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Abstract

Unwanted experimental/biological variation and technical error are frequently encountered in current metabolomics, which
requires the employment of normalization methods for removing undesired data fluctuations. To ensure the ‘thorough’
removal of unwanted variations, the collective consideration of multiple criteria (‘intragroup variation’, ‘marker stability’
and ‘classification capability’) was essential. However, due to the limited number of available normalization methods, it is
extremely challenging to discover the appropriate one that can meet all these criteria. Herein, a novel approach was
proposed to discover the normalization strategies that are consistently well performing (CWP) under all criteria. Based on
various benchmarks, all normalization methods popular in current metabolomics were ‘first’ discovered to be non-CWP.
‘Then’, 21 new strategies that combined the ‘sample’-based method with the ‘metabolite’-based one were found to be CWP.
‘Finally’, a variety of currently available methods (such as cubic splines, range scaling, level scaling, EigenMS, cyclic loess
and mean) were identified to be CWP when combining with other normalization. In conclusion, this study not only
discovered several strategies that performed consistently well under all criteria, but also proposed a novel approach that
could ensure the identification of CWP strategies for future biological problems.
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Introduction
Unwanted experimental/biological variation and technical error
are frequently encountered in current metabolomics [1], which

greatly hamper the understanding of the mechanism underlying
a variety of physiological conditions or aberrant processes [2].
Due to the difficulty in measuring and quantifying the variation
components [3], it is very tough to understand the corresponding
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Table 1. Classification of each studied method based on the description of previous publications. The key descriptions for defining methods’
classification were underlined and in italic. Abbreviation (abbr.) was assigned and used to indicate each method in the whole manuscript

Methods Abbr. Descriptions

A. Sample-based normalization methods
Contrast CON Using nonlinear curve fitting to normalize all studied samples based on a baseline sample [42, 48]

Cubic splines CUB A nonlinear baseline method aiming at making the distribution of metabolite concentrations similar for all samples
[42, 45]

Cyclic loess LOE Normalizing by comparing any two samples, and fitting a curve based on nonlinear local regression [26, 42]

EigenMS EIG Preserving the original differences and removing the bias by reducing the sample-to-sample variations [26, 49, 50]

Linear baseline LIN Normalizing all studied samples based on a baseline constructed by the median intensity across all samples [42]

Mean MEA During the normalization, the means of the intensities for each sample are forced to be equal to 1 [43, 51]

Median MED Normalizing the studied samples by assuming that each sample has the same median intensity [52]

MSTUS MST Dividing the intensity by sum of all intensities in studied samples (assuming an equivalence between increased
and decreased ones) [45, 53, 54]

PQN PQN Dividing by the median quotient for each intensity between the studied sample and a reference one [26, 42, 55]

Quantile QUA Achieving the same distribution of intensities across all samples using quantile–quantile plot to visualize
distribution similarity [26, 42, 56]

Total sum SUM Assigning an appropriate weight to each sample to minimize differences among all samples
by the sum of squares in the studied sample [3, 52]

B. Metabolite-based normalization methods
Auto scaling AUT Scaling the metabolite to unit variance, and using the SD of certain metabolite in all samples as the scaling

factor [13, 57]

Level scaling LEV Scaling certain metabolite relative to the average of the metabolite in all samples by using the mean
concentration as the scaling factor [57]

Pareto scaling PAR Using the square root of the SD for certain metabolite as the scaling factor, and reducing the weight of large fold
changes [42, 57]

Range scaling RAN Using the difference between minimal and maximal concentration of a certain metabolite over all samples as the
scaling factor [57, 58]

Vast scaling VAS Stabilizing variables using the SD for a metabolite across all samples and the coefficient of variation as scaling
factors [57]

C. Sample- and metabolite-based normalization methods
VSN VSN This normalization method both reduces the sample-to-sample variation and

adjusts the variance of different metabolites [42, 45, 46]

cause and subsequently remove the variations/errors from given
metabolomic experiments [4]. To deal with this problem, the
normalization is employed as an integral part of data process-
ing, which is essential for improving the differential profiles by
detecting and removing undesired fluctuations [5]. Nowadays,
normalization has been adopted in metabolomics to identify the
enriched metabolites in prostate cancer patients [6], gage the
exposome effects on human health [7] and reveal the pathology
of chronic disease [8].

