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Abstract: Nowadays, food packaging is a crucial tool for preserving food quality and has become an
inseparable part of our daily life. Strong consumer demand and market trends enforce more advanced
and creative forms of food packaging. New packaging development requires safety evaluations
that always implicate the application of complex analytical methods. The present work reviews the
development and application of new analytical methods for detection of possible food contaminants
from the packaging origin on the quality and safety of fresh food. Among food contaminants
migrants, set-off migrants from printing inks, polymer degradation products, and aromatic volatile
compounds can be found that may compromise the safety and organoleptic properties of food. The
list of possible chemical migrants is very wide and includes antioxidants, antimicrobials, intentionally
added substances (IAS), non-intentionally added substances (NIAS), monomers, oligomers, and
nanoparticles. All this information collected prior to the analysis will influence the type of analyzing
samples and molecules (analytes) and therefore the selection of a convenient analytical method.
Different analytical strategies will be discussed, including techniques for direct polymer analysis.

Keywords: food packaging; volatile compounds; non-volatile compounds; IAS; NIAS; analytical
techniques; antioxidants; odorous compounds; nanoparticles; EU legislation

1. Introduction

For decades, traditional food packaging was associated with the idea of mere containers created
to protect food products from the environment during transport and storage operations. Nevertheless,
today’s needs cannot be met any longer by traditional packaging, and more advanced and creative
forms of food packaging [1] are demanded.

Modern society requires modern solutions, especially in the area of food safety and thus food
packaging. Active packaging is an innovative concept that was spread out during the last few years. It
is a novel approach for extending the shelf-life of food products without compromising their qualities.
Active packaging is based on the idea of packaging with a specific design that is able to exert a positive
interaction with the food. Therefore, during the storage it is possible to prevent food from deterioration
with simultaneous maintenance of its original sensory properties [2].

Active packaging is a system where an active agent is intentionally incorporated into a specially
selected part of the packaging. This is an interactive technology, where an active compound can be
freely released (into the head space of packaging or food) or it can act as an antioxidant without direct
contact with food. There are also different investigations conducted on the controlled release of active
compounds, where required concentrations in special conditions can be released. Moreover, removal
of unwanted, damaging substances from food surroundings by absorption process is a well-known
technology. All this requires the design of special technologies and application of different food
packaging materials [3]. Packaging encompasses a wide range of material types across plastics, glass,
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metal, and paper. Due to their chemical structure and properties, the most applied materials in food
industry are plastics. In addition to traditional petroleum-based polymers, biodegradable plastics and
biopolymers can also be found today on the market. In second place, paper and cardboard can be
found [4].

It should be highlighted that food contact materials (FCMs) can be very complex structures created
with application of adhesives. Multilayers can not only be composed of polymers, but also paper
and/or aluminum that are often coated by adhesives and printing inks.

All this extensive knowledge on types of technologies and materials applied in the packaging
industry and novel scientific solutions such as active packaging let researchers perform investigations
on packaging safety.

2. Migration

Although food packaging is beneficial and was created to assure quality and safety of food, it may
also transfer harmful chemicals into contained food by migration process. The migration phenomenon
is based on mass transfer, which occurs due to equilibrium of all chemical systems. Consequently, it
can have adverse effects on human health due to incorporation of chemical substances from packaging
origin into food structure. The transfer of migrants into food is not the same for different types of
polymeric materials [5]. Moreover, the spectrum of potential migrants is extremely wide and some
of them can be exceptionally toxic. When the packaging material is in the rolls or the packaging
itself is stored one inside of another (e.g., coffee cups), a phenomenon called set-off migration can
occur [6]. In this case, compounds from the outer part of packaging migrate to the inner part and
consequently migrate to food/food simulant [7]. Therefore, the investigation on migration of specific
chemical compounds from food-packaging is of great importance.

