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This research developed an easy-to-use, reproducible pancre-
atic cancer animal model utilizing pancreas-targeted hydrody-
namic gene delivery to deliver human pancreatic cancer-related
genes to the pancreas of wild-type rats. KRASG12D-induced
pancreatic intraepithelial neoplasia lesions showed malignant
transformation in the main pancreatic duct at 4 weeks and
developed acinar-to-ductal metaplasia, which led to pancreatic
ductal adenocarcinoma within 5 weeks, and the gene combina-
tion of KRASG12D and YAP enhanced these effects. The repeat
hydrodynamic gene delivery of KRASG12D + YAP combination
at 4 weeks showed acinar-to-ductal metaplasia in all rats and
pancreatic ductal adenocarcinoma in 80% of rats 1 week later.
Metastatic tumors in the liver, lymph nodes, and subcutaneous
lesions and nervous invasion were confirmed. KRASG12D and
YAP combined transfer contributes to the E- to N-cadherin
switch in pancreatic ductal adenocarcinoma cells and to tumor
metastases. This pancreatic cancer model will speed up pancre-
atic cancer research for novel treatments and biomarkers for
early diagnosis.

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of can-
cer-related deathsworldwide,1,2 and the development of effective ther-
apies is an unmet clinical need. The lack of an appropriate pancreatic
cancer model is the major drawback. The model must mimic human
pancreatic cancer inmolecular pathogenesis, histological features, and
multi-step malignant transformation for tumor marker and therapy
development. Currently available models include chemical carcin-
ogen-induced animal models,3–8 cancer cell line-based xenografts, pa-
tient-derived xenografts, and organoid models.9 In addition, injection
of adenovirus-expressing Cre recombinase into the pancreatic duct of
Hras and Kras transgenic rats showed pancreatic neoplasia, which is
considered to be a pancreatic cancer model.10 However, these models
fail to achieve the reproducibility, cost benefit, efficacy, and similarity
with human PDAC necessary for the development of novel therapies
and biomarkers. Therefore, novel pancreatic cancer animal models
with simple, easy, and reproducible methods are essential.
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With this aim, we applied the hydrodynamic gene delivery (HGD)
method, which has been used successfully to developmice liver cancer
in vivo by delivering oncogenes, including Yap, Ras, and Myc, to the
liver11-13. To utilize this method, we established pancreas-targeted
HGD to wild-type rats. The major advantages of this procedure
include safe and effective gene delivery in a pancreas-specific manner,
and optimization of injection parameters achieved effective transgene
expression in vivo with no leakage of the transgene to other organs.14

For the transgenes, theKRASG12D variant is related to pancreatic intra-
epithelial neoplasia (PanIN), and this dosage activated PDAC occur-
rence in almost all pancreatic cancers.10,15,16 Sequentially activated
genes, including CDKN2A, TP53, SMAD4, and YAP genes, increase
the malignant potential of the tumors and contribute to the develop-
ment of later-stage pancreatic intraepithelial neoplasia (PanIN) and
acinar-to-ductal metaplasia (ADM).17–19 ADM is the initial stage of
PDAC15,20–22 andYAP showed high expression in PDACcontributing
to malignant transformation and metastasis through epithelial-
mesenchymal transition (EMT).23–27 Interestingly, it has been re-
ported that YAP is a critical oncogenic effector of KRASG12D for the
development of PDAC and can be a promising therapeutic target
for PDAC.17,28 Therefore, in this study, we utilized the pancreas-tar-
geted HGD to examine the development of in vivo pancreatic cancer
models by delivering oncogenes, including KRASG12D and YAP.
RESULTS
Effect of the in vivo oncogene HGD on the oncogenic signaling

pathway

To examine whether in vivo oncogene HGD could activate the
following carcinogenic signaling pathway, the time-dependent gene
expression of the KRAS-related signaling pathway was examined after
uthor(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Schematic presentation of pancreas-targeted hydrodynamic

gene delivery induced pancreatic cancer model

Schema of pancreas-targeted HGD of oncogenes from the SMV with a temporary

vascular blockade at the PV. HGD, hydrodynamic gene delivery; HV, hepatic vein;

