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Abstract: Dyes are a major class of organic pollutants that are well-known for their harmful impact on
aquatic life and humans. Several new strategies for removing colours from industrial and residential
effluents have recently emerged, with adsorption being the best option. The current study looked at
the recovery of direct dyes from aqueous streams for reuse using macro-reticular ion exchange resins
(IERs). The investigation includes dyeing single jersey cotton grey textiles with direct dyes from
the Isma dye Company in Kafr El Dawar, Egypt. After centrifuging and separating the supernatant
liquid, solutions from thirteen different dyes, produced at an average concentration between the
wasted and soaping liquor concentrations, were calculated spectrophotometrically from the first
dyeing trials. Kinetic data were well fitted with pseudo-second-order rate kinetics. The amounts of
dye retained by the anion exchangers increased with a rise in temperature in the case of Strong Base
Resin (SBR) and vice versa for Weak Base Resin (WBR). Batch adsorption experiments with SBR and
WBR were conducted for each dye, and both Freundlich and Langmuir isotherms were constructed.
It was found that adsorption obeyed both isotherms, that monolayer adsorption took place, and that
the dye molecular weight, structure, and solubility, as well as the type of anionic resin used, had
varying effects on the extent of absorption. The monolayer sorption capacities Q0 determined from
the Langmuir isotherm model for the strongly and weakly basic anion exchangers were found to be
537.6 and 692 mg/g for Direct Yellow RL, respectively. As a result, Yellow RL exhibited the greatest
adsorption on both SBR and WBR. Orange GRLL, Blue 3B, and Congo Red, on the other hand, were
the poorest colours absorbed by the IERs, whereas Blue RL demonstrated good adsorption by SBR
and accelerated adsorption by WBR. Most of the dyes may be recovered and reused in this manner.

Keywords: direct dyes; macro-reticular ion exchange resins; adsorption isotherms; wastewater
treatment; dye-house wastewater; recovery of dyes

1. Introduction

The fast expansion in the global population and vast industrial operations has led
global water demand to double every 21 years. Water issues affect almost 80 nations,
accounting for 40% of the world’s population. According to the United Nations, water
scarcity might affect up to 2.7 billion people by 2025 [1,2]. Furthermore, many countries
have a scarcity of safe drinking water. Every year, around 5–10 million people die as a
result of illnesses caused by drinking dirty water [1]. Water pollution control has been
recently one of the major areas of scientific activity [3] The assessment of the amount of
dye in the waste stream is an important investigation to do before disposal since even a
tiny amount of 1 mg/L can cause colour and an unacceptable concentration for ingestion.
Dyes are mostly organic complex molecules with the ability to connect to a variety of
surfaces such as textiles, leathers, and so on. According to a recent analysis, there have
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been 1,000,000 commercially available dyes used all over the world, with a consumption
record of 10,000 tons per year [4]. The fact that effluent is very complex in nature, along
with this massive waste of textile dyes, causes the disturbance of an ecological system [5–7].
Dye-bearing effluents are a significant source of water pollution since they are used in
numerous industries such as textile, printing, plastics, paper, carbide, food, and cosmetic
industries [3,8]. Wastewaters (WWs) are generated predominantly in the following pro-
cesses of textile production: slashing/sizing, de-sizing, scouring, bleaching, mercerizing,
dyeing, printing, and finishing [9]. Their WWs also contain inorganic compounds such
as chloride, carbonate, sulfate, phosphate, and heavy metals [5,10]. Since the discharge
contains a variety of substances, each pollutant has a different toxicity threshold and poses
a different hazard. However, nearly all of the compounds in the discharge stream are
non-biodegradable in origin and have carcinogenic properties [11]. The presence of dye
molecules in the hydrosphere inhibits sunlight penetration deep into water bodies, causing
discomfort in the biological pursuit of aquatic life [12]. Toxicological effects have included
growth inhibitions, reduced ingestion capacity, accumulation in living cells, increased
enzymatic activities, decreased reproductive potential, kidney dysfunctions, protein level
decrements, respiratory problems, opercular movements, histopathological variations,
sub-lethal consequences, and so on. Not only have these impacts been highlighted, but
many additional negative effects on aquatic and living species have been recorded as a
result of toxic contaminants [13]. The environmental issues associated with residual colour
in textile effluents had passed a major challenge to environmental scientists as well as to
textile colouration processors. The requirement to remove the colour from textile effluents
on-site prior to discharge to sewer has been progressively tightened due to increased public
complaints about coloured water courses. Dyes are highly dispersible aesthetic pollutants
and are difficult to treat, as most dyes are highly stable molecules made to resist degrada-
tion by light, chemical, biological, and other treatments or exposure [14]. They are mainly
classified into cationic, anionic, and non-ionic dyes, from which the removal of anionic
dye is considered the most challenging task since they are water-soluble and produce very
bright colours with acidic properties [8]. A major contribution to colour in textile WW is the
dyeing and the washing operation after dyeing, during which as much as 50% of the dye
can be released into the effluent [14]. According to Mondal [15], dyes are constituents of
textile WW that cause the largest difficulty in treatment. Ghaly et al. [9] give 10 to 250 mg/L
as a range of dye concentrations in dye house effluents. Direct dyes are feasibly removed
by biological treatment [16,17], adsorption [18–21], and ion exchange [22–25] as well as
membrane processes, coagulation-flocculation [26,27], ozonation, and oxidation [28,29].
It has been estimated that the total dye consumption in the textile industry worldwide
exceeds ten thousand tons per year, of which 10–15% of these dyes are released as effluents
during the dyeing processes [28,30].

Effluent discharge from textile, leather and dye industries causes significant health con-
cerns to environmental agencies [3] since their WW contains predominant dye substances
that are toxic to the biological world; in addition, its dark colour locks sunlight, which leads
to severe problems to the ecosystem through the eutrophication of aquatic eco-systems and
serious health risk factors by bioaccumulation [28]. Accordingly, the decolourization of
dyes is another important aspect of WW treatment prior to discharge into the environment.

Adsorption is the most often used technique for treating dye effluents [3,31]. Due to the
range of adsorbents and the simplicity of operation, massive studies for dye removal have
been published in the literature. There have been studies that have used activated carbon,
activated carbon produced from biomass, carbon nanotubes, metal–organic frameworks,
synthetic adsorbents, nanoparticles, and other materials [32]. The features of adsorbent,
namely particular surface area, play an important role in the application. The greater
the specific surface area, the greater the adsorption due to the porous spaces that absorb
contaminants. Furthermore, various factors must be tuned during the process, including
pH, dose, temperature, beginning concentration, and contact duration [33]. Due to charge
attraction and Van der Waals forces, dye molecules have a high affinity for adsorption on
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the surface of adsorbents, resulting in chemical and physical adsorption [34]. According to
studies, adsorbents have the best removal rates and sorption capacities while being easy
to operate and economically practical [35]. The literature contains valuable information
about the applicability of IERs in the removal of dyes from aqueous solutions [36–43]. Acid
Orange 7 [44–46], Acid Orange 10 [45,47], Acid Green 9 [12], C.I. Acid Green 16 [48], Acid
Red 18 [49], Acid Blue 29 [42], Acid Blue 113 [50], Basic Blue 3 [51], Tartrazine [13], Sunset
Yellow [14], Reactive Black 5 [46], Reactive Orange 16 and Reactive Blue 21 [49], Reactive
Red 120 [41] and 198 [17], Reactive Remazol Black B [52], Cationic Malachite Green [53],
Direct Blue 71 [46,54], Direct Red 75 [55], Direct Yellow 50 [56,57], Congo Red [18], and
other anion exchange resins have been shown to be very useful for the removal of acidic,
basic, direct, and reactive dyes. Good sorption capabilities for the aforementioned dyes
were discovered, as well as good regeneration.