3. Legislation

Materials for food packaging available on the market needs to be safe for the health of consumers
and are not allowed to cause any changes in composition of the packed products. Plastics especially
must meet strict formal requirements. In Europe, it is regulated by Commission Regulation No
10/2011 [8] on plastic materials and articles intended to come into contact with food. This legislation
specifies rules of migration experiments and also contains a list of substances, together with their
specific limits (SML), that may be intentionally added to the plastic materials during its manufacture. It
also indicates how to evaluate not listed substances (NLS). If the substances are not included in this list,
their migration should not be higher than 0.01 mg/kg (ratio 6:1) of food or food simulant [9]. Moreover,
for NLS, a procedure of toxicity determination can be provided by the threshold of toxicological concern
(TTC), including classification of analytes to Cramer classes. TTC approach has been recommended by
the European Food Safety Authority (EFSA) [10].

It needs to be highlighted that migration is commonly carried out using different food simulants:
liquid (e.g., 95% ethanol, 3% acetic acid) and/or solid (Tenax®). Analytical methods applied for analysis
of food simulants depend on their chemical properties. Examples of analytical methods for screening
of volatile and non-volatile migrants in different food simulants can be seen in Table 1. Naturally,
if target analysis is performed, other analytical methods such as gas chromatography coupled to
flame ionization detector (GC-FID), high-performance liquid chromatography coupled to ultraviolet
detector (HPLC-UV) and high-performance liquid chromatography coupled to fluorescence detector
(HPLC-fluorescence), and ultra-high performance liquid chromatography coupled to triple quadrupole
mass spectrometry (UPLC-QqQ-MS)—can be applied.
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Table 1. Examples of analytical methods for different simulants.

Food Simulant Description Analytical Method 1 Comments Literature

A Ethanol 10% (v/v) SPME-GC-MS;
UPLC-Q-TOF-MSE

Either by HS or total
immersion modes [11–14]

B Acetic acid 3% (v/v) SPME-GC-MS;
UPLC-Q-TOF-MSE

Either by HS or total
immersion modes [11,15–17]

C Ethanol 20% (v/v) SPME-GC-MS;
UPLC-Q-TOF-MSE

Either by HS or total
immersion modes [7,18,19]

D1 Ethanol 50% (v/v) SPME-GC-MS;
UPLC-Q-TOF-MSE

If SPME-GC-MS with
total immersion of
fiber is performed
sample should be
diluted at least 5 times.

[7,20,21]

D2

Any vegetable oil
containing less
than 1%
unsaponifiable
matter—can be
replaced by 95%
ethanol and
isooctane

Liquid injection
GC–MS;
UPLC-Q-TOF-MSE

(reverse-phase phase
column for 95%
ethanol and
normal-phase mode
for isooctane)

If oil is used, it needs
to be extracted.
HS-SPME-GC-MS is
also available for oil
When using 95%
ethanol and isooctane
they can be
concentrated under
gentle stream of
nitrogen to gain
sensitivity.

[6,11–13]

E

poly(2,6-diphenyl-p-phenyleneoxide)
known as Tenax®,
particle size 60-80
mesh, pore size 200
nm

Liquid injection
GC–MS;
UPLC-Q-TOF-MS

Needs to be extracted
with some organic
solvent like for
example ethanol or
methanol and they can
be concentrated under
gentle stream of
nitrogen to gain
sensitivity. Three
sequential extractions
are usually applied

[6,22,23]

1 SPME-GC-MS—solid phase microextraction gas chromatography coupled to mass spectrometry (MS) detector;
HS—headspace; UPLC-Q-TOF-MS—ultra-high performance liquid chromatography coupled to quadruple
time-of-flight with MSE technology.

Finally, the research on the potential toxic compounds from plastic materials for food contact
applications is still undertaken and the law is constantly being improved. Therefore, twelve
amendments to Regulation (EU) No 10/2011 were published and consolidated with the principal
document. Implemented changes include correction of the European Union list of authorized substances
by adding new substances, as very often EFSA adopts a favorable scientific opinion on a possible
extension of the use of some substance. Other changes were based on modifications of the conditions
for use and migration limits for specific substances and setting food simulants to be used for testing of
products based on acidity. An example can be the restriction of the use of bisphenol A in plastic infant
feeding bottles. In addition, restrictions were made to the purity criteria of some substances.
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4. Analytes