PV, portal vein; SV, splenic vein; IVC, inferior vena cava; SMV, superior mesenteric

vein.
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pancreas-targeted HGD. The expressions of KRASG12D, Akt, Erk, Yap,
Tgf-b1, and CTGF and the phosphorylation of Akt and Erk were as-
sessed (Figure 2). Western blotting showed effective expression of
KRASG12D, an increase of Akt, and phosphorylation of Akt 1 day after
HGD, which was sustained for 5 days and decreased or was inactivated
within 4 weeks. Erk showed a longer increase and phosphorylation
duration, which was sustained for 4 weeks. Increased Yap, Tgf-b1,
and Ctgf expressions were confirmed following the HGD of
KRASG12D. HGD of the YAP gene showed increased Yap, Tgf-b1,
and Ctgf expressions more clearly than KRAS HGD, while no increase
of Kras, Akt, and Erk expression was seen (Figure 2A). Protein expres-
sion analyses in vitro using BxPC-3 and Panc-10.05, derived from
pancreatic adenocarcinoma and hTERT-HPNE, with hTERT-immor-
talized pancreatic duct-derived epithelial cell used as a control, showed
activation ofAkt or Erk followed by the expressions of Yap, Tgf-b1, and
Ctgf (Figure 2B). These results indicate that in vivo gene transfer of on-
cogenes to the pancreas achieved activation of the oncogene-related
signaling pathway, which is activated in pancreatic cancer.
The effect of pancreas-targetedHGDof oncogene on pancreatic

tumor development

To examine the effect of pancreas-targeted HGD of oncogenes on
pancreatic tumor development, pancreatic carcinogenesis-related
oncogenes of KRASWT, KRASG12D,15,16,28,29 MYC,30 and YAP17,31

were hydrodynamically transferred to the wild-type rat pancreas,
following a previously reported method,14 which is briefly described
in the materials and methods section (Figure 1). The plasmids were
injected either individually or in combination (Figure 3A). KRASG12D

single gene delivery showed the development of some but not all
macroscopic nodular lesions (Figure 3B), and all pancreatic tissues
were harvested regardless of the mass development 4 weeks after
HGD during the active period of transferred gene expression, as
shown in Figure 2. Main pancreatic ducts were stained with hematox-
ylin and eosin (H&E) and MUC5AC, the indicator for the PanIN-1B,
which is the preliminary stage of pancreatic cancer, and Ki-67 as a
marker of malignant potential, which is thought to be the marker
for PanIN-3 (Figure 3C). The results showed that genes including
KRASG12D plasmid-transferred rat groups (KRASG12D, KRASG12D +
MYC, KRASG12D + MYC + YAP, KRASG12D + YAP) showed a pre-
dominantly papillary or micropapillary structure and variable degrees
of cytologic and architectural atypia compared to the flat epithelium
composed of tall columnar mucin-producing cells in the main
pancreatic ducts of rats in groups transferring plasmids, including
KRASWT genes (KRASWT, KRASWT + MYC, KRASWT + MYC +
YAP) (Figure 3C). Immunohistochemical analyses revealed a signifi-
cantly higher level of MUC5AC and Ki-67 positively stained cells in
groups transferred with KRASG12D-expressing plasmids compared
to those of the control groups (WT, NS), YAP-transferred group,
and plasmid-transferred groups, including KRASWT genes (KRASWT,
KRASWT + MYC, KRASWT + MYC + YAP) (Figures 3C and 3D).
These results showed that pancreas-targeted HGD of KRASG12D

gene achieved a microscopic neoplastic lesion of the pancreas with
variable mucin production, which is a feature of PanIN, the precursor
lesion of invasive PDAC. In addition, while single transfer of the YAP
gene showed no PanIN development, combinatory transfer with the
KRASG12D gene and YAP gene showed statistically higher
MUC5AC expression than that of KRASG12D and KRASG12D +
MYC, which indicated that KRASG12D + YAP HGD to the pancreas
causes more malignant tumors in wild-type rats (Figures 3C and 3D).