However, the discovery of the normalization methods appro-
priate for the studied chemical/biological problems remains one
of the key issues in current metabolomic analyses [3, 9]. Partic-
ularly, the well-performing (WP) methods identified by different
evaluating criteria are frequently inconsistent [1], and the nor-
malization results of different methods are sometimes conflict-
ing due to their distinct underlying theories [6, 9]. To cope with
these problems, the strategy enabling a ‘thorough’ assessment
of method is proposed to collectively consider multiple criteria
[1, 9] (‘intragroup variation’ [10], ‘marker stability’ [11] and ‘clas-
sification capability’ [12–15]). Since there is a limited number of
available methods, it is difficult to further identify any one able
to meet all criteria [1]. In other words, it is urgently needed to
choose appropriate (or even develop new) WP methods under all
criteria [16].

To date, ≥17 methods have been widely applied to normalize
metabolomic dataset, and can be roughly divided into two

categories: ‘sample’-based and ‘metabolite’-based (Table 1)
[17]. For the majority of previous metabolomic studies, either
a ‘sample’-based or a ‘metabolite’-based method is inde-
pendently used for removing unwanted variations [18–22].
But the combined normalization between ‘sample’-based and
‘metabolite’-based methods is also found to be effective by
a few recent metabolomic studies [23, 24]. Moreover, as a
special normalization based on both ‘samples’ and ‘metabolites’
[25] (Table 1), the variance stabilizing normalization (VSN) is
identified as performing ‘superior’ among most of the analyzed
methods [21]. Due to the large number (>100) of possible
combinations between ‘sample’-based and ‘metabolite’-based
methods, it is of great interest to systematically compare the
performances of all the combinations, which may facilitate the
discovery of any combination of greatly enhanced performances
under all criteria.

Herein, a comprehensive assessment among the perfor-
mances of 17 normalization methods and their 110 possible
combinations were conducted, which was achieved using three
popular assessing criteria. ‘First’, the normalization strategies
WP under each of these criteria were identified using the
hierarchical clustering. ‘Second’, all the single methods (Table 1)
were discovered to be incapable of performing consistently well
under all criteria. ‘Finally’, 21 novel strategies that combined
‘sample’-based with ‘metabolite’-based methods were identified
to perform well under all criteria. All in all, this study discovered
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Table 2. Five benchmark datasets analyzed in this study. Each dataset was collected as representatives of the diverse analytical platforms
(LC–MS of positive and negative modes, GC–MS, NMR and DIMS)

ID Reference Platform Dataset description

LC–MS Positive Mode Anal Chim Acta 2012;743:90–100 LC–MS positive 1586 metabolites from 60 HCC patients and 129 CIR
controls

LC–MS Negative Mode Anal Chim Acta 2012;743:90–100 LC–MS negative 940 metabolites from 59 HCC patients and 126 CIR
controls

GC–MS Anal Chem 2009;81:7974–80 GC–MS 46 metabolites from mixtures of different concentrations
(15 versus 15)

NMR Spectroscopy Metabolomics 2014;10:950–7 NMR 51 metabolites from 27 fasted and 26 carbohydrate
prefed pigs

Direct Infusion MS Sci Data 2014;1:140012 DIMS 48 metabolites pertaining to 66 cow and 68 sheep samples

a number of strategies that could significantly enhance the
performance assessed by all criteria, which could thus help to
fill in the blanks in discovering the most appropriate methods.

Materials and Methods
Normalization methods studied and benchmark
datasets analyzed in this work

The ‘sample’-based normalization aims at reducing system-
atic biases among samples to make the data from all samples
directly comparable to each other [17], while the ‘metabolite’-
based normalization is used for eliminating the impacts of very
large feature values and making all features more comparable
or normally distributed [26]. Herein, 17 methods popular in
current metabolomics were ‘first’ collected via literature reviews
(Table 1), and their corresponding category (‘sample’-based or
‘metabolite’-based) was defined by (A) whether the method
could reduce sample-to-sample variation based on a reference or
a baseline sample (‘sample’-based) and (B) whether the method
could decrease the metabolic signal variations based on a scal-
ing factor (‘metabolite’-based). As shown in Table 1, the VSN
could eliminate sample-to-sample variation and adjust the vari-
ances of different metabolites, which was thus known as a
special method based on both ‘sample’ and ‘metabolite’ [25]. The
detailed descriptions on all studied methods could be found in
Supplementary Method S1.

