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Abstract

To obtain a coherent perception of the world, our senses need to be in alignment. When we

encounter misaligned cues from two sensory modalities, the brain must infer which cue is

faulty and recalibrate the corresponding sense. We examined whether and how the brain

uses cue reliability to identify the miscalibrated sense by measuring the audiovisual ventrilo-

quism aftereffect for stimuli of varying visual reliability. To adjust for modality-specific biases,

visual stimulus locations were chosen based on perceived alignment with auditory stimulus

locations for each participant. During an audiovisual recalibration phase, participants were

presented with bimodal stimuli with a fixed perceptual spatial discrepancy; they localized

one modality, cued after stimulus presentation. Unimodal auditory and visual localization

was measured before and after the audiovisual recalibration phase. We compared partici-

pants’ behavior to the predictions of three models of recalibration: (a) Reliability-based:

each modality is recalibrated based on its relative reliability—less reliable cues are

recalibrated more; (b) Fixed-ratio: the degree of recalibration for each modality is fixed;

(c) Causal-inference: recalibration is directly determined by the discrepancy between a cue

and its estimate, which in turn depends on the reliability of both cues, and inference about

how likely the two cues derive from a common source. Vision was hardly recalibrated by

audition. Auditory recalibration by vision changed idiosyncratically as visual reliability

decreased: the extent of auditory recalibration either decreased monotonically, peaked at

medium visual reliability, or increased monotonically. The latter two patterns cannot be

explained by either the reliability-based or fixed-ratio models. Only the causal-inference

model of recalibration captures the idiosyncratic influences of cue reliability on recalibration.

We conclude that cue reliability, causal inference, and modality-specific biases guide cross-

modal recalibration indirectly by determining the perception of audiovisual stimuli.
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Author summary

Audiovisual recalibration of spatial perception occurs when we receive audiovisual stimuli

with a systematic spatial discrepancy. The brain must determine to which extent both

modalities should be recalibrated. In this study, we scrutinized the mechanisms the brain

employs to do so. To this aim, we conducted a classical audiovisual recalibration experi-

ment in which participants were adapted to spatially discrepant audiovisual stimuli. The

visual component of the bimodal stimulus was either less, equally, or more reliable than

the auditory component. We measured the amount of recalibration by computing the dif-

ference between participants’ unimodal localization responses before and after the audio-

visual recalibration. Across participants, the influence of visual reliability on auditory

recalibration varied fundamentally. We compared three models of recalibration. Only a

causal-inference model of recalibration captured the diverse influences of cue reliability

on recalibration found in our study, this model is also able to replicate contradictory

results found in previous studies. In this model, recalibration depends on the discrepancy

between a sensory measurement and the perceptual estimate for the same sensory modal-

ity. Cue reliability, perceptual biases, and the degree to which participants infer that the

two cues come from a common source govern audiovisual perception and therefore

audiovisual recalibration.

Introduction

Cross-modal integration

In our daily lives, we continuously estimate properties of the environment such as the location

of a barking dog. Usually multiple sensory cues for each property arrive in the brain, a glimpse

of the dog’s wagging tail and the barking both give away its location. However, due to external

noise in the environment and internal noise in our sensory systems, two cues hardly ever agree

perfectly. To still form a coherent percept, the brain relies on a weighted mixture of the cues.

This strategy becomes evident when the cues are in conflict. For example, when a ventriloquist

speaks without moving her lips, the auditory signal indicates that the speech originates from

the ventriloquist, while the visual signal indicates the “dummy”. Typically, vision dominates

the combined spatial estimate of the sound source. In this example, we perceive the “dummy”

to be speaking. This phenomenon is called the ventriloquism effect [1–3]. However, when

visual reliability, the inverse of the average variability of a cue, is degraded enough to be lower

than auditory reliability, the combined spatial estimate is no longer dominated by the visual

but instead by the auditory cue, indicating that cue integration depends on their relative reli-

ability [4–6]. This integration strategy maximizes the precision of the estimate, i.e., reduces its

variability. In addition to audiovisual spatial perception, reliability-based cue integration has

also been found for visual and auditory cues to temporal rate [7–9], visual and haptic size and

shape [10–12] as well as numerosity [13], and visual and vestibular cues to heading direction

[14–19].

If during a ventriloquist’s show, the speech sounds originate from someone standing

behind the stage or if the dummy’s mouth moves out of synch with the speech sounds, the

audience is unlikely to experience a ventriloquism effect. In other words, integration breaks

down when the two cues are too different to be perceived as coming from a common source.

Such a breakdown of integration with spatial and temporal cue conflicts has been found not

only in auditory-visual spatial integration [20–25], but also in integration of visual and
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vestibular heading-direction signals [26, 27] and integration of visual and haptic surface thick-

ness [28]. These findings suggest that the brain infers the causal relationship underlying cues

from multiple modalities. A Bayesian observer would not simply decide between integrating

the cues or keeping them segregated, but rather combine estimates based on integration and

segregation, each weighted by the probability of the underlying causal scenario [29]. This

causal-inference model accurately captures the integration of audiovisual spatial signals [29]

and has been used to explain cross-modal perception in various contexts [26, 27, 30–40].

Cross-modal recalibration

Reliability-weighted sensory cue integration maximizes the precision of the final estimate but

not its accuracy, the agreement between the cue with the property of interest. Estimates are

dominated by the more precise not by the more accurate cue. This preference of precision

over accuracy might be rooted in the fact that single sensory cues can contain information

about their reliability [41], but information about accuracy is impossible to derive from a cue

on its own. Only systematic disparities between two sensory cues indicate a problem with their

accuracy and, at the same time, provide a chance to resolve this issue. In the case of mis-

matched cues, the brain should adapt the interpretation of the cues to reduce that disparity

and so, hopefully, maximize accuracy. Indeed, after repeated exposure to spatially discrepant

audiovisual stimuli, the shift in auditory spatial perception toward the visual stimulus is still

present when the visual signal is no longer available. This persisting shift is called the ventrilo-

quism aftereffect, and has been replicated across different modalities [32, 42–51].

In many spatial-aftereffect studies, vision serves as the “teaching signal” that is used to cali-

brate auditory or tactile perception. Some studies found a discrepant auditory stimulus pre-

sented during adaptation can induce systematic shifts in visual localization, but the aftereffects

were not as robust as the recalibration of auditory spatial perception [47, 52, 53]. This domi-

nance of vision seems reasonable given that visual information is usually more accurate and

reliable than information from other modalities in terms of localizing objects spatially [54].

Reliability-based cross-modal recalibration. Which modality serves as the “teaching sig-

nal” in cross-modal recalibration might be determined based on cue reliability. Consistent

with this hypothesis, more robust evidence for recalibration of visual perception was found in

studies that examined aftereffects for properties for which the visual signal was not as reliable

as the other signal [55–60]. Burge and colleagues directly tested the relationship between cue

reliability and the amount of recalibration by manipulating the reliability of a visual stimulus

for slant to be either smaller, almost equal, or greater than that of a haptic cue to slant [61]. As

the visual cue became less reliable, greater recalibration of vision and less recalibration of hap-

tics was observed. The authors concluded, in agreement with others [53, 59], that each sense is

recalibrated proportional to its relative reliability.

Fixed-ratio cross-modal recalibration. In contradiction to the results just discussed, a

recent study investigating the mechanism underlying visual-vestibular recalibration found evi-

dence that the two modalities are recalibrated in a fixed ratio regardless of cue reliability [62].

More specifically, after exposing humans and monkeys to systematically discrepant visual and

vestibular heading directions, both cues significantly shifted in the direction required to reduce

cue conflict, but the amount of recalibration in either modality did not depend on the mea-

sured relative cue reliabilities [62]. A model assuming a fixed ratio between the degree of recal-

ibration of each sense, independent of relative reliability, best captured the data.

Causal inference and cross-modal recalibration. Both reliability-based and fixed-ratio

models of cross-modal recalibration assume that the brain acts upon the discrepancy between

the two sensory cues. However, according to the principles of cross-modal integration, two
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discrepant cues can lead to very different percepts, depending on each cue’s reliability and

inference about whether they have common or separate origins. Cross-modal recalibration

might take this perceptual inference into account. Indeed, causal-inference models of cross-

modal recalibration have successfully predicted visual-auditory [63] and visual-tactile [32]

ventriloquism aftereffects. In these models, recalibration is not based on a mere comparison of

two sensory cues, but rather relates the cues to the perceptual estimates and by doing so incor-

porates causal inference and cue reliability. According to this model, conflicting findings

regarding the influence of cue reliability on recalibration might reflect differences in the per-

ceptual estimates rather than diverging underlying mechanisms.

Preview

In this study, we contrasted all three accounts of cross-modal recalibration by fitting the mod-

els to data from an audiovisual ventriloquism-aftereffect study. Across sessions, we manipu-

lated cue reliability, a determinant of reliability-based and causal-inference-driven cross-

modal recalibration. Additionally, we controlled for the effect of modality-specific biases on

the spatial perception of the two sensory cues by choosing visual stimulus locations that

matched perceptually with the locations of the auditory stimuli for each participant.

With decreased visual reliability, many participants showed either increasing or nonlinearly

changing auditory recalibration. No clear pattern of visual recalibration was found. These

results cannot be explained by either the reliability-based or the fixed-ratio model. The causal-

inference model, on the other hand, is able to capture these idiosyncratic effects based on indi-

vidual differences in cue reliability, modality-specific biases, and an a priori belief about how

often visual and auditory cues come from a common source. Thus, the model comparison sug-

gests that cross-modal recalibration is driven by a comparison between sensory cues and per-

ceptual estimates, which in turn are determined using causal inference.

Results

Cue reliability

In the first part of the study, spatial reliability for one auditory stimulus and three visual stimuli

was estimated for each participant using a unimodal spatial-discrimination task (Fig 1B; see

Materials and methods). Visual reliability had been manipulated by varying the horizontal

spread of a random collection of ten Gaussian blobs (Fig 1A). For each stimulus condition, we

fitted a cumulative Gaussian distribution to the responses as a function of test stimulus loca-

tion (Fig 2A, mean adjusted R2 = 0.953, range = 0.751–0.997). To compare spatial-discrimina-

tion performance across stimulus conditions, we computed the just-noticeable difference

(JND; Fig 2B and 2C). Statistical analysis of the JNDs (Section S1.1 in S1 Appendix) confirmed

that visual stimulus reliabilities were (i) smaller than, (ii) comparable to, and (iii) larger than

the auditory reliability.

Modality-specific spatial biases

In the second part of the study, we measured participants’ modality-specific biases in the spa-

tial perception of auditory stimuli relative to a visual stimulus (Fig 1A) using a bimodal spatial-

discrimination task (Fig 3A). We did so at four auditory stimulus locations and for visual sti-

muli with high spatial reliability. Four separate psychometric functions were fitted, one for

each auditory stimulus location (Fig 3B, mean adjusted R2 = 0.909, range = 0.751–0.981).

From each psychometric function, we calculated the point of subjective equality (PSE) and

then described the four PSEs as a linear function of the underlying auditory location (Fig 4A).
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The estimated slopes for five out of six participants were significantly larger than 1 (Fig 4B)

indicating that the auditory stimuli were perceived as shifted towards the periphery relative to

the visual stimuli. Four participants showed significant negative y-intercepts. That is, they per-

ceived the auditory stimuli as shifted to the left relative to visual stimuli. From the linear

regression line through the PSEs, we extracted the four visual stimulus locations that were per-

ceived to be co-located with the four auditory stimulus locations and used these locations in all

subsequent tasks.

Fig 1. Visual stimuli and experimental procedure for the unimodal spatial-discrimination task. (A) Example visual stimuli (contrast exaggerated).