The effect of repeat injection of KRASG12D on the PanIN

progression

Based on the results showing that KRASG12D increases the atypia of
PanIN, oncogenic dosage gain affects the progression of PDAC,16 and
hydrodynamic injection reactivates silenced transgene expression,32

we examined the effect of repeatHGDofKRASG12Donmalignant trans-
formation and carcinogenesis in the pancreas.KRAS expression peaked
within a week after pancreas-targetedHGD, and its signal transduction
to Akt and Erk was sustained for 4 weeks. The second administration of
KRASG12D was performed 4 weeks after the first administration, and
pancreatic tissues were harvested a week after second administration.
The pancreatic tissue that received repeat injections of KRASG12D

(KRASG12D/KRASG12D) showedhigh-grade dysplastic changes in the in-
traepithelial lesion and atypia (Figure 3E), as evidenced by the immuno-
histochemical staining of Ki-67 showing a larger number of positively
stained cells, while no further increase of MUC5AC stainability was
observed (Figure 3F). These results suggest thatKRASoncogenic dosage
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Figure 2. Expression of carcinogenic signaling

pathway proteins

(A) Expressions of KRASG12D, Akt, pAKT, Erk, pErk, Yap,

Tgf-b1, Ctgf, and b-actin in the pancreas of KRASG12D-

HGD and YAP-HGD rats. (B) Expression of the proteins in

the cell lines of hTERT-HPNE and hTERT-immortalized

pancreatic duct-derived epithelial cell, and BxPC-3 and

Panc-10.05, derived from pancreatic adenocarcinoma.

HGD, hydrodynamic gene delivery.
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gain increased the malignant potential of PanIN and induced atypical
lesions (Figure 3C).

The effect of combination and repeat injection of the oncogene

to the ADM and PDAC development

As ADM of the pancreas is the origin of PDAC and related to
KRASG12D tumorigenesis in pancreas,15 the effect of repeat injections
of the oncogenes is examined on ADM formation. The rat groups of
WT, NS/NS,KRASG12D, KRASG12D + YAP, KRASG12D/NS,KRASG12D/
KRASG12D, KRASG12D/YAP, and KRASG12D + YAP/KRASG12D + YAP
(Figure 4A) were histologically examined for ADM development
(Figures 4B and 4C). H&E staining showed ADM formation after sin-
gle KRASG12D administration; its dysplastic change was observed
when combined with YAP (KRASG12D + YAP group), and
MUC5AC and Ki-67 positively stained cells showed its increase.
This tendency was enhanced by a second injection of genes, and
KRASG12D/KRASG12D, KRASG12D/YAP, and KRASG12D + YAP/
KRASG12D + YAP showed clear increases in Ki-67 stainability and
MUC5AC-positive cells (Figure 4C). Among these groups, KRASG12D

+ YAP/KRASG12D + YAP showed severe dysplasia and macroscopic
tumors (Figure 4D). We summarized the frequency of macroscopic
tumor development in these repeat injection groups in Figure 4E.
H&E images of the representative pancreatic tumor including ADM
and PDAC lesions in the rat injected with KRASG12D + YAP/
KRASG12D + YAP genes are shown in Figure 4F. ADM lesions are
seen in acinar cells and PDAC lesions showing severe dysplasia in
ADM lesions with fibrotic changes. While single KRASG12D adminis-
tration showed ADM in 33% of rats, repeat KRASG12D injection
(KRASG12D/KRASG12D) showed significantly increased ADM forma-
tion to 66% and PDAC in 33% of rats, thus indicating that ADM for-
mation is related to the dosage of KRAS proteins and activation of the
signaling pathway (Figure 4E). KRASG12D/YAP showed tumorous
lesions macroscopically (Figure 4D); among rats, all showed ADM,
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40% showed PDAC, and 20% showed metastatic
tumors in lymph nodes and the liver. This indi-
cates that induction of ADM by KRASG12D fol-
lowed by YAP gene transfer activates malignant
transformation, which was confirmed by
KRASG12D + YAP/KRASG12D + YAP showing
several macroscopically defined tumors in the
pancreas (Figure 4D) that were histologically
100% ADM and 80% PDAC. In addition, 30%
of rats showed metastatic lesions in the
lymph node and liver, subcutaneous lesions, and nervous invasion.
Immunohistochemical staining of Ki-67 on the pancreatic tissues of
KRASG12D + YAP/KRASG12D + YAP showed the highest number of
positively stained cells among the groups (Figure 4C). In addition,
PDAC tumors showed activation of Akt, Erk, Yap, Tgf-b1, and
Ctgf, which was consistent with in vivo and in vitro gene assessment
(Figure 4G). Serum levels of CA19-9 were statistically higher in
KRASG12D-transferred group and further in KRASG12D and YAP-
transferred rats (Figure 4H). These results suggest that pancreas-tar-
geted HGD of KRASG12D and YAP genes develop pancreatic cancer in
wild-type rats in an efficient and timely manner.