In general, among food contaminants we can distinguish migrants, set-off migrants from printing
inks, polymer degradation products, and volatile compounds that may compromise either human
health or the organoleptic properties of food. All mentioned phenomena involve the presence of
molecules. Therefore, those compounds should first be identified, then quantified, and finally their
toxicity should be determined. The list of possible chemical migrants is very wide and includes
antioxidants, antimicrobials, intentionally added substances (IAS), non-intentionally added substances
(NIAS), monomers, oligomers, and nanoparticles. Here, the most interesting and challenging cases
from the analytical point of view are discussed. Figure 1 presents the general classes of analytes from
FCMs and examples of possible analytical methods applied for their analysis.
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Figure 1. Dependency diagram of analytes from food contact materials and example of
analytical methods that can be applied for their analysis. GC-MS—gas chromatography
coupled to mass spectrometry; GC-O-MS—gas chromatography with olfactometry coupled to MS
detector; APGC-Q-TOF-MSE—atmospheric pressure gas chromatography coupled to quadrupole-time
of flight mass spectrometryElevated Energy; GC-Q-Orbitrap-MS—gas chromatography coupled to
quadrupole-Orbitrap mass spectrometry; LTQ-Orbitrap—hybrid linear ion trap-high resolution mass
spectrometry combined with mass spectrometry; Vion IMS Q-TOF-MSE—Vion ion mobility quadruple
time-of-flight with MSE technology; ASAP-Q-TOF-MS—atmospheric solids analysis probe coupled to
quadruple time-of-flight with MSE technology; DART-MS—direct analysis in-real-time coupled to mass
detector; LESA-nESI-MS—liquid extraction surface analysis nano-electrospray mass spectrometry;
FFF-ICP-MS—field-flow fractionation coupled to inductively coupled plasma mass spectrometry;
SP-IC-MS—single particle mode coupled to inductively coupled plasma mass spectrometry.
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4.1. Non-Intentionally Added Substances

Noni-ntentionally added substances (NIAS) are chemicals that are present in food contact materials
but were not added to the polymer structure during its manufacturing; nonetheless, they can be
detected in food simulants during migration assay. The origin of NIAS can be very different and the
following substances can be classified as NIAS: (a) impurities from chemicals or primary materials;
(b) contaminants in the case of recycled materials; (c) degradation products from polymer matrix and
polymer additives; (d) products of reaction between polymer components or reaction of polymer with
food [24,25]. Table 2 presents some NIAS detected in real samples of food packaging materials. The
analytical method applied to the analysis of each compounds is also indicated.

Table 2. Example of NIAS detected in real samples of food packaging.

No NIAS Structure Analytical
Method 1

Packaging
Material 2 Literature

1

2-propenoic acid,
1,1′-[2-[[3-[2,2-
bis[[(1-oxo-2-propen-1-
yl)oxy]methyl]butoxy]-1-
oxopropoxy]methyl]-2-
ethyl-1,3-propanediyl]
ester
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1 UHPLC-ESI-Q-TOF MS—ultra-high performance liquid chromatography with electrospray ionization
coupled to quadruple time-of-flight with mass detector; LC-Q-Orbitrap-MS—liquid chromatography
coupled to quadrupole-Orbitrap combined with mass spectrometry. 2 PU Ad—polyurethane adhesive;
PP—polypropylene; LDPE—low-density polypropylene; PLA—polylactic acid; PET/Al/PE—polyethylene
terephthalate/aluminium/polyethylene; PE/PA—polyethylene/polyamide.
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Analysis of NIAS is a very challenging task. In the case of already studied NIAS compounds,
target-chemical analysis can be applied, where mass spectra and retention time is already known. While
for new unknown NIAS, nontarget analysis is required, where analytical screening is applied with
different approaches to determine all possible migrants. To do this, high-resolution mass spectrometry
(HR-MS) techniques are required. They are described in Section 5. The qualitative analysis of NIAS
is very difficult due to the lack of information on composition of material additives and puzzling
chromatographic spectrum results. Commonly, NIAS are new, unknown compounds that have not
been described in literature. In addition, there is a lack of analytical standards, which are highly
demanded for confirmation of compounds [24,33].

Finally, from the point of view of EU legislation, NIAS compounds are very often not listed in the
European Union list of authorized substances from Regulation (EU) No 10/2011. Therefore, their SML
should be established by Cramer classification and TTC [10,34].