(B) Task timing (blue: auditory stimuli; pink: visual stimuli). Participants were successively presented with a standard stimulus (located straight ahead)

and a test stimulus (located to the left or right) in random order. After stimulus presentation, they used a keypad to report which interval contained the

stimulus located farther to the right. Feedback was provided.

https://doi.org/10.1371/journal.pcbi.1008877.g001

Fig 2. Results for the unimodal spatial-discrimination task. (A) Psychometric functions for representative participant S4. The probability of judging

the test stimulus as to the right of the standard stimulus is plotted as a function of the distance between the two stimuli, with negative numbers

indicating that the test stimulus was located to the left of the standard stimulus (presented straight ahead). V: Visual. A: Auditory. Filled circles: binned

response proportions (bin size = 1.8˚). The area of each filled circle is proportional to the number of trials within the bin. Solid curves: psychometric

functions fit to the data. (B) Estimated just-noticeable difference (JND) of each visual stimulus type for S4. Solid line: auditory JND. Error bars and blue

area: 95% bootstrapped confidence intervals. (C) Group mean JNDs (± SEM).

https://doi.org/10.1371/journal.pcbi.1008877.g002

PLOS COMPUTATIONAL BIOLOGY Causal inference and audiovisual spatial recalibration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008877 November 15, 2021 5 / 37

https://doi.org/10.1371/journal.pcbi.1008877.g001
https://doi.org/10.1371/journal.pcbi.1008877.g002
https://doi.org/10.1371/journal.pcbi.1008877


Localization response precision

In the next part of the study, we measured participants’ localization noise unrelated to spatial

perception (e.g., noise due to holding a location in memory and errors indicating the intended

location). To this aim, participants performed a direct localization task with maximally reliable

visual stimuli. At the same time, they were familiarized with our custom-made device used to

Fig 3. Experimental procedure and results for the bimodal spatial-discrimination task. (A) In each trial, a visual stimulus (high reliability) and an

auditory stimulus (four possible auditory locations, ±2.5 and ±7.5˚ relative to straight-ahead) were presented in random order. Participants reported

whether the visual stimulus was to the left or right of the auditory stimulus. Feedback was not provided. (B) Psychometric functions for participant S4.

Probability of judging the visual to the right of the auditory stimulus is plotted as a function of visual stimulus location. Filled circles: binned response

proportions (bin size = 3˚). Curves: psychometric functions fitted separately for the four auditory stimulus locations (shades of blue). The area of each

filled circle is proportional to the number of trials in each bin.

https://doi.org/10.1371/journal.pcbi.1008877.g003

Fig 4. Modality-specific biases in spatial perception. (A) Point of subjective equality (PSE) as a function of the location of the auditory stimulus.

Dashed grey line: identity line; solid line: linear regression line; horizontal dashed lines: visual stimulus locations perceived as co-located with the four

auditory standard locations based on the regression. (B) Estimated constant, location-independent (y-axis; regression intercept) and proportional,

location-dependent (x-axis; regression slope) shift of visual relative to auditory stimulus location. The proportional and constant shifts equal the slope

and intercept of the linear regression line through the PSEs (see panel A). Error bars: 95% bootstrapped confidence intervals. Vertical and horizontal

dashed lines correspond to the absence of proportional and constant shifts, respectively.

https://doi.org/10.1371/journal.pcbi.1008877.g004
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move a visual cursor to the stimulus location. We assumed that localization errors were unbi-

ased and independent of stimulus location and fitted them with a Gaussian distribution cen-

tered at zero to estimate the extent of noise corrupting localization responses (see Section S2 in

S1 Appendix for a more complex model and results of a model comparison). Participants’ spa-

tial perception-unrelated localization noise was 1.85˚ on average (range 1.55–2.29˚).

Recalibration effects

In the final part of the study, participants completed six sessions of the audiovisual recalibra-

tion experiment (2 recalibration directions × 3 reliability levels). Each session consisted of

three phases: (1) pre-recalibration: participants localized unimodally presented visual and

auditory stimuli (Fig 5A); (2) recalibration: participants were presented with audiovisual stim-

ulus pairs with a constant spatial discrepancy in perceptual space; they localized one modality

cued after stimulus presentation (Fig 5B and 5C); (3) post-recalibration: the unimodal localiza-

tion task was repeated.

To statistically examine recalibration of each modality, we fitted linear regressions sepa-

rately to pre- and post-recalibration localization responses as a function of stimulus location

(Fig 6A). Recalibration effects were computed as the difference between pre- and post-recali-

bration regression intercepts; shifts compensating for the audiovisual discrepancy present dur-

ing the recalibration phase were coded as positive. As no significant effects of recalibration

direction on the recalibration effect were found in our statistical analysis (Section S1.2 in S1

Appendix), we averaged the recalibration effect across the two recalibration directions (visual

to right/left of auditory) for display (Fig 6B). For the majority of participants (three out of six),

auditory recalibration was a non-monotonic function of visual stimulus reliability. Two partic-

ipants showed a monotonic increase in auditory recalibration with decreasing visual stimulus

reliability. One participant showed a monotonic decrease in auditory recalibration as visual

Fig 5. Experimental procedure and conditions during the recalibration experiment. (A) Timeline for unimodal localization tasks (pre- and post-

recalibration phase). In each trial, either a visual or an auditory stimulus was presented; participants indicated its location using a visual cursor

displayed on the screen. Feedback was not provided. (B) Timeline for the bimodal localization task (recalibration phase). In each trial, participants were

presented with a spatially discrepant audiovisual stimulus pair; they were asked to localize one of the modalities, cued after stimulus presentation (V:

localize the visual component, A: localize the auditory component). Feedback was not provided. (C) Stimulus locations in physical and perceptual

space. Top panel: the physical locations of the four perceptually aligned audiovisual stimulus pairs identified at the beginning of the study for

participant S4, stimuli were always presented at one of these locations; bottom row: pairs with a constant perceptual spatial discrepancy were presented

during the recalibration phase, solid lines: location pairs presented in the visual-left-of-auditory condition; dashed lines: location pairs presented in the

visual-right-of-auditory condition.

https://doi.org/10.1371/journal.pcbi.1008877.g005
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reliability decreased. Unsurprisingly, our statistical analysis of the recalibration effect revealed

no significant main effects or interactions involving visual stimulus reliability (Section S1.2 in

S1 Appendix).

Recalibration models

To understand the mechanisms of cross-modal recalibration, we compared participants’

behavior to three existing models of cross-modal recalibration: (1) a reliability-based, (2) a

fixed-ratio, and (3) a causal-inference model (for details see Models of audiovisual recalibra-

tion). All three models conceptualize recalibration as constant updating of a modality-specific

shift applied to the measurements before the estimate is derived. However, these three models

differ in their assumptions about the way in which the amount of recalibration for each modal-

ity is determined. As a consequence, these three models make different predictions for the

influence of visual reliability on audiovisual recalibration.

The reliability-based model. According to this model, the brain determines the amount

of recalibration (i.e., the measurement shift) for each modality based on the reliabilities of both

Fig 6. Recalibration effects. (A) Pre- (diamonds, jittered to the left) and post-recalibration (circles, jittered to the right) localization responses as a

function of auditory and visual stimulus locations (relative to straight-ahead) measured for participant S4 in the visual-right-of-auditory and low-visual-

reliability condition. Localization responses were summarized using linear regression (dashed lines: pre-recalibration; solid lines: post-recalibration).

Grey shaded area: estimated probability distribution of spatial perception-unrelated localization noise centered at an example location. (B) Auditory

and visual recalibration effects (the difference between the intercepts of the pre-and post-recalibration regression lines in panel A) as a function of visual

stimulus reliability for three participants. Error bars: 95% bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008877.g006
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measurements. The shift for one modality is updated by a fraction of the difference between

the two measurements that is proportional to the other modality’s relative reliability. Across tri-

als, the amount of recalibration depends not only on stimulus reliability, but also on a common

learning rate α for both modalities. This model predicts increasing visual and decreasing audi-

tory recalibration effects with decreasing visual stimulus reliability (Fig 7, dot-dashed line).

The fixed-ratio model. According to this model, the brain determines the amount of

recalibration based on the modalities of both sensory measurements. The measurement shift

for each sense is updated by a fraction of the difference between the two measurements. This

fraction is determined only by modality-specific learning rates. Therefore, this model predicts

modality-specific recalibration effects that are not influenced by stimulus reliability (Fig 7,

dashed line).

The causal-inference model. According to this model, the brain determines the amount

of recalibration for each modality based on the difference between a measurement and the cor-

responding location estimate. The measurement shifts are updated by a fraction of this differ-

ence, either implemented as modality-specific learning rates or as a supra-modal learning rate.

In this model, cross-modal recalibration depends on stimulus reliability, modality-specific

localization biases, and inference about a common cause through their influences on the loca-

tion estimates. The model can predict various effects of visual reliability on auditory recalibra-

tion (Fig 7, solid line).

Modeling results

Model predictions. The causal-inference model is the only model that can capture the idi-

osyncratic influence of visual stimulus reliability on auditory recalibration across participants

(Fig 8A). Data from 5 out of 6 participants were best fitted by the causal-inference model,

either with a supra-modal learning rate (see Section S3 in S1 Appendix for model predictions)

or modality-specific ones. For most participants, neither the reliability-based nor the fixed-

ratio model can reproduce the diverse influence of visual stimulus reliability on auditory

Fig 7. Simulated auditory recalibration effects based on three candidate models of cross-modal recalibration. The effect of visual (horizontal axis)

and auditory (panels) stimulus reliability in bimodal trials on the amount of auditory recalibration by vision, based on causal-inference (solid line),

fixed-ratio (dashed line), and reliability-based (dot-dashed line) models for two different learning rates (top row: slow; bottom row: fast).

https://doi.org/10.1371/journal.pcbi.1008877.g007
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recalibration (Fig 8B; Sections S4-S5 in S1 Appendix). The three models do not differ in terms

of predicting visual recalibration and modality-specific biases (Section S6 in S1 Appendix).

Model comparison. To compare model performance quantitatively, we computed the

Akaike information criterion (AIC) for all three models [64] and then calculated relative

model-comparison scores, ΔAIC, which relate the AIC value of the best-fitting model (the

model with the lowest AIC) to that of each of the other models (a high value of ΔAIC indicates

stronger evidence for the best-fitting model; Fig 8C). ΔAIC values comparing both the reliabil-

ity-based and the fixed-ratio to the causal-inference models were large for the majority of par-

ticipants, revealing substantial evidence for the causal-inference model of cross-modal

recalibration.

Discussion

In this study, we investigated the mechanism underlying cross-modal recalibration. To this

aim, we measured the effects of visual stimulus reliability, a potential determinant of cross-

modal recalibration, on audiovisual spatial recalibration. To induce recalibration, we repeat-

edly exposed participants to audiovisual pairs with a perceptually constant spatial discrepancy.

To measure recalibration, we compared unimodal auditory and visual localization responses

before and after the exposure. Auditory localization was recalibrated by vision, yet, the

Fig 8. Model predictions and model comparison. (A) Observed (circles) and predicted (diamonds) auditory (blue) and visual (pink) final

measurement shifts after the recalibration phase based on 1,000 runs using the best-fitting parameters given the causal-inference model (diamonds) as a

function of visual reliability for all participants (panels). Error bars: 95% bootstrapped confidence intervals. (B) Model predictions by the fixed-ratio

model (triangles in left panel) and the reliability-based model (inverted triangles in right panel) for participant S1. (C) Model comparison indices,

smaller values indicate more evidence (RB = reliability-based, FR = fixed ratio, CI = causal inference, CIaA¼aV = causal inference with supramodal

learning rate).

https://doi.org/10.1371/journal.pcbi.1008877.g008
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influence of visual stimulus reliability on auditory recalibration differed qualitatively across

participants. To scrutinize the mechanisms of cross-modal recalibration, we compared partici-

pants’ behavior to three models of recalibration: (1) a reliability-based model, which assumes

that the amount of recalibration depends on the relative reliability of the cues that are in con-

flict, (2) a fixed-ratio model, which assumes that the amount of recalibration is fixed, depen-

dent only on the modalities in conflict and independent of cue reliability, and (3) a causal-

inference model, which ties recalibration to the percept of a cue. This percept depends on the

other cue, causal inference of the two cues coming from a common source as well as cue reli-

abilities, and modality-specific spatial biases. Only the causal-inference model captured the idi-

osyncratic influences of cue reliability on cross-modal recalibration.