Assessment of metastatic tumors

To confirm the histological diagnosis of the metastatic tumors found
in rats transferred with KRASG12D and YAP, tumors in the liver and
lymph node, and subcutaneous lesions and nervous invasion that
were diagnosed in the KRASG12D + YAP/KRASG12D + YAP group
rats were assessed on the basis of histological characters determined
by H&E, CK7, CK20, Ki-67, and E� and N-cadherin expressions
that were related to cancer metastasis33 (Figure 5). For liver metas-
tasis, the tumor cells surrounded by normal liver cells were stained
with an anti-hepatocyte-specific antigen, anti-Hep-Par1. H&E stain-
ing showed tubular, small-sized duct-like irregular gland structures
with marked nuclear atypia close to the bile duct in the liver. These
cells were positively stained for CK7 and CK20 by a marked number
of Ki-67-positive cells. Both E- and N-cadherin stained positive
(Figure 5A). Subcutaneous metastatic tumors showed a solid white-
yellowish mass with small to middle-sized irregular duct-like struc-
tures significantly stained positive with Ki-67, CK7, CK20, and
N-cadherin (Figure 5B). Lymph node metastasis showed tubular,
middle-sized duct-like structures with papillary formations sur-
rounded by lymphoid tissue. The tumor showed marked nuclear aty-
pia stained significantly positive for Ki-67, and the cells were stained



Figure 3. Effect of pancreas-targeted HGD of oncogene on pancreatic tumor development

(A) The list of animal group and genes injected (n = 6 for each group). WT, wild-type; NS, normal saline. (B) Macroscopic nodular lesions in the pancreas of the rats

injected with KRASG12D. Black arrows represent nodular lesions. (C) Pancreatic tissues from rats were harvested 4 weeks after the HGD and main pancreatic ducts were

stained with HE, MUC5AC, and Ki-67. Representative images of staining are shown for each group. Scale bar represents 100 mm. (D) Five different sections from each of

the six rats in all groups (n = 30) were quantitatively analyzed for positively stained cells for MUC5AC and Ki-67 using ImageJ software. The values represent mean ± SEM,

**p < 0.01, and ***p < 0.001, and one-way ANOVA with post hoc Tukey’s test. (E) Effect of the repeat injection of KRASG12D on atypical changes in PanIN. Representative

images of HE, MUC5AC, and Ki-67 stainings are shown for each group. Scale bar represents 100 mm. (F) Quantitative analyses of MUC5AC and Ki67 positively stained

cells in rats with repeat injection conducted analyzed using ImageJ software. The values represent mean ± SEM, *p < 0.05, and ****p < 0.0001, one-way ANOVA with

post hoc Tukey’s test.
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positive for CK7, 20, and N-cadherin (Figure 5C). Direct invasive
growth toward the nervous plexus surrounding the pancreas showed
papillary formation with severe atypical nuclear formation, which
stained positive for CK7, CK20, and both E- and N-cadherin. Tumor
cells closely attached to and surrounded by nervous tissues stained
positive with S-100 (Figure 5D). These results suggested that PDAC
developed from repeat HGD of KRASG12D + YAP transfer achieved
metastatic tumor development in the pancreas following malignant
transformation by N-cadherin upregulation due to the gene combina-
tion. Subcutaneous and lymph node metastases showed a weakly
stained E-cadherin, which might be related to the epithelial-mesen-
chymal transition effect (Figures 5B and 5C).
Effect of YAP on KRASG12D-transferred pancreas