4.2. Oligomers

One of the interesting types of NIAS are oligomers, either present in the polymer or produced
during the degradation of polymers. Presence and possible migration of non-volatile oligomers can
be characterized by chromatographic peaks with the same m/z interval step due to appearance of
monomer units. Generally, migration of oligomers of diverse chemical structure can be observed with
mass lower than 1000 Da. Oligomers do not only come from conventional polymers. The biodegradable
polymers and biopolymers also have a series of oligomers migrating to the food.

Different studies on migration of cyclic oligomers from biodegradable polylactic acid (PLA) and
polyamide (PA) have been published [11,35]. PLA cyclic oligomers were found to be composed
by lactic acid monomers and PA cyclic oligomers were composed by caprolactam monomers.
Examples of structures of cyclic PLA oligomers detected as migrants from new active packaging
are shown in Figure 2 [15]. Moreover, in the case of multilayer materials, oligomers from the
adhesive used to build the different layers can be detected in the migration tests. Examples can
be [PET/PU/PA/PU/CPP]FCS, where PET—polyethylene terephthalate; PU—polyurethane adhesive;
PA—polyamide; and CPP—cast polypropylene. The food contact side (FCS)/food simulant contact
side was CPP. In this case, complex oligomers such as cyclic esters consisted of phthalic acid (PA)
and diethylene glycol (DEG) in different combinations were detected and identified [35]. All these
migrants were analyzed by UPLC-Q-TOF-MSE—ultra-high performance liquid chromatography
coupled to quadruple time-of-flight with MSE technology. In addition, oligomers from migration of
PET, polyester, polystyrene (PS), polybutylene terephthalate (PBT), and polyethylene naphthenate
(PEN) were described in literature [28,36–38].
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It should be highlighted that, for quantitative analysis of oligomers, appropriate standards
should be used. Unfortunately, up to now, most of the oligomers do not have commercially available
standards. Some research groups obtained and purified some standards of cyclic esters and used them
for quantitative purposes. However, in general, semi-quantification is applied using standards of
oligomers that can be purchased. There is a lack of toxicity data of oligomers. So, it is recemented to
apply the TTC procedure to evaluate its toxicity [12,36].

4.3. Antioxidants and Antimicrobials

Migration of compounds from food packaging polymer matrix can be influenced by incorporation
of antioxidants. Therefore, antioxidant packaging not only protects food products but also can lower
or totally prevent the migration of some compounds. An example is the reduction of migration of PLA
oligomers in the case of new active packaging based on medicinal and aromatic plants powders [15].
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When new active packaging is created, antioxidant or antimicrobial, the analysis of released
compounds during the migration tests and risk assessment should be performed [3,39]. Not only
the release of active agents, but also the potential impurities and compounds used to incorporate
the active substances, should be under control. Obviously, this specific migration analysis should
involve the screening analysis of all volatile and non-volatile compounds migrating to food simulants.
One example is the migration of catechins and caffeine from active packaging with green tea for meat
preservation. During the analysis by UPLC-Q-TOF-MSE, the main active agents were detected; but
a further study in depth searching the individual catechins showed 9 different compounds in 10%
ethanol and 95% ethanol. All of them were coming from green tea, which is food, and thus, accepted as
active packaging, according to the Regulation 450/2009/EU. In this case, the used active agent is treated
as foods bearing nutrition or health claims [40], and can be applied without any limits [41]. Other
substances different from the active agents were not detected in specific migration analysis. Therefore,
the analyzed active packaging met EU legislation for food contact materials.

In the case of antimicrobial substances, some essential oils (EOs) have been demonstrated
themselves as very efficient agents for active packaging applications [42–46]. Nevertheless, it was
investigated and proved that micro-organisms from food can interact with EOs from antimicrobial
packaging and produce new substances. As a result, bioconversion products such as methyl eugenol,
styrene, and linalool oxide were formed from cinnamon essential oil by Aspergillus flavus strain [47].
Therefore, when applying analytical procedures for specific migration tests from antimicrobial
packaging, the analysis of new substances coming from biotransformation should be taken into
account. Moreover, those results show how important the application of migration assays from the
new materials to real food is, and not only to food simulants. In this case, new analytical methods
should be developed, as analysis of food is a difficult task due to complexity of the matrix.