In this work, a study on the removal and recovery of thirteen various direct dyes from
dyeing and washing WWs was conducted by adsorption using macro-reticular strong-
based IERs and weak-based IERs in batch experiments. Direct dyes outperform others in
terms of cost, lightfastness, simplicity of application, and dye cycle length. So far, there is
no comprehensive information in the literature on the use of anion exchange resins with
various matrix compositions for direct dye removal. The kinetic and equilibrium parame-
ters of the sorption process were determined, as well as the effect of time, concentration,
pH, and temperature on dye adsorption efficiency. Then, both Freundlich and Langmuir
isotherms were tested for their applicability, and the type of adsorption was determined.

2. Materials and Methods
2.1. Materials
2.1.1. Direct Dyes

Thirteen direct dyes were obtained from Isma dye Company in Kafr El Dawar, Egypt,
and were not purified prior to use. The trade name, structure, molecular formula, molecular
weight, synonyms and wavelength of max absorbance of those dyes are presented in Table
S1 in the Supplementary Materials section.

2.1.2. Macro-Reticular Strong/Weak Base Anion Exchange Resins

AMBERLITE IRA958 Cl resin is a macro-reticular strongly basic anion exchange
resin having quaternary ammonium functionality in a crosslinked acrylic polymer matrix.
The porous macro-reticular structure allows the more efficient removal of large organic
molecules and provides excellent resistance to physical breakdown by attrition and osmotic
shock. The acrylic polymer structure contributes to the excellent desorption of organics
during regeneration.

AMBERLITE IRA67 resin is a weak base anion exchange resin with a gel-type acrylic
matrix. It has a high capacity, excellent physical stability, fast kinetics, outstanding resis-
tance to organic fouling, and basicity higher than that of polystyrenic weak base resins.

The commercial synthetic, basic anion exchange resins with the acrylic skeleton:
Amberlite IRA 67 of gel-type structure and Amberlite IRA 958-Cl of the macroporous
structure were obtained from Rohm & Haas (France). The physicochemical properties and
specifications of ion exchange resins are presented in Table 1.
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Table 1. Properties of Amberlite IRA 958-Cl [43,56] and Amberlite IRA67 [43,58].

Anion Exchanger Properties Amberlite IRA 958-Cl Amberlite IRA 67

Physical form White spherical beads White, translucent, spherical beads

Matrix Crosslinked acrylic macroreticular
structure Crosslinked acrylic gel structure

Functional group Quaternary ammonium Tertiary amine—N(CH3)2
Ionic form Chloride—N+ (CH3)3 Cl− Free Base (FB)

Matrix composition and structure acrylic-divinylbenzene, macroporous acrylic-divinylbenzene, gel
Moisture-holding capacity 66 to 72% (Cl-form) 56 to 64% (FB form)

Particle size:

• Uniformity coefficient
• Harmonic mean size

≤1.8
630–850 µm

≤1.80
500–750 µm

Molecular formula C30H44N2O4
Molecular weight 496.68100
BET surface area 2.03 m2/g

Total exchange capacity ≥0.8 eq/dm3 >1.6
Temperature limitations 80 ◦C 60 ◦C

Operating pH range 0–14 0–7
Density (g/cm3) 0.2097 0.2367

Both Amberlite IRA 67and Amberlite IRA 958-Cl were chosen in the study on the
dye removal because they are referred to as anion exchange resins and are particularly
useful as an organic scavenger for effective adsorption of the naturally occurring organic
molecules present in many water supplies. The matrix composition for both resins is acrylic-
divinylbenzene (Figure 1a), and the structure for Amberlite IRA 958-Cl is macroporous
(Figure 1b), while it is a gel (Figure 1c) for Amberlite IRA 67.
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(c) gel [43].

The resins were washed with distilled water to remove impurities and dried.

2.1.3. Equipment and Chemicals

The solutions of all used dyes for adsorption experiments were analyzed using a
model DR 5000™ UV-Vis spectrometer from Hach, Germany in 1 cm quartz cells using



Molecules 2022, 27, 1593 5 of 28

200–1100 nm. The pH was measured with an HI 255 Combined Meter (pH/mV and
EC/TDS/NaCl) from Hanna Instruments, Nijverheidslaan, Belgium. The mass of dyes
and resin powder was weighed with Ohaus Adventurer Analytical Balance AX224M
220 g × 0.1 mg Internal Calibration, Scientific Laboratory Supplies, Nottingham, United
Kingdom. The shaking of samples for solubility and adsorption were performed using
Thermo Scientific™, MaxQ™ 4000 Benchtop Orbital Shakers Catalog number: SHKE4000-
1CE. The dyeing of fabrics was performed in a Lab 2000mL (2L) Laboratory Electric
Thermostatic & Adjustable Heating Mantle, HEQI GLASS.

2.2. Methods
2.2.1. Dyeing Experiments

Single jersey cotton grey fabrics (500 g) were dyed with direct dyes from Isma dye
Company, Kafr El Dawar Egypt, at a liquor to a good ratio of 1:10, at 95 ◦C in a thermostatic
heater, for 60 min, in the presence of 1 mL of LA-S and 1 mL of the antifoaming agent.
The dye bath recipe was according to the Isma dye colour shade card (Figure 2). Table 2
describes the dyeing experimental conditions.

Molecules 2022, 26, x FOR PEER REVIEW 5 of 31 
 

 

2.1.3. Equipment and Chemicals 

The solutions of all used dyes for adsorption experiments were analyzed using a 

model DR 5000™ UV-Vis spectrometer from Hach, Germany in 1 cm quartz cells using 
200–1100 nm. The pH was measured with an HI 255 Combined Meter (pH/mV and 

EC/TDS/NaCl) from Hanna Instruments, Nijverheidslaan, Belgium. The mass of dyes and 
resin powder was weighed with Ohaus Adventurer Analytical Balance AX224M 220 g × 
0.1 mg Internal Calibration, Scientific Laboratory Supplies, Nottingham, United Kingdom. 

The shaking of samples for solubility and adsorption were performed using Thermo Sci-
entific™, MaxQ™ 4000 Benchtop Orbital Shakers Catalog number: SHKE4000-1CE. The 

dyeing of fabrics was performed in a Lab 2000mL (2L) Laboratory Electric Thermostatic 
& Adjustable Heating Mantle, HEQI GLASS. 

2.2. Methods 

2.2.1. Dyeing Experiments 

Single jersey cotton grey fabrics (500 g) were dyed with direct dyes from Isma dye 

Company, Kafr El Dawar Egypt, at a liquor to a good ratio of 1:10, at 95 °C in a thermo-
static heater, for 60 min, in the presence of 1 mL of LA-S and 1 mL of the antifoaming 
agent. The dye bath recipe was according to the Isma dye colour shade card (Figure 2). 

