instructed that one (CS+), but not the other (CS−),
cue would be followed by shocks. To avoid extinction of the
instructed threat expectancy, which is crucial for comparison
with experiment 2, participants were never exposed to the CS
cues during the conditioning block. Instead, they saw two control
stimuli (Methods and SI Appendix for control experiment 3B that

A B

Fig. 3. Pavlovian threat conditioning transfers to decision making (experi-
ment 1). (A) Probability of selecting the optimal action (i.e., CS with the
lowest probability of shock) for No Change and Change groups during the
decision-making block. Bullet points indicate the a priori predictions from
the competing systems model (SI Appendix). Error bars are 95% parameter
CI from the GLMM. (B) Higher fraction of optimal action selection during the
Transfer phase by No Change group (trials 1–35, Fig. 1) was reversed during
the Reversal phase (trials 36–70). The solid colored lines show the a priori
predictions from the competing systems model (SI Appendix).

A B

Fig. 4. Observational threat learning transfers to decision making (experi-
ment 2). (A) Probability of selecting the optimal action for No Change and
Change groups during the decision-making block (i.e., CS with the lowest
probability of shock). Bullet points indicate the a priori predictions from the
competing systems model (SI Appendix). Error bars are 95% parameter CI
from the GLMM. (B) As in experiment 1, the higher fraction of optimal ac-
tion selection during the Transfer phase (trials 1–35, Fig. 1) was reversed
during the Reversal phase (trials 36–70). The solid colored lines show the a
priori predictions from the competing systems model (SI Appendix).
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indicates that this design feature is important). In the subsequent
decision-making block, participants made choices between the
instructed CS cues as in experiments 1–2. In contrast to our
prediction, we observed a clear transfer [β = −1.56, SE = 0.32,
z = −4.85, P < 0.0001, 95% CI (−2.19, −0.93)] and reversal
[Group*Reversal: χ2(1) = 19.6, P < 0.0001] of instructed threat
learning to decision making (Fig. 5). The magnitude of these effects
was comparable to experiment 2 [Group*Reversal*Experiment:
χ2(1) = 0.22, P = 0.64]. In an additional control experiment, we
evaluated the effect of combining threat instruction and experi-
enced shocks (experiment 3C) and found results comparable to
experiment 3 (SI Appendix).

Computational Modeling Indicates That Observational and Instructed
Threat Learning Rest on Distinct Computational Mechanisms. Our
account predicts that the influence of observational threat
learning on decision making emerges from the competition be-
tween competing Pavlovian and instrumental controllers (Fig. 2),
while instructed threat learning might rest on other mechanisms
(17). The overt similarity in how observational and instructed
threat learning affects decision making might, in other words,
reflect the contribution of distinct underlying computational
mechanisms.
To test this, we compared the quantitative fit of the competing

systems model to a set of prominent previous models of how
social advice influences monetary decision making (as there are
no previous studies of transfer of social threat learning to
decision making). These models assume that advice either leads
to a more favorable processing of advice-congruent outcomes
[outcome bonus (34, 37), instructed learning D (18), and con-
firmation bias (35)] or acts as a prior at the outset of decision
making [prior model (34, 37)]. In line with our predictions and
preceding results (e.g., Figs. 4 and 5), quantitative model com-
parison showed that the competing systems model explained the
transfer of observational threat learning to decision making
(experiment 2) better than these alternative models (Fig. 6A).
In contrast, the influence of instructed threat learning on
decision making was best explained by a model where instruction
functions as a prior on instrumental action values (Fig. 6B; see SI
Appendix for converging results using Bayesian model compari-
son and additional details about, and analysis of, the prior
model) (37). In the prior model, the threat instruction directly
(adjusted by a free parameter) determines the instrumental ac-
tion values at the outset of the decision-making block, so that the
cues have a differential value in the absence of direct experience.

In turn, this promotes avoidance of the CS+ cue. This result was
replicated in experiment 3B (SI Appendix). Together, these re-
sults indicate that, despite similar effects on average behavior,
the two forms of social threat learning rest on distinct underlying
computational mechanisms.

Discussion
We investigated if, and how, socially acquired threat associa-
tions would transfer to instrumental decision making. We dem-
onstrate that associations acquired both by social observation
(e.g., through video) and by instruction (e.g., through spoken
language) strongly transfers to decision making. Notably, this
transfer led to maladaptive decisions when socially acquired as-
sociations were outdated rather than valid. Our findings present
documentation of how social threat learning transfers to human
decision making and present the extension of the concept of PIT
to social learning.
While the two types of social threat learning had similar ef-