4.4. Odorous Compounds

FCMs can be a source of odorous volatile compounds that can influence organoleptic properties
such as taste and smell of stored food. It is especially important in the case of new FCMs such as
biopolymers [30,48]. For this reason, it is important to study the aroma profiles of polymers, adhesives,
printing inks, paper, cardboard and biopolymers, in order to be sure that they will not modify the
sensory properties of food in contact with them. A quantitative descriptive analysis (QDA) should
be performed to evaluate negative odorous attributes. One example is the evaluation of odorants
from starch-based polymers by headspace solid phase microextraction gas chromatography with
olfactometry coupled to mass detector (HS-SPME-GC-O-MS), where following analytes with their odor
descriptors: trimethylamine (fish), 1-octen-3-one (mushroom), sotolon (spices, licorice), (Z)-nonenal
(cucumber, fruit), (E)-nonenal (cucumber, green), eugenol (clove, honey), and p-vinyguiacol (clove,
curry) were determined. They were the main compounds responsible for the aroma of starch-base
films. Figure 3 shows the results of sensory evaluation and aroma descriptors of different samples of
starch-based biopolymer [49].
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BP2, BP3—different starch-based polymers manufactured from starch powder provided by a
Packaging Company; BP2—biopolymer manufactured from pellets provided by a Packaging Company;
BP4—starch-based polymer from different origin) and (b) starch, pellets and film BP2. Reproduced
from [49].

5. Analytical Approaches

5.1. Volatile Compounds

Qualitative and quantitative analysis of volatile organic compounds (VOCs) in samples of
migration assays is performed using GC–MS, APGC-Q-TOF-MSE, and GC-Q-Orbitrap-MS. These
analytical techniques are highly required because it is necessary to use sensitive equipment capable of
detecting analytes on the level of traces [50,51].

GC–MS typically uses electron impact ionization (EI), where analytes ionization is induced by 70
electron volt (eV) electrons. This ionization technique is considered harsh because of the high degree of
molecules fragmentation. The application of the same operating conditions allows researchers to create
databases containing mass spectra characteristic for each molecule. As a result, qualitative analysis of
detected compounds is based on a search of spectral libraries [52].

Resolution power of GC-MS depends on the type of mass spectrometry (MS) analyzer. Time of
flight instruments and Orbitrap are classified as high-resolution mass spectrometers (HRMS), where
the molecular weights of analytes are determined to several decimal figures. It allows us to determine
exact molecular formulas of unknown compounds. However, in the case of low-resolution mass
spectrometers (LRMS), molecular weights of analytes are determined to the atomic mass unit. These
types of instruments are more common due to lower prices, and easy and cheaper maintenance. On
the other hand, HRMS can be applied as a complementary analytical technique to GC-MS. APGC
is a soft ionization technique with less fragmentation of analyte. Here, energy of ionizing electrons
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can be modified and adjusted, therefore, the degree of fragmentation can be controlled. Reduced
fragmentation results in higher sensitivity and selectivity. Identification of compounds is more difficult
due to different operating conditions. However, if APGC is coupled to high-resolution MS, such as
Q-TOF, the analytical tool is powerful enough to identify the chemical structure of the compounds
using the chemical databases. It is also possible to create a homemade database with standards injected
using different conditions. Another possibility is to use software provided by a company that matches
possible chemical structures with the obtained spectra [30,53,54].