Table 2 describes the dyeing experimental conditions. 
The spent liquors were separated, and the dyed fabrics were soaped with 500 mL 

water at 45 °C for 5 min. The spent and soaping liquors were separated and compared 
with other solutions of known concentration using a spectrophotometer, and their aver-

age concentrations were computed. 

Filtration
Thermostatic heater

1 h at 95 oC

500 g cotton fabric

1 mL of LA-S + 1mL of 

antifoaming agent

Dye+ Salt + Soda ash

Soaping Tank
5 min at 45 

oC

Dyed 
Fabric

Mixer

Spent 
Liquor Soaping 

Liquor

Fabric

Wastewater

Treatment with Anion Exchange Resin (AER)

Treated 
WW

 

Figure 2. Schematic of dyeing and soaping fabrics for preparing dyed WW. 

  

Figure 2. Schematic of dyeing and soaping fabrics for preparing dyed WW.

The spent liquors were separated, and the dyed fabrics were soaped with 500 mL
water at 45 ◦C for 5 min. The spent and soaping liquors were separated and compared
with other solutions of known concentration using a spectrophotometer, and their average
concentrations were computed.

2.2.2. Determination of Calibration Curve

Various dyes of known concentrations were prepared, and their absorbance val-
ues were measured by a spectrophotometer. Then, the calibration curves of each dye
were drawn, from which the exact concentrations could be estimated via the slope of the
absorbance–concentration lines obtained.
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Table 2. Dyeing experimental conditions.

Dye Trade Name Conc. (g/L) NaCl (g) Soda Ash (g)

Yellow RL 1 5 -

Orange GRLL 1.25 10 -

Yellow G 1.25 10 -

Blue 3B 1.25 10 -

Congo red 1 10 1

Blue RL 1.5 10 -

Scarlet 4BS 1 10 0.5

Red 8B 1.25 5 -

Violet R 0.5 5 -

Brown RC 1 20 -

Turquoise GLL 2 10 -

Blue 4GL 1 5 -

Black Meta 4 10 -

2.2.3. Centrifugation Experiments

From the previous dyeing experiments, solutions from the various dyes were prepared
at an average concentration between the spent and soaping liquors concentrations estimated
previously. The solutions were centrifuged for one hour at room temperature at 3750 rpm
and a relative centrifugal force of 3600 gravities. The supernatant liquid was separated,
and the dye concentration was determined. The saturation concentration of the various
dyes was calculated at room temperature.

2.2.4. Kinetic Experiments

First, 100 mL of each dye solution at a respective initial dye concentration varying
from 100 to 500 mg/L was added to 0.5 g of the resin in a small tightly closed glass-
stoppered bottle. Five of these bottles were shaken by a thermostatic shaker at 180 rpm [58]
for different time intervals (0–180 min). The contents of each bottle were decanted with
care in a dry clean beaker. A sample was analysed to determine the concentration of the
dye spectrophotometrically at a specific wavelength for each dye at which absorption is
maximum. Plots of concentration versus time were constructed, and the minimum time
required to reach equilibrium was determined for each dye. The amount of dye adsorbed a
time t (qt (mg/g)) was calculated from Equation (1) [43,54,59]:

qt =
(C0 − Ct)

m
V (1)

The amount of adsorption at equilibrium, qe (mg/g), was calculated by:

qe =
(C0 − Ce)

m
V (2)

where C0 is the dye output concentration mg/L, Ct is the concentration after sorption
time t (mg/L), Ce is the dye concentration in the equilibrium state mg/L, V is the solution
volume L, and m is the resin mass g.

For the description of experimental data, two popular models were applied, based
on which the kinetic parameters were calculated: pseudo-first-order model (PFO) and
pseudo-second-order model (PSO).
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Pseudo-First-Order Model (PFO): The Langergren [60] model from 1898 of the first
order is determined by the following Equation (3):

Log(qe − qt) = Logqe −
k1

2.303
t (3)

where k1 is the pseudo-first-order rate constant (1/min), t is time (min), qe, qt are the
amounts of dye adsorbed at equilibrium and after time t (mg/g), respectively.

From the slopes and intercepts of the plots log (qe − qt) vs. t, k1 and qe were calculated.
Pseudo-Second-Order Model (PSO): This model proposed by Ho and McKay [61,62]

in 1998 is represented by the following Equation (4):

t
qt

=
1

k2q2
e
+

1
qe

t (4)

where k2 is the pseudo-second order rate constant (g/mg·min), t is time (min), qe, qt are the
amounts of dye adsorbed at equilibrium and after time t (mg/g), respectively.

If the kinetics of the sorption process are described by the PSO model, the t/qt vs. t
graph is linear, and qe d k2. can be determined from the slope and intercept.

2.2.5. Equilibrium Experiments

Adsorption isotherms are used to determine the balance between the concentration of
adsorbate in the solid phase and its concentration in the liquid phase. Based on the course
of the isotherm, information about the maximum adsorption capacity of the sorbent can be
obtained. The most commonly used models are Langmuir and Freundlich ones. Different
weights of resins were separately added to a glass-stoppered bottle followed by adding
100 mL of one dye liquor. The bottle was shaken for the predetermined optimum time
for each dye, which was sufficient to reach equilibrium. The temperature was recorded
and controlled in each case. Then, the contents of the bottles were decanted in a clean,
dry beaker, and a sample of each dye was analysed for its concentration at its optimum
wavelength. The experiments were conducted using both SBRs and WBRs.

Langmuir Model: The Langmuir isotherm equation describes chemical adsorption.
The adsorbed substance forms a monomolecular film on the surface of the solid phase. The
Langmuir adsorption isotherm is the basic and most widespread adsorption equation that
can be considered as the initial equation for a number of more detailed studies [63–65]. The
linear form of the Langmuir isotherm is given below (5):

Ce

qe
=

1
Q0b.

+
Ce

Q0
(5)

where Ce is the equilibrium dye concentration (mg/L), Q0 is the monolayer capacity (mg/g),
b is the Langmuir constant (L/mg), and qe is the amount of dye adsorbed at equilibrium
(mg/g).

The values of the Langmuir parameters were obtained from the plots Ce/qe vs. 1/Ce.
A characteristic feature of the Langmuir isotherm is the dimensionless separation

factor RL, which can be calculated as follows (6):

RL =
1

1 + bC0
(6)

where C0 is the highest initial dye concentration (mg/L), and b is the Langmuir constant
(L/mg).

In addition, the value of the dimensionless RL coefficient determines the shape of
the isotherm: unfavorable (RL > 1), linear RL( = 1), favorable (0 < RL < 1), or irreversible
(RL = 0) [18,63].

Freundlich model: The Freundlich (1906) isotherm equation describes the well ad-
sorption on heterogeneous surfaces (non-uniform energy) and microporous adsorbents [59].
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It is used for description of reversible adsorption and is not confined to the formation of a
single layer. The Freundlich model can be described based on the following Equation (7):

log qe = log KF +
1
n

log Ce (7)

where KF is the Freundlich constant, 1
n is the parameter characterizing the energy het-

erogeneity of the adsorbent surface, Ce is the equilibrium dye concentration (mg/L), and
qe. is the amount of dye adsorbed at equilibrium (mg/g). The values of the Freundlich
parameters were calculated from the plots log qe. vs. log Ce. The value 1

n > 1 indicates a
weak bond between the adsorbate and adsorbent molecules, while a value of 1

n < 1 points
to a strong adsorption bond as a result of strong intermolecular attractions in the adsorbent
layers [64,66].