In order to ensure a systematic assessment on the studied
methods, several benchmarks acquired from a variety of ana-
lytical platforms were collected. These platforms included the
liquid chromatography coupled with mass spectrometry (LC–
MS, both positive and negative modes), nuclear magnetic res-
onance spectroscopy (NMR), gas chromatography coupled with
mass spectrometry (GC–MS) and direct-infusion mass spectrom-
etry (DIMS). As a result, five benchmark datasets were col-
lected (Table 2), which included (1) MTBLS17-POS (LC–MS posi-
tive) [27], (2) MTBLS17-NEG (LC–MS negative) [27], (3) MTBLS123
(NMR) [28], (4) MTBLS79 (DIMS) [29] from ‘MetaboLights’ database
[30] and (5) GC–MS dataset (GC–MS) [31]. Particularly, as pro-
vided in Table 2, (1) MTBLS17-POS (LC–MS positive) included 1586
metabolites detected from 60 hepatocellular carcinoma (HCC)
patients and 129 cirrhotic (CIR) controls [27], (2) MTBLS17-NEG
(LC–MS negative) contained 940 metabolites from 59 HCC and
126 CIR patients [27], (3) MTBLS123 (NMR) provided 51 metabo-
lites discovered from 27 fasted-fed and 26 carbohydrate-fed pigs
[28], (4) MTBLS79 (DIMS) included 48 metabolites from 66 cow
and 68 sheep samples [29]; (5) GC–MS dataset (GC–MS) included
46 metabolites from mixtures of different concentrations (15
versus 15 samples) [31].

Multiple criteria for the assessment of normalization
performance

Three well-established criteria available for assessing the
normalization performance were applied in this study. Criterion
(Ca) is the method’s ability to reduce the intragroup variations
among the samples in each sample group [10]. Particularly,
intragroup variations were assessed using the pooled median
absolute deviation (PMAD) [9]. The lower the PMAD value
was, the more thorough the removals of experimentally
induced noise were by a studied method [6]. Criterion (Cb)
is the method’s consistency in discovering metabolic markers
from different datasets [11]. Under this criterion, consistency
score (CS) was applied to quantitatively measure the overlap
among multiple lists of the metabolic markers identified from
different partitions of a dataset [11]. The higher the CS value was,
the more robust the studied method was in biomarker discovery
[11]. Criterion (Cc) is the method’s classification capacity for
independent dataset based on the identified markers [12]. In
this situation, the values of area under curve (AUC) for the
receiver operating characteristic (ROC) were used for achieving
the assessments using support vector machine (SVM) [21]. In
particular, the differential markers were ‘first’ identified using
the partial least squares discriminant analysis method. ‘Second’,
the SVM model was constructed using these differential mark-
ers. After k-folds cross validation, the normalization method of
higher AUC value was recognized as WP. All in all, each criterion
assessed method performance based on their distinct underly-
ing theory, and the combination of multiple criteria could there-
fore achieve comprehensive evaluation on the studied method.
Detailed information of all criteria was shown in Supplementary
Method S2.

Categorizing the studied methods based on the
clustering of their performances

In total, 128 normalization strategies were constructed and
assessed in this study, which included the 17 methods shown
in Table 1, 55 strategies sequentially combining each ‘sample’-
based method with each ‘metabolite’-based one, 55 strategies
sequentially combining each ‘metabolite’-based method with
each ‘sample’-based one and non-normalization (NON). ‘First’,
based on the benchmark datasets shown in Table 2, the perfor-
mance of each strategy was assessed from multiple perspectives
by metrics such as PMAD, CS and AUC. ‘Second’, under each
criterion, the values of the corresponding metric among five
benchmarks were used to construct a five-dimensional vector.
‘Third’, the hierarchical clustering was applied to investigate the
relationship among the 128 vectors using R statistical analysis
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Figure 1. The relationship among the performances of all studied normalization strategies identified based on the hierarchical clustering of the quantitative metrics

across all five benchmarks representing different analytical platforms. The analyzed metrics for each criterion (Ca, Cb and Cc) were PMAD, AUC and CS, respectively. The

leaves of the hierarchical tree gave the name of the studied strategies. The background colors of the strategies of a single method, sequential combination of ‘sample’-

based and ‘metabolite’-based methods and sequential integration of ‘metabolite’-based and ‘sample’-based ones were white, light blue and light orange, respectively.