Comparison of chromatograms obtained by GC-MS and APGC-Q-TOF-MSE during nontarget
screening of (semi)volatiles in food-grade polymers is shown in Figure 4 [54].
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It should be highlighted that both GC-MS and high-resolution mass spectrometers commonly use
liquid injection of samples such as, for example, the extract of dry food simulant or food simulants
based on organic solvents. Moreover, sampling technique such as solid-phase microextraction (SPME)
can be coupled to any commercial GC-MS system and allow it to increase sensitivity due to a high
concentration rate on the microfiber. SPME is a solvent-free method, where the sample is absorbed or
adsorbed on the sorbent—fused-silica-fiber-coated or chemically bonded with a specific extraction
phase. After the sorption step, the fiber is directly injected into GC-MS. The type of sorbent is chosen
according to the type of analyzed matrix (polarity and size of molecules). SPME offers the possibility
of extraction of organic volatile compounds from aqueous samples (headspace and total immersion
mode) and from organic solvents, even oil, only when a very small amount of sample is introduced
into vial and headspace mode is applied. Moreover, SPME allows for direct analysis of solid samples
such as polymer pellets, flakes, or plastic itself [55,56]. Obviously, in the case of SPME analysis,
additional parameters of sample pretreatment (e.g., temperature and time of sorption) need to be set
and optimized. Figure 5 shows an example where 3D response surface plots indicate the total peak
area, considering temperature and time of extraction as independent variables for 1.0 g sample of
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PET pellets using 75 µm Carboxen®/Polydimethylsiloxane (CAR/PDMS) fiber for volatile compounds
analysis. The optimum conditions are marked with red color [57].Molecules 2020, 25, x 11 of 18 
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An alternative to SPME can be Twister®, based on Stir Bar Sorptive Extraction (SBSE). It applies a
magnetic stirring rod coated by a sorbent, which stirs aqueous samples, thus, sorption and concentration
of VOCs is performed. After this, the Bar is transferred to either a Thermal Desorption Unit (TDU) or a
Thermal Desorption System (TDS), where thermal desorption is carried out. After this process, the
analytes are separated in GC system [58,59].

A very powerful technique for determination of migrants from active materials containing
essential oils is the automatic multiple dynamic hollow fiber liquid-phase microextraction (HFLPME),
where the extraction, preconcentration, separation, and cleaning are performed simultaneously using a
semipermeable membrane. HFLPME is cheap, sensitive, and a versatile method, with the possibility
of total automatization and miniaturization [60–62].

Another interesting tool for analysis of specific migration from food packaging is fabric phase
sorptive extraction (FPSE). It is a new generation of sample preparation technique, where natural
or synthetic fabric covered by ultra-thin coating sorbent is used as substrate. The exposure to an
organic solvent or harsh chemical conditions (pH 1–13) does not affect FPSE, as is the case of other
microextraction fibers. FPSE ensures high sorption area and selectivity. As any type of extraction solvent
can be chosen, the sample can be analyzed not only by GC-MS but also by liquid chromatography [63,64].

Odorous compounds can be analyzed in any of described equipment. However, it requires the
installation of a sniffing port that allows sensory detection by the human nose [65]. The combination of
olfactometry with gas chromatography mass spectrometry (GC–O–MS) allows qualitative analysis
of odorous compounds together with intensity evaluation of each odor and a descriptive analysis of
the type of smell. Moreover, very often analytical detectors are much less sensitive than human odor
perception registered by the odor panelists. It allows the detection of compounds with a very low
odorous threshold that were not detected by MS [66,67].

5.2. Non-Volatile Compounds

The basic technique for the profiling of non-volatile compounds at very low concentrations in the
samples from migration assay is liquid chromatography coupled to mass spectrometry (LC-MS). An
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intensive technology development in the field of chromatography let to design and develop different
types of LC-MS interfaces. The chromatographic part of the instrumental equipment should provide
good resolution of peaks, especially in the case of screening of nontarget non-volatile compounds
from migration samples, where the number of different compounds simultaneously analyzed is
usually very high. According to the analytical necessities, electrospray (ESI) ionization, atmospheric
pressure chemical ionization (APCI), or matrix-assisted laser desorption-ionization (MALDI) can be
applied [24,68].

High-resolution mass spectrometry techniques allow measuring the accurate mass of analytes
and obtaining their elemental composition and, subsequently, their structure. Ultra-high performance
liquid chromatography coupled to quadrupole-time of flight mass spectrometryElevated Energy