To determine the effect of YAP on malignant transformation in the
KRASG12D-transferred pancreas, signal transduction was examined
in vitro. Panc 10.05 was transfected with either a mock or YAP-ex-
pressing plasmid. YAP expression induced TGF-b1 and N-cadherin
expressions and decreased E-cadherin expression (Figure 6A). The
rats that received single KRASG12D gene delivery followed by the sec-
ond NS injection (KRASG12D/NS) showed a higher increase of
E-cadherin than that of the control (NS/NS) or KRASG12D/KRASG12D,
KRASG12D/YAP, orKRASG12D + YAP/KRASG12D + YAP groups. How-
ever, the N-cadherin showed an increase in KRASG12D/YAP and
KRASG12D + YAP/KRASG12D + YAP rat groups. These results suggest
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 345
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Figure 4. Effect of combination and repeat injection of the oncogene to the ADM and PDAC development

(A) The list of animal group and genes injected (n = 6 for each group). NS, normal saline. (B) Pancreatic tissues from the rat group of WT, KRASG12D, and KRASG12D + YAP

were harvested 4 weeks after the HGD and NS/NS, KRASG12D/NS, KRASG12D/KRASG12D, KRASG12D/YAP, KRASG12D + YAP/KRASG12D + YAPwere harvested a week after

the second injections (5 weeks after the first injection). Representative images of HE, MUC5AC, and Ki-67 stainings of ADM lesions of each rat group. Scale bar represents

100 mm. (C) Five different sections from each of the six rats in all groups (n = 30) were quantitatively analyzed for positively stained cells for MUC5AC and Ki-67 using ImageJ

software. The values represent mean ± SEM, **p < 0.01, and ****p < 0.0001, one-way ANOVAwith post hoc Tukey’s test. (D) Macroscopic nodular lesions in the pancreas of

the rats injected with KRASG12D/YAP and KRASG12D + YAP/KRASG12D + YAP. Black dotted circles and arrows represent the tumor lesions. (E) The summary of the tumorous

lesions found in the repeatedly injected rats. N/A, not applicable. (F) Representative HE stainings of ADM and PDAC tumor lesions in the rat injected with KRASG12D + YAP/

KRASG12D + YAP genes. (G) Representative immunohistochemical staining of Akt, Erk, Yap, TGF-b1, and CTGF in PDAC tumor in KRASG12D + YAP/KRASG12D + YAP genes

injected rats. (H) Serum level of CA19-9 in rat groups (n = 6 from each group). The values represent mean ± SEM, *p < 0.05, and ****p < 0.0001, one-way ANOVA with post

hoc Tukey’s test.
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that KRASG12D gene transfer induces E-cadherin expression, and
additional YAP expression could cause a cadherin switch to
N-cadherin and promote epithelial-mesenchymal transition leading
to increased malignant potential and frequency of metastatic lesions
(Figures 6B and 6C). No significant increase or difference in serum
aspartate transaminase (AST), alkaline phosphatase (ALP), amylase
(AMY), or lactate dehydrogenase (LDH) was observed upon eutha-
nasia (Figure 7).

DISCUSSION
The pancreas consists of acinar, ductal, and pancreatic islet cells, and
the ADM is considered to be a major precancerous lesion of
PDAC.15,20-22,34-36 KRASG12D activates YAP and TAZ,17,18 which in-
duces continuous ADM followed by PDAC development.19,28,37

Considering that overexpression of oncogenic genes in the pancreas
is necessary to establish PDAC animal models, the complex vascular
structures surrounding the pancreas were major concerns for pancre-
atic gene delivery methods in the past, compared to systemic HGD.
Such a technical barrier can be overcome by pancreas-targeted
HGD with gene injection into the superior mesenteric vein, a major
vein linking to pancreatic veins that lead venous blood to the portal
vein.14 This pancreas-targeted HGD procedure was previously shown
by our group to be pancreas specific, safe, and efficient.14

In this study, utilizing this procedure, we demonstrated that oncogene
delivery to the pancreas led to the development of PDAC models in
wild-type rats. The combination and the dosage of the oncogene were
related to tumor development. Specifically, a high dosage of KRASG12D

in the ductal structures showed PanIN transformation and highly atyp-
ical intraepithelial cells, which was supported by previous evidence.29