2.2.6. Effect of Solution pH

By mixing the matching anion exchanger (0.5 g) with the dye solution (C0 = 1 g/L) at
the requisite pH, the effect of the initial pH of the dye solution changing from 1 to 12 on
Direct Yellow RL sorption utilizing WBR and SBR was investigated. Dilute 0.1 M NaOH
and 0.1 M HCl solutions were used to alter the pH. Decantation was used to remove the
solution from the anion exchanger, and the dye concentration was evaluated by analysing
the absorbance value spectrophotometrically.

2.2.7. Effect of Temperature

Mixing the matching anion exchanger with the dye solution (C0 = 250–18,000 mg/g)
for 24 h at three different temperatures, 25, 35, and 45 ◦C, was used to investigate the effect
of temperature on Direct Yellow RL sorption utilizing SBR and WBR. The samples were
taken out, the solution was filtered out of the anion exchanger, and the concentration was
evaluated using an absorbance value analysis.

3. Results and Discussion
3.1. Determination of Calibration Curve

Using a UV-Vis spectrometer from Hach Lange, Germany, the maximum absorbance
of Direct Yellow RL is 398 nm is shown in Figure 3. The data for calibration curves and
maximum absorbances for all direct dyes studied in the present work are presented in
Table 3. The calibration curve of Yellow RL dye is depicted in Figure 4. All the calibration
curves for the remaining 12 direct dyes in this study are depicted in the Supplementary
Materials section (Figures S1–S12).
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Table 3. Calibration curves data.

Dye Trade Name Slope Intercept R2 Wavelength Used (λmax)

Yellow RL 0.0337 −0.0518 0.9976 398
Orange GRLL 0.0139 0.0601 0.999 444

Yellow G 0.0245 0.0068 0.9999 497
Blue 3B 0.0258 0.099 0.9823 608

Congo Red 0.039 −0.0635 0.9968 502
Blue RL 0.0149 0.1737 0.9992 588

Scarlet 4BS 0.0267 0.0123 0.9994 507
Red 8B 0.0454 0.0296 0.9997 510
Violet R 0.0277 0.0386 0.9993 532

Brown RC 0.0559 −0.0166 0.9992 460
Turquoise GLL 0.0005 0.0007 0.9984 600

Blue 4GL 0.0427 0.021 0.9997 605
Black Meta 0.0465 0.0216 0.9987 520
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3.2. Determination of Solubilities

Solubilities of various direct dyes in water were determined according to the method-
ology mentioned in Section 2.2.3. Table 4 shows the solubilities of the various dyes used in
the present investigation.

3.3. Effect of Phase Contact Time

The kinetic dependencies of the studied 13 direct dyes adsorption on Amberlite SBR
and WBR were measured for various initial dye concentrations (100–500 mg/L) at room
temperature. As examples, the dependencies of the amounts of the dye adsorbed on the
anion exchanger, qt, vs. the phase contact time are shown in Figures 5 and 6 for Direct
Yellow RL dye. As can be observed, at the specified concentrations, the quantity of dye
adsorbed grew fast at first, then linearly at a slower rate, and finally, there was no growth.
The reached saturation, which is referred to as the equilibrium time, depends on the
concentration of dye. For the macroreticular polyacrylic anion exchanger of the quaternary
functionalities Amberlite IRA 958, the phase contact time needed to reach equilibrium
was 4.7 min in the aqueous solution containing 100 mg/L of dye, while for higher initial
concentrations of 300 and 500 mg/L of dye, it was 15.8 and 30 min, respectively (Figure 5).
For the weakly basic tertiary amine gel anion exchanger Amberlite IRA 67, the time required
for the complete uptake of Yellow RL dye was slower, and for initial concentrations of
100, 300, and 500 mg/L, it was 14.8, 29.8, and 60 min, respectively, as shown in Figure 6.
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Wawrzkiewicz [55] reported a similar result in the sorption of C.I. Direct Red 75 from an
aqueous solution on weakly basic (Amberlite IRA67) and strongly basic (Amberlite IRA458)
anion exchangers of the polyacrylic matrix. The time it took to reach equilibrium increased
as the dye concentration in the water phase increased; it took 30 min, 60 min, and 120 min
for Amberlite IRA67 and 40 min, 60 min, and 120 min for Amberlite IRA458 at initial
concentrations of 100 mg/L, 500 mg/L, and 1000 mg/L, respectively.

Table 4. Solubilities of various dyes.

Dyestuff Trade Name Solubility at Room Temperature (g/L)

Yellow RL 0.4071

Congo Red 0.0269

Blue 3B 0.294

Yellow G 0.1676

Blue RL 0.0451

Scarlet 4BS 0.0522

Violet R 0.0666

Brown RC 0.0475

Turquoise Blue GLL 0.7286

Blue 4GL 0.0579

Black Meta 0.8788

Orange GRLL 0.5198

Red 8B 0.0556
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dye adsorbed by WBR.

3.4. Sorption Kinetic Parameters

Knowledge of adsorption kinetics allows for the adjustment of the entire adsorption
process to improve its efficacy. The process of Direct Yellow RL dye adsorption on SBR
and WBR was described using two commonly used models: pseudo first order (PFO) and
pseudo second order (PSO). These equations are based on the amount of material adsorbed
by a given mass unit of adsorbent in a given time unit. Based on the projected kinetic
parameters, which are reported in Table 5, it is possible to determine which model is the
most compatible.

Table 5. Kinetic parameters for adsorption of Direct Yellow RL on IER using the pseudo first order
and pseudo second order.

Resin C0 (mg/L) Experimental
qe (mg/g)

PFO PSO

qe (mg/g) K1 (1/min) R2 qe (mg/g) K2 (g.mg/min) R2

Amberlite IRA
958 Cl (SBR)

100 9.99 0.979 0.123 0.554 10.13 0.1008 0.9999
300 28.6 0.976 1.990 0.566 30.12 0.0431 0.9999
500 50 0.736 1.664 0.579 50.25 0.0215 0.9999

Amberlite IRA
67 (WBR)

100 9.49 0.457 0.0106 0.056 10.03 0.0858 0.9997
300 29.64 7.184 0.0179 0.562 30.58 0.0122 0.9994
500 50.09 21.35 0.0186 0.688 51.28 0.0037 0.9983

3.4.1. Pseudo-First-Order (PFO) Model

Due to the small values of the determination coefficients R2 in the ranges 0.554–
0.579 for SBR and 0.056–0.688 for WBR, the Lagergren equation was not used to explain
the sorption kinetics of Direct Yellow RL and all direct dyes in the current study on
anion exchange resins of diverse matrices such as Amberlite IR 958 and Amberlite IR 67.
Furthermore, the estimated equilibrium capacities were much lower than those obtained
experimentally (Figure 7 and Table 5). Furthermore, the log (qe − qt) vs. t graph was not
linear.
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3.4.2. Pseudo-Second-Order (PSO) Model