Only the causal-inference model captures the diverse influences of visual

reliability on auditory recalibration by vision

Our results demonstrated diverse influences of visual stimulus reliability on auditory recalibra-

tion. For half of the participants, auditory recalibration was maximal at medium visual stimu-

lus reliability. For some other participants, auditory recalibration increased with decreasing

visual stimulus reliability. Neither of these patterns can be replicated by models of recalibration

that assume the amount of recalibration relies directly on cue reliability [53, 61]. These models

can only predict decreases in recalibration as the stimulus reliability of the other modality

decreases, as has been found previously [59, 61]. Thus, the best prediction these models could

produce for either monotonically or non-monotonically increasing auditory recalibration

effects with decreasing visual reliability was no influence of stimulus reliability (Fig 8B, right

panel). The observed influences of cue reliability on recalibration are also at odds with models

of recalibration that assume the amount of recalibration relies only on the identity of the two

modalities in conflict [62, 65]. These models predict no influence of stimulus reliability on

recalibration. Crucially, the causal-inference model of cross-modal recalibration [32, 63] cap-

tures all the observed influences of stimulus reliability on cross-modal recalibration and is able

Fig 9. Cue reliability and the amount of recalibration. (A) Non-linear effect of visual stimulus reliability in bimodal trials (s0AV;V ; different panels) on

the auditory spatial estimate ŝ A (green vertical lines). Blue and red dashed vertical lines and curves: auditory and visual measurements (m0A and m0V in

perceptual space) and likelihood functions, respectively. Blue: when separate causes are assumed, the auditory measurement and likelihood equal the

auditory location estimate ŝ A;C¼2 and the posterior distribution over auditory locations (a flat prior over stimulus location is assumed). Grey dashed

vertical lines and curves: audiovisual location estimates ŝ A;C¼1 and posterior distributions of audiovisual locations conditioned on a common cause.

(B-D) The effect of visual reliability on the posterior probability of a common cause, pðC ¼ 1jm0A;m
0
VÞ, the integrated location estimate, i.e., the

estimate conditioned on a common audiovisual source ŝ A;C¼1, and the distance between auditory measurement and location estimate ŝ A � m0A, which

directly sets the amount of recalibration.

https://doi.org/10.1371/journal.pcbi.1008877.g009
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to replicate all previous patterns of results [61, 62] based on individual differences in cue reli-

ability, the common-cause prior, and modality-specific spatial biases.

It is remarkable that the causal-inference model of cross-modal recalibration is capable of

producing qualitatively different patterns of results for the amount of cross-modal recalibra-

tion as stimulus reliability changes [32]. Based on our experience with the model, we next pro-

vide an intuition of how individual differences in the sensory reliabilities, biases in spatial

perception of both modalities, and the common-cause prior influence cross-modal recalibra-

tion according to the causal-inference model.

The role of cue reliability for cross-modal recalibration. Cue reliability influences the

degree of cross-modal recalibration by influencing the posterior probability that both cues

arose from a common cause as well as the integrated location estimate for the common-cause

scenario. Both of them determine the final location estimate and in turn the amount of recali-

bration. When the visual cue is extremely reliable, the posterior probability that two discrepant

cues originated from the same source is low (Fig 9B). If the common-cause scenario is unlikely,

the auditory location estimate is mostly based on the estimate given separate sources and

therefore located close to the auditory cue (Fig 9A, top panel), which leads to small recalibra-

tion effects.

However, the amount of auditory recalibration does not increase monotonically with

decreasing visual reliability. With decreasing visual reliability, the integrated location estimate

for the common-cause scenario is increasingly dominated by the auditory measurement (Fig

9C). The closer the integrated estimate is to the auditory measurement, the closer the final

location estimate is to the auditory measurement, and the smaller the auditory recalibration

effect will be.

Importantly, the effect of variation in reliability depends on the tested reliability range (Fig

9D). Thus, studies that use different types of stimuli will likely obtain different results regard-

ing the influence of stimulus reliability on cross-modal recalibration. The contradictions that

emerged between previous studies [61, 62] can be explained by the causal-inference model of

recalibration.

The role of common cause prior assumptions for cross-modal recalibration. The com-

mon-cause prior impacts the posterior probability of a common cause and hence the amount

of recalibration independent of stimulus reliability and discrepancy (Fig 10). As the common-

cause prior increases, the posterior probability of a common cause increases, leading the final

auditory location estimate to be farther away from the auditory measurement and hence yield-

ing a larger measurement-shift update. We used a post-response cue in the bimodal localiza-

tion task during the recalibration phase to foster audiovisual recalibration as the common-

cause prior is strengthened when participants attend to both modalities [32].

Modality-specific spatial biases. Our model differs from previous causal-inference mod-

els of cross-modal perception in that we assumed the existence of modality-specific biases but

not modality-specific spatial priors over stimulus location [32, 42, 66]. Both can account for

the typically observed biases in localization, but modality-specific priors exert a stronger influ-

ence when visual reliability is reduced. In contrast, the influence of modality-specific biases

does not vary as stimulus reliability changes. Thus, we conducted a control experiment exam-

ining whether the tendency to perceive visual stimuli as shifted towards the central fixation

increased with decreasing visual reliability (Section S7 in S1 Appendix). The results showed no

systematic influence of visual reliability. Thus, to avoid overfitting the model, we omitted

modality-specific priors in our models and fitted only modality-specific biases.

The existence of fixed biases in the spatial perception of visual and auditory stimuli seems

to be at odds with the concept of cross-modal recalibration. If discrepancies between the senses

consistently lead to recalibration, why do these biases persist? Perceptual biases could reflect
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adjustments for sensory discrepancies during an early sensitive period of development as has

recently been shown for cross-modal biases in temporal perception [31]. After the sensitive

period, it might become impossible to fully compensate for newly developing differences

between the senses. In terms of our model, this would mean that a limitation to the shift-

updates is set during early infancy.

Our study differs from previous spatial-recalibration studies in that we adjusted for percep-

tual biases in auditory relative to visual spatial perception by selecting visual locations percep-

tually aligned with pre-selected auditory locations. During piloting we presented stimuli with a

constant physical spatial audiovisual discrepancy during the recalibration phase, and did not

find significant recalibration effects. We attributed this to the modality-specific biases we had

observed combined with the small spatial discrepancy used in our study. Indeed, our simula-

tions with the causal-inference model (Fig 11, top panel) show that there are many combina-

tions of proportional and constant biases that lead to minuscule or even negative recalibration

effects when these biases are not adjusted for. Additionally, our simulations reveal a complex

interaction between these biases and the spatial discrepancy. Recalibration through exposure

to a constant and relatively large physical discrepancy, as done in most previous studies [43–

45, 47–50, 67], would produce positive recalibration effects on average but not necessarily in

all participants given that humans differ in their spatial biases. In contrast, keeping the discrep-

ancy constant in perceptual space makes the recalibration effects less prone to individual dif-

ferences in modality-specific biases and works better with smaller spatial discrepancies (Fig 11,

bottom panel).

Fitting the causal-inference model

Here, we fitted, for the first time, the causal-inference model of recalibration to observed data.

To achieve this, we fitted the outcome of the recalibration process rather than its build-up. The

Fig 10. Determinants of recalibration. The joint effects of visual reliability in bimodal trials, s0AV;V , the distance between auditory and visual

measurements in perceptual space, m0A � m0V , and the common-cause prior, p(C = 1) on the posterior probability of a common cause, pðC ¼ 1jm0A;m
0
VÞ

(panel A), and the distance between the final location estimate and the auditory measurement, ŝ A � m0A (panel B), which is proportional to the amount

of recalibration.

https://doi.org/10.1371/journal.pcbi.1008877.g010
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audiovisual recalibration phase itself is characterized by sequential dependence of the mea-

surement shifts across trials and the lack of a closed-form solution for the model. Fitting such

models is computationally expensive as the required number of simulations increases expo-

nentially with each recalibration trial due to the sequential nature of the model. There might

be a way to address these sequential dependencies using particle filters [68]. However, we con-

centrated on fitting the outcome of the recalibration process by repeatedly simulating the

audiovisual recalibration phase. In this way, we obtained an approximation of the distribution

of measurement-shifts given a set of parameters. The good match between the observed and

predicted unimodal localization data as well as our checks of the fitting procedure (Section S8

in S1 Appendix) confirm the validity of our approach. One negative consequence of not fitting

the recalibration process itself is that parameters reflecting stimulus reliability under bimodal

conditions are not directly constrained by the data. We incorporated different reliabilities for

unimodal and bimodal presentation conditions because previous studies indicated differences

in one [32, 37, 69] or the other [70, 71] direction. Yet, we remain cautious in interpreting the

estimated bimodal reliabilities in our study.

We additionally remain cautious with respect to the interpretation of other parameter esti-

mates. We assumed a flat supra-modal prior over stimulus location as we found indications

for trade-offs between modality-specific biases and a supra-modal prior over stimulus loca-

tions (Section S9.1 in S1 Appendix). As a consequence, the estimated modality-specific biases

might have been underestimated and sensory reliabilities might have been overestimated.

Additionally, the prior probability of a common cause and the modality-specific learning rate

trade off and thus might be misestimated, because an increase in either factor can lead to a

greater amount of recalibration (Section S9.2 in S1 Appendix).

Importantly, even though the possibility of biases in our parameter estimates exists, the

mechanisms outlined at the beginning of the discussion explain the idiosyncratic influence of

visual reliability on auditory recalibration, whereas the other models cannot qualitatively

Fig 11. The influence of spatial discrepancy and modality-specific biases on the amount of auditory recalibration. Top row: The auditory recalibration

effects (color key) as a function of proportional and constant shift of visual relative to auditory location when spatial discrepancy (panels) is constant in

physical space (i.e., sV = sA + spatial discrepancy). Bottom row: The auditory recalibration effects when spatial discrepancy is constant in perceptual space

(i.e., visual stimulus locations are selected to adjust the perceptual biases in auditory relative to visual spatial perception, sV = proportional shift × (sA
+ spatialdiscrepancy) + constant shift).

https://doi.org/10.1371/journal.pcbi.1008877.g011

PLOS COMPUTATIONAL BIOLOGY Causal inference and audiovisual spatial recalibration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008877 November 15, 2021 14 / 37

https://doi.org/10.1371/journal.pcbi.1008877.g011
https://doi.org/10.1371/journal.pcbi.1008877


reproduce the observed results. Thus, our conclusion that causal-inference-based percepts reg-

ulate cross-modal recalibration stands independent of the parameter estimates.

Future work might involve an experimental design that allows for better estimation of

model parameters to enable a determination of the underlying cause of these individual differ-

ences and to relate them to behavior in other tasks. For example, more constraints on the

experimental parameters could be obtained in a design in which unimodal trials are inter-

spersed with recalibration trials, allowing the time course of recalibration to be measured.

Conclusion

This study examined the mechanism underlying cross-modal recalibration. To this aim, we

measured audiovisual spatial recalibration while varying visual stimulus reliability. Stimulus

reliability has been described as one plausible determinant the brain uses to decide which sen-

sory modality should be recalibrated when there is a cue conflict. We found that visual stimu-

lus reliability influenced auditory recalibration in qualitatively different ways across

participants. Neither the reliability-based model nor an alternative model that assumes a fixed

degree of recalibration for each modality and completely ignores stimulus reliability, could

replicate the data. Yet, a causal-inference model was able to capture all the observed diverse

influences of reliability on recalibration, including two patterns found in previous studies. In

this model, recalibration is not based on a mere comparison of two sensory cues, but rather

relates each cue to its corresponding perceptual estimate, and by doing so incorporates causal

inference of a common source for a cross-modal stimulus pair as well as cue reliability and

modality-specific perceptual biases into cross-modal recalibration.

Materials and methods

Ethics statement

Experimental protocols were approved by the Institutional Review Board at New York Univer-

sity (protocol number FY2016–595). All participants gave informed written consent prior to

the beginning of the experiment and five of them were compensated $10 per hour for

participation.

Participants

Six participants (three females, aged 22–29 years, mean: 25 years, six right-handed), recruited

from New York University and naive to the purpose of the study, participated in the experi-

ment. All stated that they were free of visual, auditory, or motor impairments. The data of one

additional participant (female, 21 years, ambidextrous) were excluded from data analysis and

model fitting due to conflicting modality-specific spatial biases found in the bimodal spatial-

discrimination and unimodal localization tasks (Section S10 in S1 Appendix).

Apparatus and stimuli

The experiment was conducted in a dark and semi sound-attenuated room. Participants were

seated 1 m from an acoustically transparent, white screen (1.36 × 1.02 m, 68 × 52˚ visual

angle). An LCD projector (Hitachi CP-X3010N, 1024 × 768 pixels, 60 Hz) was mounted above

and behind participants to project visual stimuli on the screen. The visual stimuli were clusters

of 10 randomly placed low-contrast (36.55 cd/m2) Gaussian blobs (SD: 3.6˚) added to a grey

background (29.33 cd/m2). Blob locations were drawn from a two-dimensional Gaussian dis-

tribution (vertical SD: σy = 5.4˚, horizontal SD: (1) σx = 1.1˚ for the high-reliability condition,

(2) σx = 5.4˚ for the medium-reliability condition, and (3) σx = 8.7˚ for the low-reliability
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condition). We recorded the centroid of the cluster rather than the center parameter of the

two-dimensional Gaussian used for cluster generation as the visual stimulus location. Each

visual stimulus was presented for 100 ms (6 frames), and followed by a 900 ms long backward

masker (54 frames of randomly black or white checks of 4 × 4 pixels filling the screen) to erase

any visual memory of the stimulus.