The acinar structure showed ADM via KRASG12D transfer, and when
combined with YAP activation, further malignant transformation to
PDAC was marked within 5 weeks of initiation of genes in wild-type
rats. This was evidenced by the fact that acinar cells in the pancreas
show transformation into ductular cells (ADM) with KRAS mutant
activation.15,29 In addition, the combination of KRASG12D and YAP
genes and the increased dosage by repeat injection in the KRASG12D

+ YAP/KRASG12D + YAP group showed transformation from ADM
to a significantly malignant PDAC sequence with a high rate of meta-
static lesions. Our protein expression assay evidenced activation of
YAP expression following KRASG12D transfer. These results were sup-
ported by evidence showing that YAP contributes to the occurrence
of ADM and PDAC17,28 and contributes to the cancer metastasis.25,31

In addition, YAP induced EMT25,26 via the cadherin switch, which re-
fers to expression changes from E-cadherin to N-cadherin that occur
during malignant transformation of cancer cells.27 Our results sup-
ported that an in vivo switch in KRASG12D- and YAP-transferred rats
inducedmetastatic tumors. The fact that theYAP single transfer showed
Figure 5. Metastatic and invasive lesions developed in the rat pancreatic canc

Representative macroscopic and microscopic images of metastatic tumors found in

E-cadherin, N-cadherin, HSA, and S100 staining. (A) Liver metastasis. (B) Subcutaneou

to the nervous plexus. HE, hematoxylin and eosin, CK7, Cytokeratin 7, CK20, Cytoker
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no significant tumor development or metastatic changes suggests that
the malignant induction of KRASG12D and activation of the pathway
through YAP addition is important in tumor development. These
results supported that pancreatic HGD of the oncogene with appro-
priate dosage achieved pancreatic cancer model development in the
wild-type animal. Further studies are needed to apply this method to
other cancer types and animal models. For this purpose, the strategy
we reported in various animal species and tissues38-42 could be consid-
ered. The limitations of our study involve the mechanisms of transfor-
mation of the gene delivery in normal acinar and pancreatic ductular
cells; further studies should include single-cell assays to determine cell
type-based phenotypic changes. Such studies will identify effective
gene combinations for model development and strengthen the useful-
ness of this animalmodel for novel therapy development andbiomarker
establishment. Additionally, modified procedures might be applied to
develop amouse pancreatic cancermodel to improve cost effectiveness.

In summary, pancreas-targeted oncogene HGD induced pancreatic
cancer models within 5 weeks in wild-type rats. The tumor occur-
rence efficacy of this approach depended on the combination and
dosage of genes. With molecular signaling activation, the malignant
tumor potential increased and exhibited metastatic lesions partly
through the cadherin switch. This animal model will speed up pancre-
atic cancer research for the establishment of the novel treatment stra-
tegies and markers for early diagnosis.

MATERIALS AND METHODS
Animals

Animal experiments were approved by and conducted in full compli-
ance with the regulations of the Institutional Animal Care and Use
Committee at Niigata University, Niigata, Japan (SA00423). Wistar
rats (n = 100, female, 200–250 g) were purchased from Japan SLC
(Hamamatsu, Shizuoka, Japan). Rats were housed under the standard
conditions of a 12-h light/dark cycle, temperature of 20�C–23�C, and
humidity of 45%–55% in pathogen-free facilities. Three rats were
housed in a cage and provided with ad libitum access to food and wa-
ter. Rats were given pancreas-targeted hydrodynamic injections as
previously described.14 Under anesthesia using a combination anes-
thetic prepared with 0.3 mg/kg medetomidine, 2.0 mg/kg midazolam,
and 2.5 mg/kg butorphanol, the portal vein in the hilus and superior
mesenteric vein were dissected out and isolated. The catheter
(SURFLO 22G, Terumo, Shibuya-ku, Tokyo, Japan) was inserted
into the superior mesenteric vein with temporary occluding of the
blood flow at the portal vein by vessel loops, and the plasmid DNA
solution in a volume of 2% body weight (5 mg/mL in saline, 20-mg
plasmid in 4 mL for a 200-g rat) was hydrodynamically injected at
a flow rate of 1 mL/s (Figure 1). For the HGD of a combination of
plasmids, equal amounts of individual plasmids were prepared in a
volume of 2% body weight. Therefore, in a 200-g rat simultaneously
er model

KRASG12D + YAP/KRASG12D + YAP gene-delivered rats. HE, Ki-67, CK7, CK20,

s metastasis. (C) Lymph node metastasis. (D) Direct invasion of the pancreatic tumor

atin 20, HSA, hepatocyte specific antigen. Scale bar represents 100 mm.