Figure 8 depicts the linearized form of the PSO kinetic dependence for Yellow RL
sorption from different initial concentrations of solution on SBR and WBR. If the kinetics
of the sorption process are described using the PSO model, the plot t/qt. vs. t yields a
linear relationship from which qe. and k2 can be calculated. The k2 constant drops as the
concentration of dye in the aqueous solution grows in the pseudo-second-order model.
Based on the data in Table 5 and Figures 7 and 8, it is conceivable to conclude that the PSO
model better matched the experimental data. This is demonstrated not just by high R2

determination coefficient values (0.999).
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3.5. Adsorption Isotherms

According to Brunauer [67], the types of isotherms obtained in the present work are in
most cases those of type I, which are those associated with systems where adsorption does
not proceed beyond the monomolecular layer, whereas other shapes are of the types that
involve multi-layer formation. Plots of X/m (qe) versus Ce plotted for all the dyes, only
Yellow GL shown here (Figure 9), indicate that many of the dyes investigated are of the
mono-layer type e.g., Yellow RL and Red 8B. Similar observations can be concluded for
Turquoise Blue GLL, Blue 3B, Blue 4GL, Brown RC and Blue RL, while others are of the
multi-layer type II, as e.g., Yellow G, Orange GRLL, and Congo Red, which in addition
are isotherms of the unfavourable type. However, some other dyes such as Black Meta are
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highly adsorbed from dilute solution by SBR, whereas they are poorly adsorbed by WBR.
As to Orange GRLL, its isotherms are unfavourable with both resins, whereas adsorption is
almost doubled in the case of SBR, while in the case of Yellow G, adsorption is weak with
both types of resins and Blue 3B is adsorbed only from dilute solutions in both cases due
to its restricted solubility at 23 ◦C. The figures show that monolayer adsorption follows
both isotherms. On the other hand, it is observed in both cases that Blue 4GL is poorly
adsorbed and that IE is probably not a good option for its recovery. The figures also indicate
that the dye’s bulk structure, configuration, and poor solubility are controlling factors in
determining the poor extent of adsorption onto both SBR and WBR.
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Figure 9. Equilibrium uptake of Direct Yellow RL retention by (a) SBR, (b) WBR, and the fitting of
Freundlich and Langmuir isotherm models.

From the aforementioned results, it can be deduced that Congo Red and Violet R are
the worst dyes adsorbed by the AERs among the dyes tested, whereas Yellow RL and Red
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8B exhibit favourable adsorption by SBR and moderate adsorption by WBR (at only dilute
solutions in case of the last dye).

3.5.1. Freundlich Isotherms

Both Freundlich and Langmuir isotherms were plotted as shown in Figures 10–15,
in which the experiments were conducted mostly at 23 ◦C. Figures 10 and 11 present the
Freundlich isotherms for all dyes tested, using SBR and WBR in respective order. From
Figure 10, Yellow RL and Red 8B are the best dyes removed by SBR, while Yellow G is the
weakest. Again, from Figure 11, it is noticed that the isotherms obtained using WBR are all
steeper than those in Figure 10. However, Yellow RL, Red 8b, Blue 4GL, and Blue RL are
the best adsorbed, but still, they are the least adsorbed by WBR similar to the case of SBR.
Table 6 presents the values of Log KF (intercept) and 1/n (slope) in the Freundlich equation
for the different dyes treated in the present work. The higher the value of KF, the better
the dye removal of the resin. On the other hand, the lower the value of 1/n, i.e., the more
an isotherm tends to be horizontal, the better the dye removal at all dye concentrations
tested. According to Equation (7), the slope (1/n) is parameter characterizing the energy
heterogeneity of the adsorbent surface. The direct dyes where the value 1

n > 1 indicates a
weak bond between the adsorbate and adsorbent molecules from Table 6, in the case of
SBR are Yellow G, Black Meta, Orange GRLL, Congo Red, Violet R, and Scarlet 4BS, while
a value of 1

n < 1 points to a strong adsorption bond as a result of strong intermolecular
attractions in the adsorbent layers [64,66], which in the case of SBR includes Yellow RL,
Turquoise GLL, Red 8B, Blue 4GL, Blue 3B, Brown RC, and Blue RL.
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Moreover, from Table 6, it is observed that the dyes that adsorb best by SBR with
values of 1

n < 1 are yellow RL, Blue RL, Congo red, Turquoise GLL, and Red 8B. The dyes
where the values of 1

n > 1 are Black Meta, Yellow G, Violet R, Scarlet 4BS, Orange GRLL,
Blue 3B, Brown RC, and Blue 4GL. As regards WBR, the table indicates that KF values are
unacceptable in most cases except Yellow RL, Blue RL, and Red 8B.

The values of KF in the case of Yellow RL adsorbed by SBR and WBR were 88.79 and
321.66 (mg1−1/n L1/n/g), respectively. Similar results were obtained by Wawrzkiewicz et al. [56]
in the adsorption of C.I. Direct Yellow 50 by strong base Amberlite IRA 958 Cl resin. The
values of KF for Blue RL were 0.6501 and 1.005 (mg1−1/n L1/n/g), respectively, and almost
the same results were attained by [54] C.I. Direct Blue 71 removal from aqueous solutions
and wastewaters by strong base Amberlite IRA 958 Cl and weak base Amberlite IRA 67.

Figure 12 shows this remark clearly since it presents the Freundlich isotherms for both
SBR and WBR on the same plot for comparison. Overall, it could be stated that adsorption
onto SBR is much more favourable than WBR, proving that the macro-reticular SBR resin
can effectively adsorb the direct dyes tested in the present work compared to WBR.

3.5.2. Langmuir Isotherms

The Langmuir adsorption model implies that all adsorption sites are comparable,
that no interactions exist between adsorbed molecules and neighbouring sites, and that
adsorption occurs in a monolayer. In contrast to the Langmuir model, the Freundlich
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model is applicable to heterogeneous sorption on surfaces with several types of sites.
The Langmuir isotherms have been plotted for all the dyes on both SBR and WBR, as
illustrated in Figures 13 and 14, while the isotherms for the various dyes on SBR and WBR
are presented together on one plot for comparison in Figure 15. The computed constants
for the Langmuir model were heavily influenced by the kind of anion exchanger (Table 7).
The basicity of the resin, as well as the matrix composition and structure, were discovered
to be deciding variables of sorption. The best monolayer sorption capacities calculated
using the Langmuir equation for Amberlite IRA 958 and Amberlite IRA 67 were found
to be 537.63 mg/g (R2 = 0.999) and 692 mg/g (R2 = 0.828), respectively, for Yellow RL
and 1610.32 mg/g (R2 = 0.9999) and 89.1 mg/g (R2 = 0.9999), respectively, for Blue RL.
The dimensionless constant separation factor RL [36] was used to investigate the effect of
isotherm shape on whether adsorption is favourable or unfavourable. It was discovered
that RL values in the 0–1 range indicate the Yellow RL dye’s preferential uptake by SBR
(RL = 0.480769) and WBR (RL = 0.4878048). It is observed that the Langmuir isotherms
are obeyed in all the cases studied (RL ≈ 0–1) as indicated in Table 7, which proves that
adsorption is only mono-layer, as expected. This could be explained as follows: the dye is
attracted to adsorption sites after diffusing through the resin pores, where it reacts with
the resin’s positively charged sites internally as well as on the surface, and it prevents
further layers from being attached due to the repulsion of free sulfonic and carboxylic acid
groups on the adsorbed dye molecule, which prevents further adsorption onto the initial
monolayer.
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3.6. Impact of Quantity of Amberlite IRA Resins