Behind the screen, a loudspeaker (20 W, 4O Full-Range Speaker, Adafruit, New York) was

mounted on a sledge attached to a linear rail (1.5 m long, 23 cm above the table, 5 cm behind

the screen). The rail was hung from the ceiling using elastic ropes, perpendicular to the line of

sight. The position of the sledge on the rail was controlled by a microcomputer (Arduino

Mega 2560; Arduino, Somerville, MA, USA). The microcomputer controlled a stepper motor

that rotated a threaded rod (OpenBuilds, www.openbuildspartstore.com). This way the

speaker was moved to the auditory stimulus location. The auditory stimulus was a 100 ms

broadband noise burst (0–20.05 kHz, 60 dB), windowed using the first 100 ms of a sine wave

with a period of 200 ms. To control audiovisual synchrony in bimodal trials, we adjusted

audiovisual latencies in the presentation software and confirmed their synchrony by recording

their relative latencies using a microphone and photo-diode.

We were concerned that participants might infer the position of the speaker from the

sounds produced by sledge movements. We tried to foil this strategy by playing a masking

sound from an additional speaker behind the center of the screen during each movement of

the speaker. The masking sound (55 dB) was a recording of a randomly chosen speaker move-

ment plus white noise. Additionally, the speaker moved from its last position to the target loca-

tion through a stopover location. The stopover was randomly chosen under the constraint that

the total distances the speaker moved were approximately equal across trials. We carried out a

control experiment, which indicated that participants could not infer the speaker position

based on sounds arising from the speaker movements (Section S11 in S1 Appendix).

Responses were given using a numeric keypad in spatial-discrimination tasks, and a point-

ing device in localization tasks. The pointing device was custom built using a potentiometer

(Uxcell 10KO Linear Taper Rotary Potentiometer) with a plastic ruler (5 × 17 cm) securely

fixed perpendicular to the shaft of the potentiometer. Participants placed their hands on either

side of the ruler and rotated it so that it pointed at the perceived location of the stimulus. A

visual cursor (an 8 × 8 pixel white square) was displayed to indicate the selected location. The

pointing device was covered by a black box (42 × 30 × 15 cm) so that participants could not

see their hands while using the device. A foot pedal was placed on the floor and used to con-

firm the current position of the pointing device as the response.

Stimulus presentation, speaker movement, and response collection were controlled by a

laptop PC running MATLAB R2017b (MathWorks, Natick, MA, USA). Visual stimuli were

presented using the Psychophysics Toolbox [72–74].

Procedure

In the beginning of the study, participants completed a unimodal spatial-discrimination task,

once for the auditory stimulus, and once for each of the three visual stimuli (low, medium, and

high spatial uncertainty). Participants then completed a bimodal spatial-discrimination task

followed by a pointing practice task. The last part of the study consisted of six recalibration ses-

sions, one for each condition (2 recalibration directions × 3 reliability levels). Each session

started with a unimodal localization task, followed by an audiovisual recalibration phase in

which participants localized one modality of a spatially discrepant audiovisual stimulus, and

ended with a repetition of the unimodal localization task.
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Unimodal spatial-discrimination task. Participants’ spatial-discrimination thresholds

were measured using a 2-interval, forced-choice (2IFC) procedure. In each trial, a standard

and a test stimulus were presented in random order. Each stimulus was preceded by a fixation

cross, presented at the center of the screen for 1,000 ms, followed by a 2,000 ms-long period of

blank screen in which the loudspeaker moved to its position. The actual stimulus lasted

100 ms, followed by either a 900 ms-long backward masker (visual stimuli) or a blank screen

for 900 ms (auditory stimuli). After the second stimulus period was over, a response probe was

displayed and participants indicated by button press which interval contained the stimulus

that was farther to the right (Fig 1B). Visual feedback was provided for 500 ms immediately

after the response was given. The inter-trial interval was 500 ms.

The standard stimulus was located straight-ahead at the center of the screen; the location of

the test stimulus was controlled by four interleaved staircases, two of which had the test stimu-

lus start at 12.5˚ (to the right of straight-ahead), and the other two at −12.5˚ (12.5˚ to the left of

straight-ahead). For the two staircases starting at one side, one followed the two-down-one-up

rule (with down being defined as moving the test stimulus leftwards) converging to a probabil-

ity of 71% [75] of perceiving the test stimulus as farther to the right than the standard stimulus;

the other staircase followed the one-down-two-up rule converging to a probability of 29%. The

initial step size was 1.9˚, decreased to 1.0˚ after the first staircase reversal and to 0.5˚ after the

third reversal. Each staircase consisted of 40 trials, resulting in a total of 160 trials. To improve

the estimation of the lapse rate, a test stimulus was presented distant from the center (±12.5˚)

once every 10 trials. A total of 176 trials was evenly split into 4 blocks.

Participants completed the spatial-discrimination task for each of the three levels of visual

stimulus reliability in random order, the auditory stimulus was always tested last. Participants

took about an hour to complete one stimulus condition; typically, they spread all four stimulus

conditions across two days.

Bimodal spatial-discrimination task. Participants’ biases in auditory relative to visual

spatial perception were measured using a spatial 2IFC procedure. An auditory and a high-reli-

ability visual stimulus were presented in random order and participants indicated by button

press whether the visual stimulus was located to the left or right of the auditory stimulus. The

procedure was otherwise identical to that of the unimodal spatial-discrimination task (Fig 3A).

No feedback was provided.

The auditory stimulus was presented at one of four locations (±2.5 or ±7.5˚). We used the

adaptive staircase procedure to effectively sample the visual stimulus space for each participant

as the range of meaningful stimulus locations varied considerably across participants due to

individual perceptual biases. Specifically, the location of the visual stimulus was controlled by

eight interleaved staircases, two for each of the four auditory locations. Of the two staircases

per auditory location, one started the test stimulus at 15˚ relative to the auditory location, and

the other one at −15˚. Staircases with the visual stimulus starting from the right of the auditory

stimulus followed the one-down-two-up rule, converging to a probability of 29% of choosing

the visual as to the right of the auditory stimulus. Staircases with the visual stimulus starting

from the left of the auditory stimulus followed the two-down-one-up rule, converging to a

probability of 71%. Staircase step size was updated as described above. Each staircase consisted

of 36 trials. Trials with the visual stimulus being located at ±15˚ relative to the auditory stimu-

lus were inserted once every nine trials, resulting in a total of 320 trials. The session was

divided into six blocks. Usually, participants took about two hours to complete all trials.

Pointing practice task. Participants’ localization precision independent of spatial percep-

tion was measured using a localization task with visual stimuli of maximal spatial reliability. In

each trial, a white square (8 × 8 pixels� 0.6˚ × 0.6˚) was displayed on the screen for 100 ms.

The stimulus was followed by a 900 ms-long backward masker and 500 ms of blank screen.
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Subsequently, the response cursor, a green square of the same size as the white square,

appeared on the screen. Participants used the pointing device to move the cursor to the stimu-

lus position, and confirmed their response with the footpedal. Response times were unre-

stricted. The cursor location was shown during adjustment, but error feedback was not

provided. There were eight possible horizontal positions for the stimulus, evenly spaced from

-17.5 to 17.5˚ in steps of 5˚. Each stimulus location was visited 30 times in random order,

resulting in a total of 240 trials. The inter-trial interval was 500 ms. This experiment took 30

minutes to complete and was typically administered after the bimodal spatial-discrimination

task on the same day.

Unimodal localization task (pre- and post-recalibration phase). Participants’ baseline

and post-recalibration spatial perception were measured using a unimodal spatial-localization

task. In each trial, either an auditory or a visual stimulus was presented, again preceded by a

fixation cross and a blank screen. The inter-trial interval was 100 ms, otherwise timing was

identical to that of the discrimination tasks. Auditory stimulus locations were the same as in

the bimodal spatial-discrimination task; visual stimulus locations were the four locations that

were identified as perceptually co-located with those four auditory locations using the bimodal

spatial-discrimination task. Participants again responded by moving a visual cursor to the

stimulus location (Fig 5A). There was no time limit for the response. The location of the visual

cursor was shown during the adjustment, but feedback about the localization error was not

provided. Each of the four target locations per modality was tested 12 times, resulting in a total

of 96 trials administered in pseudorandom order. These trials were split into four blocks. Usu-

ally participants took about 25 min to complete all 96 trials; they did so once at the beginning

of the session (pre-recalibration phase) and once again after the recalibration phase (post-

recalibration phase).

Bimodal localization task (recalibration phase). During the audiovisual recalibration

phase, participants were presented with temporally synchronous but spatially discrepant

audiovisual stimuli. We asked them to localize either the auditory or the visual component,

with the localization modality cued after stimulus presentation (Fig 5B), a procedure that has

been associated with larger recalibration effects than non-spatial tasks [32]. All other trial

parameters were identical to the unimodal localization task. Three audiovisual stimulus pairs

were chosen such that an auditory stimulus location was paired with the visual location per-

ceived as aligned with the auditory stimulus location to its left in the visual-left-of-auditory

condition and the auditory stimulus location to its right in the visual-right-of-auditory condi-

tion (Fig 5C). Each of the three audiovisual pairs was repeated 40 times in random order,

resulting in a total of 120 trials. These trials were split into four blocks. Usually, participants

took about 30 min to complete all 120 trials. A full session (pre-recalibration, recalibration,

and post-recalibration phase) took 80 min. Participants completed the six sessions on separate

days.

Data preparation and statistical analysis

Unimodal spatial-discrimination task. For the unimodal spatial-discrimination task, the

data were coded as the probability of identifying the test stimulus as located farther to the right

than the standard stimulus as a function of test stimulus location separately for each stimulus

type (Fig 2A). These data were fitted with a cumulative Gaussian distribution centered at 0 and

with a lapse rate constrained to be less than or equal to 6% [76]. The JND was calculated as half

the distance between the stimulus locations corresponding to probabilities of 0.25 and 0.75

according to the fitted cumulative Gaussian distribution (unscaled by the lapse rate). To mea-

sure goodness of fit, we computed adjusted R2 values based on the binned data (bin
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size = 1.8˚). To derive error bars, we randomly resampled the raw data with replacement 1,000

times, fitted psychometric functions to each resampled dataset, calculated the JND, and took

the 2.5 and 97.5 percentiles of the 1,000 JNDs as the bootstrapped confidence interval.

Bimodal spatial-discrimination task. Data from the bimodal spatial-discrimination task

were coded as the probability of identifying the visual stimulus as located to the right of the

auditory stimulus as a function of visual stimulus location. We fitted four cumulative Gaussian

distributions to these data, one for each auditory standard stimulus. Again, we included a lapse

rate, constrained to be less than or equal to 6% [76]. Adjusted R2 values were calculated based

on binned data (bin size = 3˚). The point of subjective equality (PSE) was defined as the visual

stimulus location corresponding to a probability of 0.5 according to the unscaled psychometric

function. The four PSEs were modeled as a linear function of auditory stimulus location. From

this linear regression of the PSEs, we computed the locations of the visual stimulus perceived

as co-located with the four auditory locations. In the subsequent unimodal and bimodal spa-

tial-localization tasks, we presented visual stimuli at these locations rather than those directly

indicated by the PSEs to reduce effects of random noise during the bimodal spatial-discrimina-

tion task. 95% confidence intervals for each parameter were obtained as before.

Pointing practice task. Data from the pointing practice task, used to measure localization

response precision, were not statistically analyzed but were filtered before the model fitting.

For each stimulus location, we z-transformed the data by subtracting the mean localization

response per stimulus location and then dividing by the standard deviation of all demeaned

responses. Localization responses with a z-score outside of [−3, 3] were identified as outliers

(0–1.67% of trials) and excluded from the model fitting.

Unimodal localization task (pre- and post-recalibration phase). Data from the unimo-

dal localization task were filtered separately for each modality, stimulus location and phase. To

compute the means for the z-transformation, auditory and visual localization responses in the

pre-recalibration phase were pooled across all six sessions, as the day of testing should not

influence localization performance. In contrast, the means of auditory and visual localization

responses in the post-recalibration phase were calculated separately for each of the six condi-

tions as each recalibration condition should influence localization differently. Then, we com-

puted the standard deviation of the demeaned auditory localization responses pooled across all

six session and both phases. The standard deviation of demeaned visual localization responses

was calculated separately for each visual-reliability condition given that stimulus reliability

should influence localization precision. Localization responses identified as outliers (z-scores

outside of [−3, 3]; 0.78–1.82% of trials) were excluded from all further analyses.