Figure 6. Effect of YAP on Cadherin protein expression

(A) Expressions of YAP, TGF-b1, E-cadherin, N-cadherin, and b-actin in mock or YAP-expressing plasmid transfected Panc-10.05 cells. (B) Representative histological im-

ages of E- and N-cadherin staining in rat groups. (C) Five different sections from each of the six rats in all groups (n = 30) were quantitatively analyzed for positively stained cells

for E- and N-cadherin using ImageJ software. The values represent mean ± SEM, *p < 0.05, **p < 0.01, and ***p < 0.001, one-way ANOVA with post hoc Tukey’s test.
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receiving two plasmids, 20 mg of each plasmid was diluted in 4 mL of
saline solution.

Cells

Human pancreatic adenocarcinoma BxPC-3 (CRL-1687) and Panc
10.05 (CRL-2547) cell lines and human pancreatic duct epithelial
cell line hTERT-HPNE (CRL-4023) were purchased from American
Type Culture Collection (ATCC, Manassas, VA, USA) and cultured
in minimum essential medium containing 10% fetal bovine serum,
100 IU/mL of penicillin, and 100 mg/mL of streptomycin. Cells
were incubated in a 5% CO2 humidified incubator at 37�C.

Plasmids

The YAP-expressing plasmid was constructed using full-length
cDNA of human YAP ligated into XbaI restriction sites of the expres-
sion vector of the pLIVE vector (Mirus Bio, Madison, WI, USA). The
KrasWT-expressing plasmid (pCMV6-Entry-KRAS, MR201779),
Myc-expressing plasmid (pCMV6-Entry-KRAS G12D, MR201779),
and KrasG12D-expressing plasmid (pCMV6-Entry-KRASG12D,
RC400104) were purchased from OriGene (OriGene Technologies,
Rockville, MD, USA). Either a mock or YAP-expressing plasmid
were transfected into the Panc 10.05 cell using FuGENE HD Trans-
fection Reagent (Promega, Madison, WI, USA) following the manu-
facturer’s instructions and were harvested 48 h after transfection.

Western blotting

For western blotting analysis, culture cells and a tissue lysate were sus-
pended in phosphate-buffered saline and mixed with equal volumes
of lysis buffer, 0.125 M tris-HCl (pH 6.8), 10% sucrose, 10% sodium
dodecyl sulfate (SDS), 10% 2-mercaptoethanol, and 0.004%
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 349
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Figure 7. Serum biochemical analyses

Serum biochemical levels of aspartate transaminase (AST), alkaline phosphatase (ALP), amylase (AMY), and lactate dehydrogenase (LDH) upon the euthanasia. The values