The impact of the quantities of Amberlite IRA resin on the acrylic acid adsorption
was investigated by replacing different amounts of 0.02–2 g for each Amberlite IRA resin
by using the concentration of dyes that resulted from dyeing and soaping illustrated in
Table 8 at the equilibrium contact time of 240–600 min and a temperature of 20–21 ◦C.
The results of these adsorption experiments were illustrated in Figures 16 and 17. They
show an abrupt decrease in the capacity of adsorption with the increasing amount of the
adsorbents. It has been observed from Figures 16 and 17 that as the resin quantity rose,
the adsorption capacity values for both Amberlite IRA decreased prominently for some
direct dyes and slightly for others. However, the lowest dosage for both Amberlite resins
can be considered as the optimum adsorbent dosage in this interval studied. By using this
optimum adsorbent quantity, the highest adsorption capacity values were 724.52 mg/g for
Amberlite IRA-958 in case of Black Meta and 329 mg/g for Amberlite IRA-67 in case of
Yellow RL.

3.7. Effects of Initial pH

The acidity or basicity of the solution has a big impact on the ion exchange process.
The ionic form of the resin (dissociation degree of functional groups), and consequently the
nature of interactions between a dye and an adsorbent, is affected by the pH of the solution.
In the pH range of 2 to 10, the direct dye chosen (Yellow RL) for the investigations has
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four sulfonic groups in ionized form. WBR has tertiary amine groups that work at low pH
when the hydrogen ion concentration is high enough to protonate the resin, whereas SBR
has quaternary ammonium groups that are ionic in both acid and basic environments, and
both sorption capacities stay constant throughout a wide pH range. The dye adsorption
on both resins was unaffected by the solution pH. After 15 min of phase contact time,
the qt values for SBR and WBR were 47.9 and 45.8 mg/g, respectively. Non-electrostatic
mechanisms, as well as traditional ion exchange mechanisms, should be considered to
explain this behaviour [58,68]. There can be hydrogen bonding interactions between the
nitrogen of the tertiary amine groups and the oxygen of the dye’s hydroxyl group. The
van der Waals force being hydrophobic interaction, i.e., the π-π interaction between the
aromatic character of the polymeric matrix and the aromatic ring of the dye, can also be
ascribed to WBR’s acceptable performance [54,55,58,68]. The former is a more relevant
adsorption process for hydrophilic and highly water-soluble direct dye molecules that exist
as anions in the aqueous phase throughout a wide pH range.

Table 6. Equations, values of slope, and intercept for Freundlich isotherms.

Direct Dye
Trade Name

Strong Base Resin (Amberlite IRA 958CL)

Equation of the
Straight Line (Intercept) (Log KF) (Slope)

(1/n) R2 KF
(mg1−1/n L1/n/g)

Yellow RL y = 0.2204x + 1.9484 1.9484 0.2204 0.9985 88.79

Orange GRLL y = 5.2708x − 9.348 −9.348 5.27085 0.9958 4.48 × 10−10

Yellow G y = 6.0946x − 9.5475 −9.5475 6.0946 0.9621 2.834 × 10−10

Blue 3B y = 0.624x + 1.4071 1.4071 0.624 0.9819 25.53

Congo Red y = 3.3993x − 2.7613 −2.7613 3.3993 0.8785 0.00173

Blue RL y = 0.7873x + 0.1870 0.1870 0.7873 0.9997 0.6501

Scarlet 4BS y = 1.0183x + 0.318 0.318 1.0183 0.9919 2. 079

Red 8B y = 0.2896x + 1.8542 1.8542 0.2896 0.9965 71.48

Violet R y = 1.8972x − 1.5557 −1.5557 1.8972 0.9949 0.0278

Brown RC y = 0.7382x + 0.32 0.32 0.7382 0.9922 2.0892

Turquoise GLL y = 0.2343x + 1.5101 1.5101 0.2343 0.9948 32.366

Blue 4GL y = 0.3362x + 1.1069 1.1069 0.3362 0.9974 12.79

Black Meta y = 5.3139x − 5.615 −5.615 5.3139 0.9968 2.43× 10−6

Direct Dye
Trade Name

Weak Base Resin (Amberlite RA 67)

Equation of the
Straight Line

K
(Intercept) (Log KF)

n
(Slope) (1/n) R2 KF

(mg1−1/n L1/n/g)

Yellow RL y = 0.1280x + 2.5074 2.5074 0.128 0.9989 321.66

Orange GRLL y = 1.7365x − 2.5227 −2.5227 1.7365 0.9687 0.003

Yellow G y = 6.9428x − 12.043 −12.043 6.9428 0.9963 9.57 × 10−13

Blue 3B y = 1.3913x + 0.335 0.3919 1.3913 0.9987 2.465

Congo Red y = 0.9578x − 0.046 −0.046 0.9578 1 0.899

Blue RL y = 0.6357x +0.0216 0.00216 0.6357 0.9999 1.005

Scarlet 4BS y = 1.85x − 1.8614 −1.8614 1.85 0.9977 0.0137

Red 8B y = 0.9715x + 0.7985 0.7985 0.9715 0.9921 6.287

Violet R y = 5.677x − 9.3312 −9.3312 5.677 0.9641 4.66 × 10−10

Brown RC y = 1.3269x − 0.7979 −0.7979 1.3269 0.914 0.1592

Turquoise GLL y = 0.9676x − 0.4082 −0.4082 0.9676 0.9926 0.3907

Blue 4GL y = 1.0246x + 0.4431 0.4431 1.0246 0.9876 2.7739

Black Meta y = 11.932x − 23.772 −23.772 11.932 0.9426 1.69 × 10−24
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Table 7. Equations, values of slope, and intercept for Langmuir isotherms.