For statistical analysis and display, we summarized localization responses as a linear func-

tion of stimulus location, separately for each modality and phase. For each modality, localiza-

tion responses in the pre-recalibration phase were pooled across all six sessions (visual

reliability should influence the precision but not the accuracy of the localization responses;

Section S7 in S1 Appendix). Responses from the post-recalibration phase were regressed sepa-

rately for each condition, because each condition should influence localization differently. The

seven regression lines per modality were fit with the constraint that all have the same slope.

The amount of recalibration of one modality by the other was defined as the distance between

the intercepts of the regression lines for pre- and post-recalibration localization responses. It

was coded as positive if localization responses in the post-recalibration phase were shifted to

compensate for the audiovisual discrepancy in the preceding recalibration phase. For the sta-

tistical analysis, we calculated the amount of recalibration for each modality and recalibration

condition (2 recalibration directions × 3 reliability levels). To derive confidence intervals,

localization responses were resampled, separately for each location, task, session, and

modality.
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Data from the bimodal spatial-localization task conducted during the audiovisual recalibra-

tion phase were not analyzed. Data analysis was done using Python 3.7, R 4.0.2, and MATLAB

2019a.

Models of audiovisual recalibration

In this section we lay out the definition of recalibration underlying all models reported

here and then describe the recalibration process during the audiovisual recalibration phase

according to each of the models. Finally, we provide a formalization of each of the tasks used

to constrain the model parameters followed by the details of how the models were fit to the

data.

Definition of recalibration

Each stimulus at location s in the world leads to a sensory measurement m0 in an observer’s

brain. This measurement is corrupted by Gaussian-distributed sensory noise. Thus, with

repeated presentations of stimuli at location s, the sensory measurements correspond to scat-

tered spatial locations m0 � N ðs0; s02Þ. The variability of the measurements is determined by

the stimulus reliability 1/σ02. To allow integration of information from different modalities,

measurements are remapped into a common internal reference frame. Hence, the measure-

ment distribution is centered on s0, the remapped location of s. As part of the remapping pro-

cess, spatial discrepancies between the senses are accounted for by shifting the measurements

by a modality-specific amount Δ. We model recalibration as the process of updating these

shifts following each encounter with a cross-modal stimulus pair [32, 63] and probed this

updating process by misaligning the physical visual and auditory stimuli to create an artificial

sensory discrepancy.

We assumed that observers were calibrated as far as possible at the beginning of each exper-

imental session. Thus, the remapped stimulus locations in internal space were understood as

linear functions of the physical stimulus locations sA and sV, that is, s0A ¼ aAsA þ bA and

s0V ¼ aVsV þ bV . However, given that we can only measure relative biases there is no way to

empirically isolate the remapping of one modality. As a consequence and without loss of gen-

erality, we set s0V to be equal to sV (i.e., aV = 1 and bV = 0).

We use the variables DAi
and DVi

to exclusively capture the update in measurement shifts

after encounters with the spatially discrepant audiovisual stimulus pairs with visual reliability i
(i 2 {1, 2, 3}) during the audiovisual recalibration phase. In addition, we assumed that DAi

and

DVi
are updated in every trial of the phase, and thus the location-independent shifts at the end

of the task can be written as the sum of the initial shifts and the shift updates over 120 trials,

that is s0A ¼ aAsA þ bA þ DAi
ð121Þ and s0V ¼ sV þ DVi

ð121Þ. The final shifts accumulated after

120 recalibration trials were assumed be maintained throughout the subsequent post-recali-

bration task as observers were not exposed to spatially aligned audiovisual pairs after the recali-

bration phase (Section S12 in S1 Appendix).

We further assumed that stimulus reliability differed between unimodal (1=s0A
2) and

bimodal (1=s0AV;A
2) stimulus presentations. Note that we denote the visual-reliability condition

for variables associated with the auditory modality (i.e., with a subscript Ai) when the value of

that variable can be impacted by visual measurements (e.g., shifts DAi
or, below, sensory esti-

mates ŝ0Ai
), but not otherwise (e.g., measurements m0A or measurement variances s0A

2 and

s0AV;A
2).
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Models of the recalibration process

The reliability-based model of cross-modal recalibration. According to this model, each

modality should be recalibrated in the direction of the other modality by an amount that is

proportional to the other modality’s relative reliability [53]. In other words, after every trial,

the measurement shifts, DAi
and DVi

, are updated in the direction of the discrepancy between

the visual and auditory measurements by an amount proportional to the two modalities’ rela-

tive reliabilities as follows:

DAi
ðt þ 1Þ ¼ DAi

ðtÞ þ awiðm0Vi ;lV ðtÞ
� m0A;lAðtÞÞ; ð1Þ

where

wi ¼
s0AV;Vi

� 2

s0AV;Vi
� 2 þ s0AV;A

� 2
ð2Þ

and analogously

DVi
ðt þ 1Þ ¼ DVi

ðtÞ þ að1 � wiÞðm0A;lAðtÞ � m0Vi ;lV ðtÞ
Þ; ð3Þ

where lA and lV index the auditory and visual locations (lA, lV 2 {1, 2, 3, 4}), α denotes a supra-

modal learning rate, and t denotes trial number.

The fixed-ratio model of cross-modal recalibration. According to this model, after

every trial, DAi
and DVi

are updated in the direction of the discrepancy between the visual and

auditory measurements by a fixed ratio of this discrepancy. The ratio of the update depends

solely on the identity of the modality and thus is independent of stimulus reliability [62]. DAi

and DVi
are updated according to the following equations:

DAi
ðt þ 1Þ ¼ DAi

ðtÞ þ aAðm0Vi ;lV ðtÞ
� m0A;lAðtÞÞ ð4Þ

and

DVi
ðt þ 1Þ ¼ DVi

ðtÞ þ aVðm0A;lAðtÞ � m0Vi ;lV ðtÞ
Þ; ð5Þ

where αA and αV are modality-specific learning rates.

The causal-inference model of recalibration. In this model, the shift updates are deter-

mined by the discrepancy between a measurement and the corresponding perceptual estimate,

ŝ0Ai ;lAðtÞ
� m0A;lAðtÞ and ŝ 0Vi ;lV ðtÞ

� m0Vi ;lV ðtÞ
[63] for each modality. The spatial discrepancy between

auditory and visual measurements and the relative reliabilities of both stimuli have indirect

influence on the shift updates by means of their influence on the location estimates, ŝ 0Ai ;lAðtÞ
and

ŝ0Vi ;lV ðtÞ
. Additionally, the location estimates and thus the shift updates are contingent on the

degree to which the brain infers a common cause or separate causes for the two measurements

[30, 63].

The location estimates are a mixture of two conditional location estimates, one for each

causal scenario (common audiovisual source, C = 1, or different auditory and visual sources,

C = 2). In the case of a common source, the location estimate of the audiovisual stimulus pair,

ŝ0Ai ;lAðtÞ;C¼1
¼ ŝ 0Vi ;lV ðtÞ;C¼1

, equals the reliability-weighted average of the measurements m0A;lAðtÞ,
m0Vi ;lV ðtÞ

and the mean m0P of an internal, Gaussian-shaped, supra-modal prior across stimulus
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locations with variance s0P
2:

ŝ0Ai ;lAðtÞ;C¼1
¼ ŝ0Vi;lV ðtÞ;C¼1

¼
m0A;lAðtÞs

0
AV;A

� 2 þm0Vi ;lV ðtÞ
s0AV;Vi

� 2 þ m0Ps
0
P� 2

s0AV;A
� 2 þ s0AV;Vi

� 2 þ s0P
� 2

: ð6Þ

In the case of two separate sources, the location estimates of the auditory and the visual

stimulus, ŝ0Ai ;lAðtÞ;C¼2
and ŝ0Vi ;lV ðtÞ;C¼2

, are equal to the reliability-weighted averages of m0A;lAðtÞ and

m0P for the auditory estimate, and m0Vi;lV ðtÞ
and m0P for the visual estimate, respectively:

ŝ 0Ai ;lAðtÞ;C¼2
¼

m0A;lAðtÞs
0
AV;A

� 2 þ m0Ps
0
P
� 2

s0AV;A
� 2 þ s0P

� 2
ð7Þ

and

ŝ0Vi ;lV ðtÞ;C¼2
¼

m0Vi ;lV ðtÞ
s0AV;Vi

� 2 þ m0Ps
0
P
� 2

s0AV;Vi
� 2 þ s0P

� 2
: ð8Þ

The final location estimates are derived by model averaging (see alternative decision strat-

egy in Section S3 in S1 Appendix). Specifically, the final location estimate ŝ 0Ai ;lAðtÞ
is the average

of the conditional location estimates, ŝ 0Ai ;lAðtÞ;C¼1
and ŝ0Ai;lAðtÞ;C¼2

, with each estimate weighted by

the posterior probability of its causal structure:

ŝ0Ai ;lAðtÞ
¼ ŝ0Ai ;lAðtÞ;C¼1

PðC ¼ 1jm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

Þ

þŝ0Ai;lAðtÞ;C¼2
ð1 � PðC ¼ 1jm0A;lAðtÞ;m

0
Vi ;lV ðtÞ

ÞÞ
ð9Þ

and analogously for the visual location estimate:

ŝ0Vi ;lV ðtÞ
¼ ŝ0Vi ;lV ðtÞ;C¼1

PðC ¼ 1jm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

Þ

þŝ0Vi ;lV ðtÞ;C¼2
ð1 � PðC ¼ 1jm0A;lAðtÞ;m

0
Vi ;lV ðtÞ

ÞÞ:
ð10Þ

The posterior probability of a common source for the auditory and visual measurements in

trial t, PðC ¼ 1jm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

Þ, is proportional to the product of the likelihood of a common

source for these measurements in trial t and the prior probability of a common source for

visual and auditory measurements in general, P(C = 1):

PðC ¼ 1jm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

Þ ¼

Pðm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

jC ¼ 1ÞPðC ¼ 1Þ

Pðm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

jC ¼ 1ÞPðC ¼ 1Þ þ Pðm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

jC ¼ 2Þð1 � PðC ¼ 1ÞÞ
:
ð11Þ

The posterior probability of two separate sources, one for the auditory and one for the

visual measurement, is 1 � PðC ¼ 1jm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

Þ.

The likelihood of a common source of the visual and auditory measurements in trial t,
Pðm0A;lAðtÞ;m

0
Vi ;lV ðtÞ

jC ¼ 1Þ, is the product of the likelihood of the internally represented audiovi-

sual stimulus location s0AV given the auditory measurement, m0A;lAðtÞ, and the visual measure-

ment m0Vi;lV ðtÞ
, and the supra-modal prior, integrated over all possible remapped audiovisual
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stimulus locations s0AV [30]:

Pðm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

jC ¼ 1Þ ¼

Z

Pðm0A;lAðtÞjs
0

AVÞPðm
0

Vi ;lV ðtÞ
js0AVÞPðs

0

AVÞds
0

AV

¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0AV;A

2s0AV;Vi
2 þ s0AV;A

2s0P
2 þ s0AV;Vi

2s0P
2

q �

exp �
1

2

ðm0A;lAðtÞ � m
0
Vi ;lV ðtÞ

Þ
2
s0P

2þðm0A;lAðtÞ � m
0
PÞ

2
s0AV;Vi

2þðm0Vi ;lV ðtÞ
� m0PÞ

2
s0AV;A

2

s0AV;A
2s0AV;Vi

2 þ s0AV;A
2s0P

2 þ s0AV;Vi
2s0P

2

" #

:

ð12Þ

The likelihood of different sources for the visual and auditory measurements in trial t,
Pðm0A;lAðtÞ;m

0
Vi ;lV ðtÞ

jC ¼ 2Þ is the product of the likelihood of internally represented auditory

and visual stimulus locations s0A and s0V given the auditory measurement, m0A;lAðtÞ, and the visual

measurement m0Vi ;lV ðtÞ
, and the supra-modal prior. Given that the measurements in this causal

scenario stem from different sources, the product is integrated over all possible, remapped

visual and auditory stimulus locations, s0V and s0A:

Pðm0A;lAðtÞ;m
0
Vi ;lV ðtÞ

jC ¼ 2Þ ¼

Z Z

Pðm0A;lAðtÞ;m
0

Vi ;lV ðtÞ
js0A; s

0

VÞPðs
0

A; s
0

VÞds
0

Ads
0

V

¼

Z

Pðm0A;lAðtÞjs
0

AÞPðs
0

AÞds
0

A

� � Z

Pðm0Vi ;lV ðtÞ
js0VÞPðs

0

VÞds
0

V

� �

¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0AV;A

2 þ s0P
2Þðs0AV;Vi

2 þ s0P
2Þ

q �

exp �
1

2

ðm0A;lAðtÞ � m
0
PÞ

2

s0AV;A
2 þ s0P

2
þ
ðm0Vi ;lV ðtÞ

� m0PÞ
2

s0AV;Vi
2 þ s0P

2

 !" #

:

ð13Þ

The updates of the shifts are scaled by two modality-specific learning rates, αA and αV [63]:

DAi
ðt þ 1Þ ¼ DAi

ðtÞ þ aAðŝ0Ai;lAðtÞ
� m0A;lAðtÞÞ ð14Þ

and

DVi
ðt þ 1Þ ¼ DVi

ðtÞ þ aVðŝ0Vi;lV ðtÞ
� m0Vi ;lV ðtÞ

Þ: ð15Þ

We also tested a version of the model with one supra-modal learning rate (α = αA = αV).