(Ca) The methods with PMAD of superior (≤0.3), good (>0.3 and <0.7) and poor (>0.7) performance were colored by dark orange, light orange and gray, respectively.

(Cb) The methods with AUC value of superior (>0.9), good (>0.7 and ≤0.9) and poor (≤0.7) performances were colored by dark green, light green and gray, respectively.

If the AUC values of a combined strategy and any single method in this combination equaled to 1 (perfect classification), a white round dot was applied to highlight

that strategy. (Cc) The methods that ranked to be the top one-third, bottom one-third and remaining one-third by their CS values were indicated by dark blue, gray and

light blue color, respectively. If the performance of a combined strategy was better than both single methods within this combination, a triangle was used to highlight

that strategy.

package, and ‘Manhattan’ distance [32] was used to measure the
relation between any two vectors. Ward’s minimum variance
method was used to reduce total within-cluster variance to the
maximum extent [33]. ‘Fourth’, the constructer of hierarchical
trees (‘iTOL’ [34]) was used to draw the graph illustrating relation
among studied strategies. The performance of each strategy was
highlighted by color based on the value/rank of each metric. In
particular, the methods with PMADs of ‘superior performance’
(≤0.3 [9]), ‘good performance’ (>0.3 and <0.7 [35]) and ‘poor
performance’ (>0.7 [35]) were colored using dark orange, light
orange and gray, respectively; the methods with the AUCs of
‘superior performance’ (>0.9 [35]), ‘good performance’ (>0.7
and ≤0.9 [36]) and ‘poor performance’ (≤0.7 [36]) were colored
using dark green, light green and gray, respectively (AUC value of
1 represented perfect classification [35]); and the methods that
ranked to be the top one-third, the bottom one-third and the
remaining one-third by their CS values [37–41] were colored by
dark blue, gray and light blue, respectively.

Results and Discussion
Identifying the normalization strategies WP under each
criterion

To ensure the systematic assessment on the studied methods,
five benchmarks acquired from a variety of analytical platforms

were collected, which were named in Table 2 as LC–MS Positive
Mode, LC–MS Negative Mode, GC–MS, NMR Spectroscopy and
Direct Infusion MS by their analytical platform. In other words,
these benchmarks were used as the representative dataset for
each analytical platform, and the collective analysis of all five
benchmarks could result in a systematic evaluation on the stud-
ied strategies. Particularly, the performances of all 128 strategies
were evaluated based on three assessing criteria, which were
quantitatively measured by three metrics (PMAD, AUC and CS).
As illustrated in Supplementary Table S1, the performances of
all normalization strategies across the five benchmarks as mea-
sured by three different criteria were fully provided. Based on
these quantitative measurements, the values of the correspond-
ing metric under each criterion among five benchmark datasets
were used to construct a five-dimensional vector. As shown
in Figure 1, the relationships among the performances of 128
normalization strategies were identified using the hierarchical
clustering of the corresponding five-dimensional vectors. As a
result, the strategies of the similar performances were clustered
together, which could help to identify the strategies WP irrespec-
tive of the analytical platform.

For the criterion Ca, the hierarchical clustering identified
four partitions (α1, α2, β and γ , as illustrated in Figure 1Ca and
Supplementary Figure S1). The leaves of the hierarchical tree
provided the name of the studied strategies. The backgrounds

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz137#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz137#supplementary-data


2146 Yang et al.

of the strategies of a single method, sequential combination of
‘sample’-based and ‘metabolite’-based methods and sequential
combination of ‘metabolite’-based and ‘sample’-based methods
were colored in white, light blue and light orange, respectively.
The methods with the PMAD of superior (≤0.3), good (>0.3
and <0.7) and poor (>0.7) performance were colored by dark
orange, light orange and gray, respectively. If the performance of
a combined strategy was better than both single methods in this
combination, a triangle was used to highlight that strategy. As
shown in Figure 1Ca, the strategies in both Partitions α1 and α2
were discovered to be the ‘consistently well-performing’ (CWP)
strategies across all five benchmarks. Particularly, all PMADs
in Partition α1 were <0.3, and the majority of the PMADs in
Partition α2 were <0.3 with the remaining PMADs within the
range between 0.3 and 0.7. The strategies in Partition β were
identified as the ‘WP’ ones, since most of the PMADs were within
the range between 0.3 and 0.7. The strategies in Partition γ

were found to be ‘poor-performing’ with almost all PMADs >0.7.
Moreover, most of the ‘triangles’ were concentrated in Partition
α, many were in Partition β and very few were in Partition γ .