Direct Dye
Trade Name

Strong Base Resin (Amberlite IRA 958CL)

Equation of the
Straight Line (Intercept)(1/Q0 b) (Slope) (1/Q0) R2 Q0

(mg/g) b (L/mg) RL
from Equation (6)

Yellow RL y = 0.00186x + 0.258 0.2583 0.00186 0.9999 537.634 0.0072 0.480769

Orange GRLL y = 4.3446x − 0.0212 −0.0212 4.3446 0.9888 0.23017 −204.93 −9.759 × 10−6

Yellow G y = 11.299x − 0.1417 −0.1417 11.299 0.9886 0.08850 −79.738 −8.361 × 10−5

Blue 3B y = 0.1149x + 0.0011 0.0011 0.1149 0.9275 8.70322 104.45 4.786 × 10−5

Congo Red y = 6.2127x − 0.3971 −0.3971 6.2127 0.9094 0.16096 −15.645 −0.003206

Blue RL y = 0.00062x + 0.62099 0.62099 0.00062 0.9999 1610.32 0.0001 0.9900990

Scarlet 4BS y = 0.4338x + 0.0042 0.0042 0.4338 0.9678 2.30520 103.28 0.0001936

Red 8B y = 4.0172x − 0.0812 −0.0812 4.0172 0.9959 0.24892 −49.472 −0.0001010

Violet R y = 0.0259x + 0.0043 0.0043 0.0259 0.8749 38.6100 6.0232 0.0033095

Brown RC y = 0.6064x + 0.0244 0.0244 0.6064 0.9793 1.64907 24.852 0.0010049

Turquoise GLL y = 0.0473x + 0.012 0.012 0.0473 0.9081 21.1416 3.9416 0.0005071

Blue 4GL y = 0.0932x + 0.0254 0.0254 0.0932 0.9747 10.7296 3.6692 0.0045217

Black Meta Y = 0.2934x − 0.0032 −0.0032 0.2934 0.9942 3.40831 −91.687 −2.7267 × 10−5

Direct Dye
Trade Name

Weak Base Resin (Amberlite RA 67)

Equation of the
Straight Line (Intercept) (1/Q0 b) (Slope) (1/Q0) R2 Q0 b (L/mg) RL

from Equation (6)

Yellow RL y = 2.50650x + 0.00144 2.50650 0.00144 0.9932 692 0.007 0.4878048

Orange GRLL y = 1.8352x − 0.0014 −0.0014 1.8352 0.9423 0.544899 −1310. −1.526 × 10−6

Yellow G y = 9.2704x − 0.1425 −0.1425 9.2704 0.9481 0.107870 −65.055 −0.0001024

Blue 3B y = 0.0781x − 0.0014 −0.0014 0.0781 0.7777 12.80409 −55.785 −8.963 × 10−5

Congo Red y = 0.6434x − 0.0009 −0.0009 0.6434 0.9998 1.554243 −714.88 −6.994 × 10−5

Blue RL y = 0.0112x + 0.2078 0.20784 0.0112 0.9999 89.1 0.054 0.15625

Scarlet 4BS y = 3.0257x − 0.0589 −0.0589 3.0257 0.9866 0.330502 −51.370 −0.0003894

Red 8B y = 0.0933x − 0.001 −0.001 0.0933 0.9524 10.71811 −93.3 −5.359 × 10−5

Violet R y = 29.184x − 0.6376 −0.6376 29.184 0.9797 0.034265 −45.771 −0.0004371

Brown RC y = 1.6284x − 0.0337 −0.0337 1.6284 0.9459 0.614099 −48.320 −0.0005176

Turquoise GLL y = 0.8126x + 0.0009 0.0009 0.8126 0.9486 1.230617 902.88 2.215 × 10−6

Blue 4GL y = 0.1918x − 0.0028 −0.0028 0.1918 0.9896 5.213764 −68.5 −0.0002433

Black Meta y = 19.301x − 0.2238 −0.2238 19.301 0.8572 0.051810 −86.242 −2.89 × 10−5

The pH value of the solution, which is a key regulating parameter in adsorption, is
determined primarily by two factors: (i) the distribution of the dye ionized species in
the solution phase, and (ii) the total charge of the adsorbent. As a result, the interaction
between the dye molecules and the adsorbent is essentially a combination of charges on
the dye molecules and the adsorbent’s surface [69,70].

3.8. Effects of Initial Temperature

Since certain textile dye effluents are generated at high temperatures, temperature can
be an essential issue in the practical application of anion exchangers [71]. The influence of
temperature on the equilibrium Yellow RL dye adsorption capacity of each anion exchanger
was studied in the temperature range of 25–45 ◦C at various initial dye concentrations,
with a constant quantity of adsorbent of 0.2 g and a constant contact period of 180 min.
Figures 18 and 19 show graphs of the dye quantity adsorbed at equilibrium (qe) vs. the
liquid-phase concentrations of the dye at equilibrium (Ce) at three examined temperatures
for the Yellow RL-SBR and Yellow RL-WBR systems, respectively. In the instance of
dye adsorption on Amberlite IRA-958, there is a significant increase in Direct Yellow RL
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absorption when the temperature is elevated from 25 to 45 ◦C. Temperature increases
have a detrimental influence on the adsorption process, and dye absorption decreases
insignificantly. The variation in total adsorption capacity of SBR for Direct Yellow RL
between 25 and 45 ◦C is about 45 mg/g. The increase in adsorption might be explained
by a reduction in the thickness of the boundary layer surrounding the resin beads as the
temperature rises, lowering the dye molecules’ mass transfer resistance in the boundary
layer. This might be due to an increase in the dye molecules’ mobility as their kinetic energy
rises as well as a faster rate of intraparticle diffusion of the adsorbate as the temperature
rises [70]. A closer look at Yellow RL adsorption behaviour on Amberlite IRA-958 at a higher
temperature of 45 ◦C reveals that the adsorption capacity value of 560 mg/g obtained at this
temperature is lower than the extremely high values of 592 mg/g achieved at 35 ◦C. Greluk
and Hubicki observed a similar temperature influence on the dye adsorption trend for
Reactive Black 5 adsorption on the strongly basic anion exchanger Amberlite IRA-958 [68].
This behaviour might be explained by a reversible adsorption process or a reverse diffusion
control mechanism.

Table 8. Experimental conditions for batch experiments.

Dye
Trade Name

Dye
Conc.
(g/L)

Resin
Type

Resin
Weight (g)

Shaking
Time
(min)

Temperature
(◦C)