Formalization of the tasks

Unimodal spatial-discrimination task. The unimodal spatial-discrimination task was

conducted to estimate the one auditory 1=s0A2 and three visual 1=s0Vi
2 stimulus reliabilities

under unimodal presentation conditions as well as to constrain the estimates of the variable

bias aA introduced by the remapping process. We begin by describing the auditory version.

The standard stimulus was presented straight ahead, at location sA,0, and the test stimulus was

presented at one of NA locations, sA,n, determined by an adaptive procedure. For each pair, the

probability, pA,n, of estimating the test stimulus to be located to the right of the standard stimu-

lus is a function of the physical distance between the two stimuli.
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We assume that the observer makes the decision by comparing the internal location esti-

mates ŝ0A;n and ŝ0A;0,

pA;n ¼ Pðŝ 0A;n > ŝ0A;0Þ ¼ Pðŝ0A;n � ŝ0A;0 > 0Þ: ð16Þ

To further specify pA,n, we have to derive the probability distributions of the internal

location estimates. Each physical stimulus at location sA,n results in an internal measurement,

m0A;n. The measurement distribution is Gaussian (m0A;n � N ðs0A;n; s
0
A2Þ) and for a given mea-

surement the estimate of the remapped location of the stimulus is the average of the measure-

ment and the mean of the spatial prior, m0P, each weighted by their relative reliabilities

(̂s0A;n ¼
s0A
� 2

s0A
� 2þs0P � 2

m0A;n þ
s0P
� 2

s0A
� 2þs0P � 2

m0P). Thus, the probability distribution of the location esti-

mates of a test stimulus is

ŝ0A;n � N ðmŝ 0A;n
; s2

ŝ 0A
Þ ð17Þ

where

mŝ 0A;n
¼

s0A
� 2

s0A
� 2 þ s0P

� 2
s0A;n þ

s0P
� 2

s0A
� 2 þ s0P

� 2
m0P and s2

ŝ 0A
¼

s0A
� 2

s0A
� 2 þ s0P

� 2

� �2

s0A
2 ð18Þ

The probability distribution of the difference between the two location estimates ŝ0A;n and

ŝ0A;0 is

ŝ 0A;n � ŝ0A;0 � N ðmŝ 0A;n
� mŝ 0A;0

; 2s2
ŝ 0A
Þ; ð19Þ

where mŝ 0A;0
¼

s0A
� 2

s0A
� 2þs0P � 2

s0A;0 þ
s0P
� 2

s0A
� 2þs0P � 2

m0P. Taken together, the probability of perceiving an audi-

tory test stimulus at location sA,n to the right of an auditory standard stimulus at location sA,0 is

pA;n ¼ Pðŝ 0A;n � ŝ0A;0 > 0Þ

¼ 1 � Fð0; mŝ 0A;n
� mŝ 0A;0

; 2s2
ŝ 0A
Þ

¼ 1 � F 0;
s0A
� 2

s0A
� 2 þ s0P

� 2
ðs0A;n � s0A;0Þ; 2

s0A
� 2

s0A
� 2 þ s0P

� 2

� �2

s0A
2

 !

¼ Fðs0A;n � s0A;0; 0; 2s0A
2Þ;

ð20Þ

where F(x;μ, σ2) is the cumulative Gaussian distribution.

However, as experimenters we only have access to response probabilities as a function of

the stimulus locations in physical space. Given that the remapped location of s0A is a function of

the physical stimulus location sA, we can rewrite Eq 20 as

pA;n ¼ FððaAsA;n þ bAÞ � ðaAsA;0 þ bAÞ; 0; 2s0A
2Þ

¼ FðsA;n � sA;0; 0; 2a� 2
A s

0
A

2Þ;
ð21Þ

and analogously,

pVi ;n
¼ FðsVi ;n

� sVi ;0
; 0; 2s0Vi

2Þ: ð22Þ

Finally, the model includes occasional response lapses (i.e., random button presses) at rate

λ, so that the probability of reporting the test stimulus as located farther to the right than the
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standard (rA,n = 1) is

prA;n¼1 ¼ 0:5lA þ ð1 � lAÞpA;n and prVi ;n¼1 ¼ 0:5lVi
þ ð1 � lVi

ÞpVi ;n
: ð23Þ

Bimodal spatial-discrimination task. The bimodal spatial-discrimination task was con-

ducted to estimate the relative bias of auditory compared to visual spatial perception, i.e., to

estimate aA and bA. Auditory stimuli were presented at four different locations in physical

space sA,l, where l indexes the auditory location. Guided by a staircase procedure, on each trial

t, an auditory stimulus at location sA,l was paired with a visual stimulus of high spatial reliabil-

ity (i = 1) at one of N test locations sV,n, where n indexes the finer grid of locations of visual sti-

muli that were presented during the task. For each pair, the model predicts pl,n, the probability

of judging the visual stimulus at location sV,n as to the right of the auditory stimulus at location

sA,l.

Analogous to the unimodal spatial-discrimination task, we specify the probability distribu-

tions of the internal auditory and visual location estimates as

ŝ 0A;l � N ðmŝ 0A;l
; s2

ŝ 0A
Þ and ŝ 0V1 ;n

� N ðmŝV1 ;n
; s2

ŝV1

Þ; ð24Þ

where

mŝ 0A;l
¼
s0A
� 2s0A;l þ s

0
P
� 2m0P

s0A
� 2 þ s0P

� 2
¼
s0A
� 2ðaAsA;l þ bAÞ þ s

0
P
� 2m0P

s0A
� 2 þ s0� 2

P

; ð25Þ

mŝ 0V1 ;n
¼
s0V1

� 2s0V;n þ s
0
P
� 2m0P

s0V1

� 2 þ s0P
� 2

¼
s0V1

� 2sV;n þ s0P
� 2m0P

s0V1

� 2 þ s0P
� 2

; ð26Þ

s2
ŝ 0A
¼

s0A
� 2

ðs0A
� 2 þ s0P

� 2Þ
2
and s2

ŝ 0V1

¼
s0V1

� 2

ðs0V1

� 2 þ s0P
� 2Þ

2
: ð27Þ

The probability of the observer perceiving a visual stimulus at physical location sV,n as

located to the right of an auditory stimulus at physical location sA,l is thus:

pl;n ¼ Pðŝ0V1 ;n
> ŝ 0A;lÞ ¼ Pðŝ0V1 ;n

� ŝ0A;l > 0Þ: ð28Þ

The distribution of this difference is:

ŝ0V1;n
� ŝ 0A;l � N ðmŝ 0V1 ;n

� mŝ 0A;l
; sŝ 0V1

2 þ sŝ 0A
2Þ: ð29Þ

The probability of perceiving the visual stimulus to the right of the auditory can then be

expressed as

pl;n ¼ 1 � Fð0; mŝ 0V1 ;n
� mŝ 0A;l

; s2
ŝ 0V1

þ s2
ŝ 0A
Þ: ð30Þ

As in the unimodal spatial-discrimination task, the model includes occasional lapses at rate

λAV. Therefore, the probability of reporting a visual stimulus at sV,n as located to the right of an

auditory stimulus at location sA,l (rl,n = 1) is equal to

prl;n¼1 ¼ 0:5lAV þ ð1 � lAVÞpl;n: ð31Þ
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Pointing practice task. The pointing practice task was used to estimate localization

response variability, s2
r , due to sources unrelated to the spatial perception of the stimuli.

Visual stimuli were presented at eight different locations sV,o, where o indexes the stimulus

location (o 2 {1, 2, . . ., 8}). Localization responses (i.e., confirmed cursor positions) in each

trial were modeled as perturbed by Gaussian-distributed noise and centered on the physical

stimulus location:

rV;o � N ðsV;o; s2
r Þ: ð32Þ

By doing so, we assume that 1) the location of the visual cursor in physical space maps

directly to its location in perceptual space and 2) the stimulus location estimate is unbiased.

This is based on our general assumption of identity remapping for visual stimuli as well as on

the high spatial reliability of the visual cursor and the visual stimulus, which should safeguard

their estimates against the influence of spatial priors. See Section S2 in S1 Appendix for a

model that does not have these assumptions.

Unimodal localization task—Pre-recalibration phase. The unimodal localization task

was conducted before and after the recalibration phase to measure shifts in auditory and visual

localization responses as a consequence of exposure to spatially discrepant audiovisual stimuli

during the recalibration phase. Stimuli were presented at four locations for each modality, sA,l

and sV,l.

As for the pointing practice task, we assumed that the probability distributions of the locali-

zation responses in physical space, rA,l and rVi ;l
, are centered on the location estimates ŝ 0A;l and

ŝ0Vi ;l
in perceptual space, and corrupted by additional unbiased noise. As in the spatial-discrimi-

nation tasks (and unlike in the pointing practice task that used a different, maximally reliable

stimulus), the stimulus location estimates are assumed to be biased due to the remapping pro-

cess and the incorporation of the supra-modal spatial prior. It follows that the probability dis-

tributions of the localization responses are

rA;l � N ðmŝ 0A;l
; s2

ŝ 0A
þ s2

r Þ and rVi ;l
� N ðmŝ 0Vi ;l

; s2
ŝ 0Vi
þ s2

r Þ; ð33Þ

where the terms are defined in Eqs 24–27.

Unimodal localization task—Post-recalibration phase. In the post-recalibration phase,

the remapping from physical to perceptual space had been updated so that additional shifts DAi

and DVi
, accumulated after 120 exposures to discrepant audiovisual stimuli, were incorporated:

s0A ¼ aAsA þ bA þ DAi
ð121Þ and s0V ¼ aVsV þ bV þ DVi

ð121Þ. This change in the measurement

distributions affects the centers of the location estimates’ probability distributions as follows:

mŝ 0Ai ;l
¼
s0A
� 2ðaAsA;l þ bA þ DAi

ð121ÞÞ þ s0
� 2

P m
0
P

s0A
� 2 þ s0 � 2

P

mŝ 0Vi ;l
¼
s0Vi
� 2ðsV;l þ DVi

ð121ÞÞ þ s0
� 2

P m
0
P

s0Vi
� 2 þ s0 � 2

P

:

ð34Þ

We assumed that the probability distributions of the localization responses are centered on

these updated values, that is, we did not implement the updated remapping for the location

estimates of the cursor. In sum, localization responses to unimodally presented visual and

auditory stimuli have a Gaussian probability distribution that, after the audiovisual recalibra-

tion task, additionally depends on the final shift updates DAi
ð121Þ and DVi

ð121Þ.
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Model fitting

All models were fit using a maximum-likelihood procedure. That is, a set of free parameters Θ
was chosen to maximize the log likelihood of the data given a model M. Our model fitting

strategy aimed to reduce the number of free parameters estimated at once. We split the set of

free parameters into three subsets Θi, i = 1, 2, 3, each fit to a subset of the data Xi, i = 1, 2, 3,

and maximized the log-likelihoods of each subset Xi separately,

log PðXjM;YÞ ¼ log PðX1jM;Y1Þ þ log PðX2jM;Y2Þ þ log PðX3jM;Y3Þ; ð35Þ

where X1, X2, X3� X and Θ1, Θ2, Θ3� Θ. The first dataset, X1, refers to the unimodal spatial-

discrimination task, which was used to constrain parameter subset, Θ1, that comprised unimo-

dal stimulus reliabilities as well as lapse rates in the different sessions of this task. X2 refers to

the pointing practice task used to estimate parameter subset, Θ2, which comprised only the

variability in localization responses due to other factors than spatial perception. The third sub-

set comprised data from three tasks, X1
3
;X2

3
;X3

3
� X3, the bimodal spatial-discrimination task,

and the unimodal spatial-localization task for the pre- and post-recalibration phase, respec-

tively. These three datasets constrained overlapping sets of parameters Y
1

3
;Y

2

3
;Y

3

3
� Y3.