Similar to Figure 1Ca, the corresponding hierarchical trees
(Figure 1Cb and Figure 1Cc) were drawn for criterion Cb and Cc,
respectively. The methods with the AUC value of superior (>0.9),
good (>0.7 and ≤0.9) and poor (≤0.7) performances were colored
by dark green, light green and gray, respectively. If the AUC values
of a combined strategy and any single method within this com-
bination equaled to 1.0 (perfect classification), a white round dot
was applied to highlight that strategy (Figure 1Cb). The methods
that ranked to be the top one-third, the bottom one-third and the
remaining one-third by their CS values were indicated by dark
blue, gray and light blue color, respectively (Figure 1Cc). Detailed
illustrations were also provided in Supplementary Figures S2
and S3. As illustrated, the strategies in both Partitions α1 and α2
were discovered to be ‘CWP’ across all benchmarks, the strate-
gies in Partition β were identified to be ‘WP’ and the strategies
in Partition γ were found to be ‘poor-performing’. Moreover, the
majority of the ‘triangles’ and ‘round dots’ were concentrated
in Partition α, many were in Partition β and very few were in
Partition γ .

The strategies identified to be ‘CWP’ or ‘WP’ by each criterion
provided valuable information for the discovery of WP strategy.
However, due to the distinct underlying theories of the three cri-
teria, the strategies identified by different criteria varied greatly.
Thus, the assessments that collectively considered multiple cri-
teria were required.

Performance of the strategies of single method
assessed by multiple criteria

The collective assessment of the performance of the strategies
of single method using multiple criteria could be achieved by
analyzing the ranks and partitions in Figure 1. Therefore, the
quantitative data of the ranks and partitions of each strategy of
single method under multiple criteria were provided in Table 3A.
On one hand, the ranks of these strategies assessed by a given
criterion varied significantly. For example, under criterion Cc, the
EigenMS was ranked the 4th (the highest among all strategies of
single method), while the Linear Baseline was ranked the 103rd
(the lowest among all these strategies). On the other hand, the
ranks and partitions of given strategy evaluated by different cri-
teria also varied substantially. For instance, the ranks of MSTUS
strategy assessed by PMAD, AUC and CS were 6th (top 5%), 38th
(top 32%) and 95th (top 79%), respectively, and its partitions were
therefore extensively ranging from α to β to γ . As shown in

Figure 2A, none of those 17 methods in Table 1 was partitioned to
be CWP under all criteria, and only 5 methods were in Partition
α (Figure 1) of two of the three criteria (EIG, LEV, PAR, RAN and
VSN). When both Partitions α and β were considered (Figure 2B),
12 single methods were partitioned to be CWP or WP under
all criteria. In other words, these popular methods (Table 1) did
not provide any normalization strategy capable of performing
consistently well irrespective of the studied analytical platform
(within Partition α in Figure 1). These results indicated that
several methods reported as WP under single criterion (such as
VSN [21], QUA [42] and CUB [43]) did not work well under all
criteria as identified in this study, and some methods popular in
current metabolomics (such as MSTUS [44]) would not perform
consistently well under all criteria for all datasets. The detailed
partitions of each method could also be found in Table 3A.

The incapability of these single methods discussed above
might originate from the sole consideration of either ‘sample’-
based or ‘metabolite’-based removal of unwanted variation. As
the only method based on both ‘sample’ and ‘metabolite’ [45],
the VSN was identified to be CWP as assessed by criteria Ca
and Cb, and be WP by criterion Cc. Based on the ranks of VSN
and other methods in Table 3A, it seemed that VSN was one
of the best performing methods in Table 1. This result was
consistent with previous report that the VSN performed well in
variation reduction and differential expression analysis [9, 21].
Particularly, VSN aimed at keeping the variance constant over
the entire data range. ‘First’, the sample-to-sample variations
were reduced by linearly mapping the concentration of each
sample to a reference sample (the first one in dataset). ‘Then’,
the variance was adjusted based on an inverse hyperbolic sine
transformation [25, 46]. Due to its hybrid between ‘sample’-
based and ‘metabolite’-based normalization, it performed rel-
atively well in adjusting the variance of different samples and
metabolites.