fects on decision making, our modeling results indicate that this
similarity arose from two distinct computational mechanisms.
The transfer of observational threat learning to decision making
could, in the same way as Pavlovian conditioning, be explained
by competition between a Pavlovian and an instrumental con-
troller system (Fig. 2). In contrast, model comparison suggested
that instructed threat functioned as a prior on the instrumental
controller in a similar manner to verbal advice (34, 35, 37). This
difference in underlying mechanisms might be crucial for un-
derstanding how the two types of social threat learning influence
behavior and, in extension, how this influence can be counter-
acted. For example, whereas the competing systems model sug-
gests that Pavlovian counterconditioning or extinction is needed
for overcoming the bias elicited by observational threat learning,
the prior model implies that sufficient divergent instrumental
experience is enough for overcoming the influence of instruction
on decision making. Evaluating such predictions is an important
goal for future research.
Our findings confirm that social threat learning generalizes

beyond the passive expression of emotional responses, as has

A B

Fig. 5. Instructed threat learning transfers to decision making (experiment
3). (A) Probability of selecting the optimal action for No Change and Change
groups during the decision-making block. Bullet points indicate the a priori
predictions from the competing systems model (SI Appendix). Error bars are
95% parameter CI from the GLMMmodel. (B) The higher fraction of optimal
action selection during the Transfer phase (trials 1–35, Fig. 1) was reversed
during the Reversal phase (trials 36–70). The solid colored lines show the a
priori predictions from the competing systems model (SI Appendix).
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Fig. 6. Model comparison demonstrates that observational and instructed
threat learning rest on distinct computational mechanisms. (A) Observa-
tional threat learning (experiment 2). Model comparison showed that the
competing systems model explained the results of experiment 2 better than
the alternative social learning models (derived from the literature), which
did not posit a competition between systems. (B) Instructed threat learning
(experiment 3). In contrast to observational threat learning (experiment 2),
model comparison showed that a model where instruction functions as a
prior on decision making explained the results of experiment 3 better than
alternative social learning models (SI Appendix). Akaike Information Criterion
(AIC) weights (wAIC) can be interpreted as the probability that the model
provides the best explanation of the data in the candidate set (see SI Appendix
for results based on Bayesian random effects model comparison). The dotted
green line denotes wAIC = 0.95. IL-D, instructed learning D model.
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typically been the focus of previous research on both observational
and instructed threat learning, and thereby provide clear evidence
that these paradigms have broad explanatory value for understanding
the social transmission of fear and avoidance (12). Furthermore,
given the central role of the amygdala in both observational and
direct threat conditioning across species (10, 11), characterizing the
role of this brain region in the transfer of social learning to decision
making is an important goal for future research. However, because
instructed threat learning also involves the amygdala (38, 39), it is
likely that different patterns of connectivity in overlapping neural
networks (10), or multivariate response patterns (33), underpin the
difference between observational and instructed threat learning.
In summary, our findings show that threats acquired through

observation and instruction can transfer to, and thereby bias,
decision making. Furthermore, we show that the transfer of
observational and instructed threat learning on decision making
rests on different underlying computational mechanisms. We
hope that these findings will be valuable for understanding both
adaptive and maladaptive human behavior and for informing
policy, as well as therapeutic, applications designed to prevent
the transmission of human fears.

Methods
Participants.One-hundred twenty-one participants [69 females,mean age= 26 y
(experiment 1 = 26.7, experiment 2 = 25.9, experiment 3 = 25)] took part in
the study and provided written consent. One participant was excluded due to
a technical failure. Participants received two movie vouchers for their partici-
pation. In addition, 25 participants took part in a control experiment where
decision making was not preceded by a conditioning block and 80 participants
in control experiments 3B–C (see SI Appendix for details). All procedures were
approved by the local ethics committee at Karolinska Institutet.

Task and Procedure. The experiments consisted of two blocks (Fig. 1). The
content of the first block (conditioning) was the only difference between
experiments 1–3 (see SI Appendix for details). In the subsequent decision
making block (Fig. 1), which was identical for all experiments, the partici-
pants made 70 choices between the same two stimuli (i.e., CS+/CS−) that
were presented during the conditioning block (see SI Appendix, Fig. S1, for
an overview of the trial time line). The participants were asked to learn to
avoid shocks, but were not given any information about the shock prob-
abilities. The decision-making block consisted of two phases: a Transfer
phase and a Reversal phase. The Transfer phase tested the direct effect of
conditioning on decision making. We use the No Change condition as
baseline for estimating the Pavlovian influence in the Change condition.
Therefore, all comparisons reported in the main text are relative (in the SI
Appendix, in addition we compare the results to the baseline control
experiment). In the Reversal phase, which occurred unsignaled after half
the experiment, the contingencies between choice stimuli and shocks re-
versed (Fig. 1 D and E). The participants were not informed about the
contingency reversal.

Statistical Analyses. Logistic Generalized Linear Mixed Models (GLMMs) with
by-subject random intercept and by-subject random slopes for all fixed effects
were used to analyze the choice data (see SI Appendix for additional de-
tails). Data are available at https://osf.io/xfe72/.
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