represent mean ± SEM, *p < 0.05, **p < 0.01, and ***p < 0.001, one-way ANOVA with post hoc Tukey’s test.
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bromophenol blue. The extract was subjected to 12% SDS-polyacryl-
amide gel electrophoresis and blotted onto Hybond membranes (GE
Healthcare Life Sciences, Pittsburgh, PA, USA). The membranes were
blocked by EzBlockChemi (AE-1475; ATTO Corporation Taito-ku,
Tokyo, Japan) for 1 h at room temperature and probed with primary
antibodies overnight at 4�C. The antibodies used were mouse anti-
CTGF antibody (sc-365970, Santa Cruz Biotechnology, Dallas, TX,
USA) at 1:100 dilution; mouse anti-b-actin antibody (ab8227, Abcam,
Cambridge, UK) at 1:2000 dilution; mouse anti-E-cadherin antibody
(ab76055, Abcam) at 1:1,000 dilution; rabbit anti-Ras (mutated
G12D) antibody (ab221163, Abcam) at 1:1,000 dilution; rabbit anti-
Akt antibody (ab179463, Abcam) at 1:250 dilution; rabbit anti-pAkt
antibody (ab192623, Abcam) at 1:500 dilution; rabbit anti-Erk anti-
body (No. 4695, Cell Signaling Technology, Danvers, MA, USA) at
1:250 dilution; rabbit anti-pErk antibody (No. 4370, Cell Signaling
Technology) at 1:500 dilution; rabbit anti-YAP antibody (No. 4912,
Cell Signaling Technology) at 1:100 dilution; rabbit anti-TGF-b1
antibody (ab92486, Abcam) at 1:500 dilution; and rabbit anti-N-cad-
herin antibody (ab18203, Abcam) at 1:1,000 dilution. Then, the mem-
brane was incubated with secondary antibodies of anti-mouse
(NA931-1ML; GE Healthcare Life Sciences) or anti-rabbit (NA934-
1ML; GE Healthcare Life Sciences) antibody conjugated with horse-
radish peroxidase. Protein bands were visualized using the ECL
plus Western Blotting Detection System (GE Healthcare Life
Sciences).

Histological analysis

Tissue samples for immunohistochemical staining were collected at
the appropriate time points after the procedures and then fixed in
10% formalin upon tissue collection before embedding in paraffin.
Five sections from the pancreas or tumors (10 mm) were collected
from each of the 10 rats in the group, and standard H&E staining
and immunohistochemistry were performed. For immunohisto-
chemical staining, anti-MUC5AC antibody (ab3649, Abcam) at
1:200 dilution; anti-CTGF antibody (sc-365970, Santa Cruz Biotech-
350 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
nology) at 1:1,000 dilution; anti-CK7 antibody (ab9021, Abcam) at
1:250 dilution; anti-E-cadherin antibody (ab76055, Abcam) at
1:1,000 dilution; and anti-hepatocyte specific antigen antibody (sc-
58693, Santa Cruz Biotechnology) at 1:50 dilution with Vectastain
Elite ABCmouse IgG kit (PK-6102, Vector Laboratories, Burlingame,
CA, USA) and DAB chromogen tablets (Muto Pure Chemicals, To-
kyo, Japan); anti-Ki67 antibody (ab15580, Abcam) at 1:1,000 dilution;
anti-Ras (mutated G12D) antibody (ab221163, Abcam) at 1:250
dilution; anti-pAkt antibody (ab179463, Abcam) at 1:100 dilution;
anti-TGF-b1 antibody (ab92486, Abcam) at 1:100 dilution; anti-
pErk antibody (No. 4370, Cell Signaling Technology) at 1:250 dilu-
tion; anti-YAP antibody (No. 4912, Cell Signaling Technology) at
1:250 dilution; anti-CK20 antibody (ab76126, Abcam) at 1:100 dilu-
tion; anti-N-cadherin antibody (ab18203, Abcam) at 1:1,000 dilution;
and anti-S100 antibody (ab34686, Abcam) at 1:500 dilution with Vec-
tastain Elite ABC rabbit IgG kit (PK-6101, Vector Laboratories) and
DAB chromogen tablets (Muto Pure Chemicals, Tokyo, Japan) were
employed. Then, images of each tissue section were captured
randomly, and quantitative analysis was performed with ImageJ
software (version 1.6.0_20; National Institutes of Health, Bethesda,
MD, USA) with RGB-based protocol, as reported previously.43
Biochemical analysis

Blood samples were collected from each rat before euthanasia, and
serum biochemical analyses of AST, ALP, AMY, and LDH were per-
formed (Oriental Yeast, Shiga, Japan). The serum level of carbohy-
drate antigen 19-9 (CA19-9) was analyzed by enzyme-linked
immunosorbent assay using Rat Sialylated Lewis a/CA 19-9 ELISA
Kit (LS-F27918, LSBio, Seattle, WA, USA).
Statistical analyses

Histological and serum biochemical factors were statistically evalu-
ated by one-way analysis of variance (ANOVA) followed by Bonfer-
roni’s multiple comparison test using GraphPad Prism7 software
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(version 7.04; MDF, Tokyo, Japan). p % 0.05 denoted statistical
significance.
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