Discovering the normalization strategies WP under all
criteria

Contrary to the incapability of single methods, the combined
strategies showed significantly enhanced performances under
all criteria. As shown in Figure 2C, 21 combined strategies were
partitioned to be CWP under all three criteria, and another 25
strategies were in Partition α (Figure 1) of two of those three cri-
teria. When both Partitions α and β were considered (Figure 2D),
49 combined strategies were partitioned to be CWP or WP under
all criteria, and another 23 strategies were in Partition α (Figure 1)
of two of the three criteria. In other words, 21 combined strate-
gies were successfully identified as performing consistently well
irrespective of the studied analytical platforms (Partition α in
Figure 1). The ranks and partitions of these 21 combined strate-
gies were shown in Table 3B. Moreover, the orders of the studied
strategies ranked by any two criteria in Figure 1 were used to
draw Figure 2E–G. The round dots and annuluses denoted the
combined strategies and single methods, respectively. Those five
single methods clustered in Partition α of two of the three crite-
ria (Figure 2A) were marked in Figure 2E and F. Those dots col-
ored in blue (Figure 2E), orange (Figure 2F) and green (Figure 2G)
referred to the strategies clustered in Partition α of CS, PMAD and
AUC, respectively.

The corresponding assessment values of each of those
21 newly identified strategies were illustrated in Figure 3A
and Table 3B. As shown, 11 out of those 17 single methods
appeared in these combined strategies for at least one time,
which included 6 ‘sample’-based (CUB, LOE, EIG, MEA, QUA,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz137#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz137#supplementary-data
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Table 3. The normalization performance under each criterion (PMAD, AUC and CS) assessed by the ranks of five representative datasets and
the clustering partitions (α, β and γ ) illustrated in Figure 1. There were three method types: (A) 17 ‘sample/metabolite’-based methods, (B) 21
combined strategies CWP under all three criteria and (C) 28 methods consistently poor-performing under all three criteria. Median and SD
represented the median value and the SD of the ranks of five representative datasets, respectively

(Continued)
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Table 3. Continued

Figure 2. Venn diagram of the numbers of the single method in Partitions α (A) and α&β (B) of Figure 1, and the combined strategy in Partitions α (C) and α&β (D)

of Figure 1 by all criteria. Identification of the WP strategy under two of the three criteria based on the orders of the studied strategies ranked by any two criteria in

Figure 1. (E) AUC and PMAD; (F) CS and AUC; (G) PMAD and CS.

MED) and all 5 ‘metabolite’-based (RAN, LEV, VAS, PAR, AUT)
methods. For ‘sample’-based method, CUB appeared the most
(in 6 combined strategies), and RAN appeared the most (in 10
combined strategies) among all ‘metabolite’-based methods.
To eliminate unbalance between the numbers of ‘sample’-
based and ‘metabolite’-based methods, the percentages of
each method’s appearance over the total number of its all
possible combinations were provided in Figure 3B. As illustrated,
the bars colored in light blue and light orange indicated the
sequential combination of ‘sample’-based and ‘metabolite’-
based methods and sequential combination of ‘metabolite’-
based and ‘sample’-based methods, respectively. Six single
methods in Table 1 (CUB, RAN, LEV, EIG, LOE and MEA) were found
to generate CWP strategies regardless of their position in the
corresponding strategy, but different percentages for different
positions were observed in Figure 3B. Taking CUB as an example,
80% of the ‘metabolite’-based methods could be followed by CUB
to generate CWP strategies, while the percentage reduced to
40% when applying CUB before any ‘metabolite’-based method

(Figure 3B). Besides those six single methods, VAS, AUT and PAR
were found to generate CWP strategies only by following with
‘sample’-based method, while QUA was discovered to generate
CWP strategies by following with ‘metabolite’-based method.
MED was also found to form CWP strategies, but only after the
application of the ‘metabolite’-based method. A few method
combinations had been reported in metabolomic analyses. For
example, PAR was used along with MED for analyzing the MS-
based metabolomic data [23], QUA and CUB were combined
with some ‘metabolite’-based methods to achieve consistent
and reproducible results [26] and ‘metabolite’-based methods
were used after sample-wised ones before metabolic marker
identification [47]. These previous reports further confirmed the
usefulness of the novel approach proposed here for identifying
the CWP normalization strategy for current metabolomics.