Yellow RL 0.15 SBR 0.04, 0.05, 0.07, 0.1 240 21

Orange GRLL 0.5 SBR 0.1, 0.15, 0.2, 0.25, 0.3 240 21

Yellow G 0.15 SBR 0.1, 0.2, 0.3, 0.5 240 21

Blue 3 B 0.2 SBR 0.04, 0.06, 0.08, 0.1 240 21

Congo Red 0.02 SBR 0.05, 0.1, 0.15, 0.25 240 21

Blue RL 0.04 SBR 0.75, 1.0, 1.25, 1.5 240 21

Scarlet 4BS 0.05 SBR 0.1, 0.2, 0.3, 0.4, 0.5 240 21

Red8B 0.2 SBR 0.05, 0.075, 0.125, 0.15 240 21

Violet R 0.05 SBR 0.1, 0.15, 0.2, 0.3 240 21

Brown RC 0.04 SBR 0.1, 0.2, 0.3, 0.4 240 21

Turquoise Blue GLL 0.5 SBR 0.5, 0.6, 0.75, 1.0 240 21

Blue 4GL 0.06 SBR 0.15, 0.2, 0.25, 0.3 240 21

Black Meta 0.4 SBR 0.05, 0.1, 0.15, 0.2, 0.25 240 21

Yellow RI 0.15 WBR 0.02, 0.04, 0.06, 0.1, 0.12 600 20

Orange GRLL 0.5 WBR 0.1, 0.2, 0.3, 0.4, 0.5 600 20

Yellow G 0.15 WBR 0.1, 0.3, 0.5, 0.7 600 20

Blue 3B 0.2 WBR 0.02, 0.04, 0.06, 0.08 600 20

Congo Red 0.025 WBR 0.2, 0.3, 0.4 600 20

Blue RL 0.04 WBR 0.25, 0.5, 0.75, 1.25 600 20

Scarlet 4 BS 0.05 WBR 0.1, 0.2, 0.3, 0.4 600 20

Red 8B 0.2 WBR 0.05, 0.075, 0.1, 0.125 600 20

Violet R 0.05 WBR 0.1, 0.2, 0.25, 0.3 600 20

Brown RC 0.04 WBR 0.1, 0.2, 0.3, 0.4, 0.5 600 20

Turquoise Blue GLL 0.05 WBR 0.25, 0.5, 0.6, 0.75, 1.0 600 20

Blue 4GL 0.06 WBR 0.15, 0.2, 0.25, 0.3 600 20

Black Meta 0.4 WBR 0.5, 1.0, 1.5, 2.0 600 20
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Figure 18. Experimental adsorption isotherms of Direct Yellow RL for SBR achieved at various
temperatures (conditions: phase contact time: 180 min, volume: 20 mL, resin mass: 200 mg, agitation
rate: 180 rpm).
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Figure 19. Experimental adsorption isotherms of Direct Yellow RL for WBR achieved at various
temperatures (conditions: phase contact time: 180 min, volume: 20 mL, resin mass: 200 mg, agitation
rate: 180 rpm).

The adsorption capability of Amberlite IRA-67 decreased significantly with increasing
temperature, from 640 to 535 mg/g for a temperature range of 25–45 ◦C. This suggests
that the exothermic mechanism regulated the adsorption of Yellow RL on the weakly
basic WBR at a low temperature of 25 ◦C. The slopes of the isotherms at 35 and 45 ◦C
are shallow, indicating that interactions between the dye and the weakly basic Amberlite
IRA-67 were minimal at these temperatures. The observed results can be attributed to the
previously described poor attraction of tertiary amine groups to dye anions. As a result,
as the temperature rises, the dye anions may re-emerge from the solid phase into the bulk
phase. Furthermore, when the temperature rises, the solubility of the direct dye rises, and
the contact forces between the molecule and the solution become higher than those between
the molecule and the anion exchanger, making the dye more difficult to adsorb [72,73].
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The decrease in the anion exchanger adsorption capacity for direct dyes with increasing
temperature is consistent with the findings of Tan et al. [63] for Methylene Blue adsorption
on coconut husk-based activated carbon and Vimonses et al. [74] findings for a study
evaluating the adsorption capacity of Australian clay materials to remove Congo Red.

When the obtained adsorption capacity values for both anion exchangers, weakly
basic Amberlite IRA-67 and strongly basic Amberlite IRA-458, are compared, it is clear that
Amberlite IRA-958 has significantly better adsorption properties for direct dyes adsorption
over the entire temperature range investigated. It follows that the quaternary ammonium
groups of SBR have a stronger affinity for the dye anions than the tertiary amine groups of
low basicity resins, such as WBR.

4. Conclusions

It has been shown from the present work that direct dyes can be recovered from
aqueous solution to different extents, by both macroreticular SBR and WBR, depending
on the structure, configuration, molecular size, number and type of solubilizing groups,
and the type of resin: whether SBR or WBR. The predominating factors seem to be the dye
molecular weight and the type of resin (SBR or WBR), followed by the type and number
of solubilizing groups, then lastly the dye configuration. The equilibrium data were fitted
well using the Langmuir isotherm model. The conclusions may be stated as follows:

• The dye molecular weight is a predominating factor in controlling its diffusion through
the resin pores to the active adsorption sites, and therefore, it greatly influences the
degree of adsorption that takes place.

• The number of solubilizing groups in the dye molecule, and their type (whether -SO3H
or -COOH), affects the degree of adsorption and controls the extent of adsorption to
different anion exchangers.

• The type of resin, whether strong base or weak base anion exchanger, affects the extent
of dye adsorption.

• Macro-reticular resin has proven to be efficient in the adsorption of different dyes
compared to the other type.

• The number and type of substituent groups in the dye molecule affect the degree of
adsorption to the resin.
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70. Aksu, Z.; Tatlı, A.İ.; Tunç, Ö. A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium
and kinetic parameters. Chem. Eng. J. 2008, 142, 23–39. [CrossRef]

71. Xue, Y.; Hou, H.; Zhu, S. Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag:
Isotherm and kinetic study. Chem. Eng. J. 2009, 147, 272–279. [CrossRef]

72. Renault, F.; Morin-Crini, N.; Gimbert, F.; Badot, P.-M.; Crini, G. Cationized starch-based material as a new ion-exchanger
adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions. Bioresour. Technol. 2008, 99, 7573–7586. [CrossRef]

73. Netpradit, S.; Thiravetyan, P.; Towprayoon, S. Adsorption of three azo reactive dyes by metal hydroxide sludge: Effect of
temperature, pH, and electrolytes. J. Colloid Interface Sci. 2004, 270, 255–261. [CrossRef]

74. Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by
clay materials. Chem. Eng. J. 2009, 148, 354–364. [CrossRef]

http://doi.org/10.1021/ie501992n
http://doi.org/10.1016/j.cej.2011.08.048
http://doi.org/10.1080/01496395.2019.1583254
http://doi.org/10.3390/w13030385
http://doi.org/10.1016/j.cej.2011.03.052
http://doi.org/10.1007/BF01501332
http://doi.org/10.1205/095758298529326
http://doi.org/10.1007/s10450-013-9529-0
http://doi.org/10.1016/j.jhazmat.2007.10.031
http://www.ncbi.nlm.nih.gov/pubmed/18035483
http://doi.org/10.1016/j.jhazmat.2007.12.105
http://doi.org/10.1007/s13762-019-02467-4
http://doi.org/10.1007/s13201-020-01184-5
http://doi.org/10.1021/ja01864a025
http://doi.org/10.1016/j.cej.2010.06.043
http://doi.org/10.1016/j.watres.2009.10.042
http://www.ncbi.nlm.nih.gov/pubmed/20003999
http://doi.org/10.1016/j.cej.2007.11.005
http://doi.org/10.1016/j.cej.2008.07.017
http://doi.org/10.1016/j.biortech.2008.02.011
http://doi.org/10.1016/j.jcis.2003.08.073
http://doi.org/10.1016/j.cej.2008.09.009

	Introduction 
	Materials and Methods 
	Materials 
	Direct Dyes 
	Macro-Reticular Strong/Weak Base Anion Exchange Resins 
	Equipment and Chemicals 

	Methods 
	Dyeing Experiments 
	Determination of Calibration Curve 
	Centrifugation Experiments 
	Kinetic Experiments 
	Equilibrium Experiments 
	Effect of Solution pH 
	Effect of Temperature 


	Results and Discussion 
	Determination of Calibration Curve 
	Determination of Solubilities 
	Effect of Phase Contact Time 
	Sorption Kinetic Parameters 
	Pseudo-First-Order (PFO) Model 
	Pseudo-Second-Order (PSO) Model 

	Adsorption Isotherms 
	Freundlich Isotherms 
	Langmuir Isotherms 

	Impact of Quantity of Amberlite IRA Resins 
	Effects of Initial pH 
	Effects of Initial Temperature 

	Conclusions 
	References