Thus, they were fit jointly. Y
1

3
and Y

2

3
comprised only localization bias parameters as well as

task-specific lapse rates; stimulus reliabilities and response noise parameter estimates were

taken from Θ1 and Θ2. Only Y
3

3
, the parameter set constrained by participants’ post-recalibra-

tion localization responses, included parameters specific to each of the three models of cross-

modal recalibration such as the learning rate and common-cause prior.

As outlined before, we did not fit the localization responses from the audiovisual recalibra-

tion task, i.e., the build-up of the recalibration effect (Section S13 in S1 Appendix), because the

shifts (DAi
ðtÞ and DVi

ðtÞ) are serially dependent, that is, the size of the shift in trial t depends

on the size of the shift in trial t − 1. Given that there is no closed-form solution for the causal-

inference model, we would have needed to use Monte Carlo simulations to approximate the

probability distribution of the location estimates. Yet, the location estimates depend on the

serially dependent shifts and consequently the number of necessary samples would have

grown exponentially from trial to trial. Thus, it was computationally challenging to estimate

the likelihood of the parameters and the model given the data from the audiovisual recalibra-

tion task. Instead, we used Monte Carlo simulations to approximate the probability distribu-

tion of the shift updates DAi
ð121Þ and DVi

ð121Þ accumulated at the end of the audiovisual

recalibration task, i.e., we fitted the final recalibration effect rather than its build-up.

Model log-likelihood—Unimodal spatial-discrimination task. In the unimodal spatial-

discrimination task (auditory session), participants indicated whether the test stimulus was

located to the left, rA,n(t) = 0, or to the right of the standard stimulus, rA,n(t) = 1. For each such

trial, the likelihood of model parameters given the response rA,n(t) is

PðrA;nðtÞjM;Y1Þ ¼ prA;nðtÞ¼1
rA;nðtÞ ð1 � prA;nðtÞ¼1Þ

1� rA;nðtÞ ; ð36Þ

where prA;n¼1 is defined in Eq 23. Thus, the log likelihood given responses across all T1,A trials is

log PðX1;AjM;Y1Þ ¼
XT1;A

t¼1

½rA;nðtÞlog prA;nðtÞ¼1 þ ð1 � rA;nðtÞÞlogð1 � prA;nðtÞ¼1Þ�: ð37Þ
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Analogously,

log PðX1;Vi
jM;Y1Þ ¼

XT1;Vi

t¼1

½rVi ;nðtÞ
logprVi ;nðtÞ¼1 þ ð1 � rVi ;nðtÞ

Þlogð1 � prVi ;nðtÞ¼1Þ�: ð38Þ

The log likelihood across all four sessions is

log PðX1jM;Y1Þ ¼ log PðX1;AjM;Y1Þ þ
X3

i¼1

log PðX1;Vi
jM;Y1Þ: ð39Þ

The set of free parameters that were constrained by the binary responses in this task is

Y1 ¼ f
ffiffiffi
2
p

s0A=aA; s
0
V1
; s0V2

; s0V3
; lA; lV1

; lV2
; lV3
g.

Model log-likelihood—Pointing practice task. For each trial, the likelihood of the model

parameters given a visual stimulus at location sV,o(t) and a subsequent response (cursor setting)

rV,o(t) is PðrV;oðtÞjM;Y2Þ ¼ φðrV;oðtÞ; sV;oðtÞ; s2
r Þ where φ refers to the Gaussian probability den-

sity. The only free parameter that was constrained by this task is Θ2 = {σr}. The maximum-like-

lihood estimate of σr is

sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT2

t¼1
ðsV;oðtÞ � rV;oðtÞÞ

2

T2

s

; ð40Þ

where T2 and the sum do not include outlier trials.

Model log-likelihood—Bimodal spatial-discrimination task. In the bimodal spatial-dis-

crimination task, for each trial t, participants indicated whether the visual test stimulus at loca-

tion sV1 ;nðtÞ
was located to the left, rl(t),n(t) = 0, or to the right, rl(t),n(t) = 1, of the auditory

standard stimulus presented at sA,l(t). For each such trial, the likelihood of model parameters

given the response rl(t),n(t) is

PðrlðtÞ;nðtÞjM;Y
1

3
Þ ¼ prlðtÞ;nðtÞ¼1

rlðtÞ;nðtÞ ð1 � prlðtÞ;nðtÞ¼1Þ
1� rlðtÞ;nðtÞ ; ð41Þ

where prl;n¼1 is defined in Eq 31. Thus, the log likelihood given the responses across all T1
3

trials is

log PðX1
3
jM;Y1

3
Þ ¼

XT
1
3

t¼1

½rlðtÞ;nðtÞlogprlðtÞ;nðtÞ¼1 þ ð1 � rlðtÞ;nðtÞÞlogð1 � prlðtÞ;nðtÞ¼1Þ�: ð42Þ

prl;n¼1 is a function of pl(t),n(t), which in turn depends on the bias parameters aA and bA, the

parameters of the supra-modal prior over locations m0P and s0P, as well as the measurement vari-

ances s0A and s0Vi
(see Eqs 24–27). Fitting both the bias parameters and the supra-modal prior

at once was impossible as they effectively traded off. Thus, we implemented a non-informative

supra-modal prior over stimulus locations by setting s0P to 100 and m0P to 0. as0A, s0V1
, s0V2

, and

s0V3
were estimated based on the forced-choice responses from the unimodal spatial-discrimi-

nation task. The final set of free parameters that were constrained by the binary responses in

this task was Y
1

3
¼ faA; bA; lVAg. The bias parameters, aA and bA, were jointly estimated using

the data from this task as well as pre- and post-recalibration responses from the unimodal

localization task.

Model log-likelihood—Unimodal localization task—Pre-recalibration phase. In this

task, each localization results in cursor location settings rA,i,j,l(t) and rVi;j;lðtÞ
on trial t of session

(i, j) where i indicates the visual-reliability condition and j the recalibration direction in the

subsequent recalibration phase. The localization responses from this task were modeled as

Gaussian-distributed. From these distributions, we can compute the likelihood of a model M
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and the parameter set Y
2

3
as the Gaussian probability density function in Eq 33 evaluated at the

observed localization responses rA,i,j,l(t) and rVi ;j;lðtÞ
:

PðrA;i;j;lðtÞjM;Y
2

3
Þ ¼ ð2pðs2

ŝ 0A
þ s2

r ÞÞ
� 1

2 exp �
ðrA;i;j;lðtÞ � mŝ 0

A;i;j;lðtÞ
Þ

2

2ðs2
ŝ 0A
þ s2

r Þ

2

4

3

5

PðrVi ;j;lðtÞ
jM;Y2

3
Þ ¼ ð2pðs2

ŝ 0Vi
þ s2

r ÞÞ
� 1

2 exp �
ðrVi ;j;lðtÞ

� mŝ 0
Vi ;j;lðtÞ
Þ

2

2ðs2
ŝ 0Vi
þ s2

r Þ

2

4

3

5:

ð43Þ

The log likelihood is the sum of the log likelihoods across the trials of all six sessions:

log PðX2
3
jM;Y2

3
Þ

¼
X3

i¼1

X2

j¼1

"
X
T2

3;A;i;j

tA¼1

log PðrA;i;j;lðtAÞjM;Y
2

3
Þ þ

X
T2

3;Vi ;j

tVi¼1

log PðrVi ;j;lðtVi Þ
jM;Y2

3
Þ

#

¼
X3

i¼1

X2

j¼1

"

�
T2

3;A;i;j

2
logð2pðs2

ŝ 0A
þ s2

r ÞÞ �
T2

3;Vi;j

2
logð2pðs2

ŝ 0Vi
þ s2

r ÞÞ

�
1

2ðs2
ŝ 0A
þ s2

r Þ

X
T2

3;A;i;j

tA¼1

ðrA;i;j;lðtAÞ � mŝA;i;j;lðtAÞ
Þ

2

�
1

2ðs2
ŝ 0Vi
þ s2

r Þ

X
T2

3;Vi ;j

tVi¼1

ðrVi ;j;lðtVi Þ
� mŝVi ;j;lðtVi Þ

Þ
2

3

5:

ð44Þ

The log-likelihood depends on mŝA;i;j;lðtAÞ
and mŝVi ;j;lðtVi Þ

, which in turn depend on the bias

parameters aA and bA, the parameters of the supra-modal prior m0P and s0P, as well as the mea-

surement variances s0A and s0Vi
(see Eq 34), and the response noise σr. We chose a flat prior

over stimulus locations, the (scaled) measurement variances (
ffiffiffi
2
p

s0A=aA and s0Vi
) were esti-

mated based on the unimodal spatial-discrimination task, and σr was estimated based on the

pointing practice task. Consequently, the actual set of parameters constrained by localization

responses from the pre-recalibration task was Y
2

3
¼ faA; bAg. Here, the values of the T vari-

ables and the sums do not include outlier trials.

Model log-likelihood—Unimodal localization task—Post-recalibration phase. Locali-

zation responses in the post-recalibration phase additionally depend on the updates for the

visual and auditory shifts accumulated after 120 trials during the recalibration phase, DAi
ð121Þ

and DVi
ð121Þ (Eq 34). Since these accumulated shift updates are not accessible to the experi-

menter, we marginalized over these shift updates to calculate the log-likelihood. For each of

the six experimental sessions (i, j), the log likelihood of a model M and its parameter set Y
3

3
is

the integral over DAi
and DVi

of the likelihood of the final shift updates given the observed data

X3
3;i;j, the model M, and the parameter setY

3

3
, PðX3

3;i;jjDAi ;j
;DVi ;j

;M;Y3

3
Þ, multiplied by the joint

probability of the auditory and visual shift updates, PðDAi ;j
;DVi ;j

jM;Y3

3
Þ, summed across all six

sessions

log PðX3
3
jM;Y3

3
Þ ¼

X3

i¼1

X2

j¼1

log
�Z Z

PðX3

3;i;jjDAi ;j
;DVi ;j

;M;Y3

3
ÞPðDAi ;j

;DVi ;j
jM;Y3

3
ÞdDAi ;j

dDVi ;j

�

:
ð45Þ
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We will describe in the following sections how the joint probability PðDAi ;j
;DVi;j

jM;Y3

3
Þ and

the log-likelihood log PðX3
3
jM;Y3

3
Þ were derived for each of the three models of cross-modal

recalibration.

Reliability-based model of cross-modal recalibration. In this model, auditory and visual

shift updates have a constant ratio of DAi
ðtÞ=DVi

ðtÞ ¼ � s0AV;A2=s0AV;Vi
2, the ratio of the mea-

surement noise variances. Therefore, DAi
ðtÞ can be rewritten as ð� s0AV;A2=s0AV;Vi

2ÞDVi
ðtÞ, and

we can express the likelihood given a single auditory localization response rAi;j;lðtÞ
as

PðrAi ;j;lðtÞ
jDVi ;j

;MRB;Y
3

3;RBÞ ¼ ð2pðs
2
ŝ 0Ai
þ s2

r ÞÞ
� 1

2exp �
ðrAi ;j;lðtÞ

� mŝ 0
Ai ;j;lðtÞ
Þ

2

2ðs2
ŝ 0Ai
þ s2

r Þ

2

4

3

5; ð46Þ

where

mŝ 0
Ai ;lðtÞ
¼

s0AV;A
� 2 aAsA;lðtÞ þ bA �

s0AV;A
2

s0AV;Vi
2
DVi ;j
ð121Þ

 !