Moreover, 28 strategies were found to be non-CWP under
three criteria (none of these strategies was clustered into Par-
tition α of any criterion in Figure 1). The assessment values of
each of those 28 ‘badly performing’ strategies were shown in
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Figure 3. The performances of the 21 newly identified CWP strategies. (A) Quantitative illustrations of the assessing results using PMAD (light orange bar), AUC (light

green bar) and CS (light blue bar). (B) The percentages of each method’s appearance over the total number of its possible combinations. The bars colored in light blue

and light orange indicated the sequential combination of ‘sample’-based and ‘metabolite’-based methods and the sequential combination of ‘metabolite’-based and

‘sample’-based methods, respectively.

Figure 4. The performances of the 28 ‘badly performing’ strategies. (A) Quantitative illustrations of the assessing results by PMAD (light orange bar), AUC (light green

bar) and CS (light blue bar). (B) The percentages of each method’s appearance over the total number of its possible combinations. The bars colored in light blue and light

orange indicated the sequential combination of ‘sample’-based and ‘metabolite’-based method and sequential combination of ‘metabolite’-based and ‘sample’-based

method, respectively. The blue dash line indicated the single methods performing badly under all criteria.

Figure 4A and Table 3C. As shown, 10 out of those 17 single
methods appeared in these combined strategies for at least one

time, which included 6 ‘sample’-based (PQN, LIN, CON, MED, MST,
SUM) and 4 ‘metabolite’-based (VAS, AUT, PAR, LEV) methods. For
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‘sample’-based method, PQN, LIN and CON appeared the most
(all in six combined strategies), and VAS and AUT appeared the
most (both in eight combined strategies) among all ‘metabolite’-
based methods. As shown in Figure 4B, six single methods in
Table 1 (CON, LIN, PQN, VAS, AUT and PAR) were found to gen-
erate ‘badly performing’ strategies regardless of their position in
corresponding strategies, but slightly different percentages for
different positions were also observed. Taking VAS as an exam-
ple, 45.5% of ‘sample’-based methods could be followed by VAS
to generate ‘badly performing’ strategies, while the percentage
reduced to 33.3% when applying VAS before any ‘sample’-based
method (Figure 4B). Besides those six methods, MED and MST
were found to result in ‘badly performing’ strategies only by fol-
lowing with ‘metabolite’-based method, while LEV was found to
lead to ‘badly performing’ strategies by following with ‘sample’-
based method. SUM was also found to form ‘badly performing’
strategies, but only after the application of ‘metabolite’-based
method. The blue dash line in Figure 4B indicated that four
single methods (CON, LIN, MED, PQN) also perform bad under
all criteria.

Conclusion
Herein, various normalization methods (such as CUB, RAN,
LEV, EIG, LOE and MEA) were found performing consistently
well under all three criteria through combining with other
methods other than their normalization type (‘sample’-based
or ‘metabolite’-based). Moreover, several other methods (such as
CON, LIN, PQN, VAS, AUT and PAR) were discovered to perform
badly as assessed by different criteria if they combined with
certain methods. However, the dataset-dependent nature was
frequently reported in current metabolomic studies [1, 10]. Thus,
it was very important to understand the nature of the studied
problem in the first place, and then select the appropriate
strategies based on the similar pipeline adopted in this study.

Key Points
• The discovery of the appropriate normalization

methods that can meet multiple criteria in current
metabolomics is extremely challenging.

• A novel approach was proposed here to discover the
normalization strategies that are CWP under all criteria.

• Twenty-one strategies that combined the ‘sample’-
based method with the ‘metabolite’-based one were
discovered in this study to be CWP.

• A variety of currently available methods (such as cubic
splines and EigenMS) were found to be able to become
CWP when combining with other normalization.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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