þ s0P
� 2m0P

s0AV;A
� 2 þ s0P

� 2
:

ð47Þ

The visual response likelihoods and means are defined analogously (Eq 34). Thus, the joint

likelihood PðX3
3;i;jjDAi ;j

;DVi ;j
;MRB;Y

3

3;RBÞ can be written as PðX3
3;i;jjDVi;j

;MRB;Y
3

3;RBÞ. Given that

the likelihood depends only on DVi ;j
, we only need to integrate over DVi ;j

and the log likelihood

simplifies to

log PðX3
3
jMRB;Y

3

3;RBÞ ¼

X3

i¼1

X2

j¼1

log
�Z

PðX3

3;i;jjDVi ;j
;MRB;Y

3

3;RBÞPðDVi ;j
jMRB;Y

3

3;RBÞdDVi ;j

�

:
ð48Þ

The shift updates DVi ;j
are stochastic because the visual and auditory measurements in each

trial of the audiovisual recalibration task are stochastic. We cannot derive their probability dis-

tribution PðDVi ;j
jMRB;Y

3

3;RBÞ in closed form. Instead, we used Monte Carlo simulation to

approximate this probability distribution. Given the reliability-based model, for each candi-

date set of parameters Y
3

3;RB, visual-reliability condition i, and recalibration direction j, we sim-

ulated 120 recalibration trials analogous to the audiovisual recalibration task. We repeated this

simulation 1,000 times, resulting in a sample of 1,000 shift updates (DVi
) and checked whether

the distribution of the 1,000 samples was well fit by a Gaussian with mean and standard devia-

tion equal to the corresponding empirical parameters of the sampled distribution. To do so,

we binned the simulated shift updates into 100 bins of equal size and computed the correlation

between the observed and predicted number of samples per bin. The resulting value of R2 was

greater than 0.925 in all cases (Section S8 in S1 Appendix). The approximated probability dis-

tribution of the shift updates is denoted as ~PðDVi ;j
jMRB;Y

3

3;RBÞ.

We approximated the integral in Eq 48 by numerical integration over a region discretized

into 100 bins. To ensure that we include enough of the tails of the probability distribution of

the shift updates, we set the integration region to be three times larger than the range of the

DVi
samples, and centered the integration region on that range. Thus, the lower bound, lb, is

defined as lb = Δmin − (Δmax − Δmin) and the upper bound is ub = Δmax + (Δmax − Δmin). The
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numerical integration region was derived separately for each session. The log likelihood is:

log PðX3
3
jMRB;Y

3

3;RBÞ

¼
X3

i¼1

X2

j¼1

log
�Z

PðX3

3;i;jjDVi ;j
;MRB;Y

3

3;RBÞPðDVi ;j
jMRB;Y

3

3;RBÞdDVi;j

�

�
X3

i¼1

X2

j¼1

log
�Z ubVi ;j

lbVi ;j

PðX3

3;i;jjDVi;j
;MRB;Y

3

3;RBÞ
~PðDVi ;j

jMRB;Y
3

3;RBÞdDVi ;j

�

�
X3

i¼1

X2

j¼1

log
ubVi ;j

� lbVi;j

100

X100

kV¼1

PðX3

3;i;jjDVi;j
ðkVÞ;MRB;Y

3

3;RB

 !

�

~PðDVi;j
ðkVÞjMRB;Y

3

3;RBÞÞ;

ð49Þ

where

PðX3
3;i;jjDVi ;j

ðkVÞ;MRB;Y
3

3;RBÞ

¼
Y
T3

3;A;i;j

tA¼1

PðrAi ;j;lðtAÞ
jDVi ;j
ðkVÞ;MRB;Y

3

3;RBÞ
Y
T3

3;Vi ;j

tVi¼1

PðrVi ;j;lðtVi Þ
jDVi ;j
ðkVÞ;MRB;Y

3

3;RBÞ

¼ ð2pðs2
ŝAi
þ s2

r ÞÞ
�
T3

3;A;i;j
2 exp � ð2ðs2

ŝAi
þ s2

r ÞÞ
� 1
X
T3

3;A;i;j

tA¼1

ðrAi ;j;lðtAÞ
� mŝ 0

Ai ;lðtAÞ
Þ

2

2

4

3

5�

ð2pðs2
ŝVi
þ s2

r ÞÞ
�

T3
3;Vi ;j

2 exp � ð2ðs2
ŝVi
þ s2

r ÞÞ
� 1
X
T3

3;Vi ;j

tVi¼1

ðrVi ;j;lðtVi Þ
� mŝ 0

Vi ;lðtVi Þ
Þ

2

2

4

3

5;

ð50Þ

with mŝ 0
A;lðtÞ

defined in Eq 47 and mŝ 0
Vi ;lðtÞ

defined in Eq 34. mŝ 0
Ai ;lðtÞ

and mŝ 0
Vi ;lðtÞ

depend on the bias

parameters aA and bA, as well as on DVi ;j
, which depends on the measurement variances s0AV;A

and s0AV;Vi
given bimodal presentation and the common learning rate α. Note that s0AV;A and

s0AV;Vi
are not directly constrained by data from bimodal trials (because these trials were not

included in the model fitting), but estimated based on their influence on the shift updates. Spe-

cifically, s0AV;A and s0AV;Vi
affect the spread of the measurements, and as a consequence they

influence the width of the predicted probability distribution of measurement-shift updates,

which in turn affect the log likelihood of the model. The set of free parameters for this model is

Y
3

3;RB ¼ faA; bA; s
0
AV;A; s

0
AV;V1

; s0AV;V2
; s0AV;V3

; ag. s0AV;Vi
was constrained to be a non-decreasing

function of visual-reliability condition i, and s0AV;A and s0AV;Vi
were constrained to be no greater

than five times the average values of s0A and s0Vi
across participants (Section S14 in S1 Appen-

dix). The values of the T variables and the sums do not include outlier trials.

Log-likelihood—fixed-ratio model of cross-modal recalibration. In this model, auditory

and visual shift updates have a fixed ratio of DAi
ðtÞ=DVi

ðtÞ ¼ � aA=aV (Section S15 in S1

Appendix). Thus, we can express the likelihood for the fixed-ratio model and parameter set
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Y
3

3;FR given an auditory localization response rAi ;j;lðtÞ
in a similar form to Eq 47:

mŝ 0
Ai ;lðtÞ
¼

s0AV;A
� 2 aAsA;lðtÞ þ bA �

aA
aV
DVi;j
ð121Þ

� �

þ s0P
� 2m0P

s0AV;A
� 2 þ s� 2

P

:
ð51Þ

The approximation ~PðDVi ;j
jMFR;Y

3

3;FRÞ was generated in the same way as for the reliability-

based model. The set of free parameters for this model is

Y
3

3;FR ¼ faA; bA; s
0
AV;A; s

0
AV;V1

; s0AV;V2
; s0AV;V3

; aA; aVg. Note that even though the shift updates in

the fixed-ratio model do not depend on the stimulus reliabilities, the log-likelihood does due

to the influence of stimulus reliability on the estimates in the localization task (Eq 51) and due

to the influence of the spread of the simulated measurements on the spread of the estimated

distribution of ~PðDVi ;j
jMFR;Y

3

3;FRÞ. As in the reliability-based model, s0AV;Vi
was constrained to

be a non-decreasing function of visual-reliability condition i, and s0AV;A and s0AV;Vi
were con-

strained to be no greater than five times the average values of s0A and s0Vi
across participants.

Log-likelihood—causal-inference model of cross-modal recalibration. For this model,

the joint likelihood PðX3
3;i;jjDAi ;j

;DVi ;j
;MCI;Y

3

3;CIÞ was truly two-dimensional. Thus, we approxi-

mated the joint probability of the auditory and visual shift updates, PðDAi ;j
;DVi ;j

jM;Y3

3;CIÞ by

drawing 1000 samples of shift-update pairs and compared the set of sample pairs to a 2-d

Gaussian with the sample mean and covariance as parameters. We again tested whether the

two-dimensional Gaussian distribution provided a good fit to the simulated density (defined

as R2 > 0.925). If the Gaussian fit was poor, we used a kernel density estimate (Gaussian kernel

smoother with σ chosen automatically) of the distribution based on the 2-d density of the sam-

ples [77, 78]. Overall, the simulated auditory and visual shift updates were very well fit by a

bivariate Gaussian, and we rarely used a kernel density estimate (Section S8 in S1 Appendix).

We additionally used simulations to verify that our estimates of the partial model log-likeli-

hood (log PðX3
3
jMCI;Y

3

3;CIÞ) had reasonably small bias (Section S8 in S1 Appendix).

For the causal-inference model, we approximate the log likelihood by numerical integration

over a 2-dimensional region of ΔA, ΔV space discretized into 100x100 bins. The upper and lower

bounds were determined for both dimensions in the same way as before. The log likelihood is:

log PðX3
3
jMCI;Y

3

3;CIÞ

¼
X3

i¼1

X2

j¼1

log
Z Z

PðX3

3;i;jjDAi ;j
;DVi ;j

;MCI;Y
3

3;CIÞ�

�

PðDAi ;j
;DVi ;j

jMCI;Y
3

3;CIÞdDAi ;j
dDVi;j

�

�
X3

i¼1

X2

j¼1

log
Z ubVi ;j

lbVi ;j

Z ubAi ;j

lbAi ;j

PðX3

3;i;jjDAi ;j
;DVi ;j

;MCI;Y
3

3;CIÞ�

"

~PðDAi ;j
;DVi ;j

jMCI;Y
3

3;CIÞdDAi ;j
dDVi ;j

i

�
X3

i¼1

X2

j¼1

log
ubVi ;j

� lbVi ;j

100

ubAi ;j
� lbAi ;j

100
�

�

X100

kV¼1

X100

kA¼1

PðX3

3;i;jjDAi ;j
ðkAÞ;DVi ;j

ðkVÞ;MCI;Y
3

3;CIÞ�

PðDAi ;j
ðkAÞ;DVi ;j
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3
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i
;

ð52Þ
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where PðX3
3;i;jjDAi ;j

ðkAÞ;DVi ;j
ðkVÞ;MCI;Y

3

3;CIÞ is defined analogously to the reliability-based

model (see Eq 50) with the exception that mŝ 0
A;lðtÞ

and mŝ 0
Vi ;lðtÞ

are defined in Eq 34. The set of free

parameters used to fit the causal-inference model to the localization responses in the post-recali-

bration task isY
3

3;CI ¼ faA; bA; s
0
AV;A; s

0
AV;V1

; s0AV;V2
; s0AV;V3

; aA; aV ; pC¼1g orY
3

3;CIaV¼aA
¼ faA; bA;

s0AV;A; s
0
AV;V1

; s0AV;V2
; s0AV;V3

; a; pC¼1g.

Parameter estimation. For each model, we approximated the set of parameters Θ1 and

Θ2 that maximized the likelihood using the MATLAB function fmincon and Python SciPy.

optimize [79], and approximated Θ3 using the BADS toolbox [80]. To deal with the possibility

that the returned parameter values might correspond to a local minimum, we ran BADS multi-

ple times with different starting points, randomly chosen from a D-dimensional grid, where D
is the number of free parameters in Θ3 (see Table 1 for a summary of the free parameters for

each model) and with three evenly spaced values chosen for each dimension. The final parame-

ter estimates were those with the maximum likelihood across all runs of the fitting procedure.

Model comparison. To compare model performance quantitatively, we computed the

Akaike information criterion (AIC) for all four models [64] and calculated relative model-

comparison scores, ΔAIC, which relate the AIC value of the best-fit model to that of each of the

other models (a higher ΔAIC value indicates stronger evidence for the best-fit model). Models

with 0< ΔAIC < 2 are weakly supported; models with 4< ΔAIC < 7 have considerably less sup-

port; models with ΔAIC > 10 have essentially no support [81].

Supporting information

S1 Appendix. Appendix. Supplemental control experiments, analyses and figures.

(PDF)
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Table 1. Summary of model parameters in Θ3.

Θ Meaning RB FR CI CIaV¼aA
s0AV;A Measurement noise variance for the auditory stimulus in bimodal trials ✓ ✓ ✓ ✓

s0AV;Vi
Measurement noise variance for the visual stimulus in bimodal trials ✓ ✓ ✓ ✓

m0P The mean of the supra- modal prior distribution - - - -

s0P The standard deviation of the supra- modal prior - - - -

aA, bA The slope and the intercept of the linear function that captures biases in auditory measurements ✓ ✓ ✓ ✓

P(C = 1) Prior probability of a common cause - - ✓ ✓

αA, αV Modality-specific learning rate - ✓ ✓ -

α Common learning rate ✓ - - ✓

λAV Lapse rate for the bimodal spatial-discrimination task ✓ ✓ ✓ ✓

Number of total parameters: 8 9 10 9

https://doi.org/10.1371/journal.pcbi.1008877.t001
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