(UPLC-Q-TOF-MSE) is a very attractive tool for nontarget analysis of non-volatile compounds from
complex samples, because the obtained precursor and fragment ions have high sensitivity, high
resolution, and high mass accuracy. MSE is a patented acquisition mode, where low and high energy
spectra are collected at the same time [27,69]. Figure 6 shows an example of spectra of ethoxytriethylene
glycol methacrylate (ETMA), acquired using two different cone voltages (15 and 30 V) during the
identification of non-volatile migrants from baby bottles by UPLC-Q-TOF-MSE [20]. MSE technology
records data without necessity of its discrimination or preselection. As a result, each sample is
completely catalogued in a single analysis. Comparing to standard MS or tandem MS-MS, MSE

detection is quicker.
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A novel technology based on Ion Mobility Separation (IMS) together with Q-TOF-MS provides
greater structural insight for the analysis of non-volatile compounds. IMS Q-TOF is able to resolve
compounds that were coeluted and also permits the detection and identification of analytes covered by
matrix or determines isomeric compounds that cannot be separated, applying standard chromatography
or mass spectrometry. Moreover, the addition of the molecule shape parameter called collisional cross
section (CCS), that is independent of the chromatographic conditions, permits the confirmation of the
compounds by a comparison of the database of CCS values. CCS values are generated automatically
for every single compound detected [70]. The application of this analytical technique permitted
performing the design study and the identification of NIAS in UV varnishes for FCMs. The study
highlights the advantages of ion mobility mass spectrometry for spectral interpretation and structure
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identification of unknown compounds. In this case, qualitative analysis has shown that some detected
migrants in food simulants exceed the European food contact regulation limits [26].

Hybrid linear ion trap-high resolution mass spectrometry (LTQ-Orbitrap) combines a linear ion
trap MS and the Orbitrap mass analyzer. It permits multiple levels of fragmentation (MSn) of analyzed
compounds. Orbitrap provides high mass resolution and accuracy over a wide mass range—including
the small molecule mass range. It has been already applied for qualitative analysis of non-volatile
migrants from FCMs [31].

The analytical techniques described above are very powerful tools for nontarget analysis of
non-volatile compounds. Nevertheless, in the case of target analysis connected with quantitative
analysis, ultra-high performance liquid chromatography coupled to triple quadrupole mass
spectrometry (UPLC-QqQ-MS) is a better option due to its very high sensitivity. Quantification
of known non-volatile compounds in the migration samples can be done in two modes: single ion
recording (SIR) or Multiple Reaction Monitoring (MRM). In SIR mode, only one specific m/z is collected,
so it is applied when there is no suitable fragment ion to perform a more specific analysis; while
MRM mode is a quick, highly sensitive, and selective method, where specific m/z and collision
product ions are collected. An example of application of FCMs investigation is the determination of
adhesive acrylates in recycled polyethylene terephthalate [64] or quantification of aromatic amines
from polyurethane adhesives in food packaging by target analysis [17].

5.3. Surface Analysis

It is possible to perform direct analysis of FCMs (polymers) and solid food simulant (Tenax®)
applying direct thermal desorption techniques such as atmospheric solids analysis probe (ASAP) MS,
direct analysis in-real-time (DART) MS, desorption electrospray ionization (DESI) MS, liquid extraction
surface analysis nano-electrospray mass spectrometry (LESA-nESI-MS), micro Raman, and surface
enhanced Raman scattering (SERS). The mentioned techniques can be used as a first step of analysis
of known compounds (target analysis), as they do not have separation steps. As a result, no sample
handling is required, and the results are obtained quickly. They are highly recommended for target
analysis and quick screening of the presence or absence of determined analytes. Some examples of
application of direct analysis methods for polymers investigation can be (a) the fast assessment of
oxo-biodegradable polyethylene film oxidation by SERS scattering with in situ formation of a silver
nanoparticle substrate [71]; (b) direct screening of FCMs by LESA-nESI-MS [72]; (c) set-off of printing
inks by DESI-MS-QTOF [73]; and (d) identification of nonvisible set-off in FCMs by DART [74].

5.4. Nanoparticles

Nanotechnology is expected to revolutionize and bring many areas to a higher level, and one
of them is food packaging. Nanotechnology-enabled food packaging can help to extend shelf-life
of packaged food and can also protect it against foodborne diseases. Moreover, the addition of
nanoparticles into polymer matrix can improve its physical properties, such as barrier properties. Due
to the increment of development of new FCMs containing nanoparticles, its safety should be constantly
evaluating. This requires sensitive analytical techniques able to detect and quantify nanoparticles
that can possibly migrate into food and food simulants [75]. The most common technique used
for analysis of inorganic nanoparticles in solutions of food simulants is inductively coupled plasma
mass spectrometry (ICP-MS). A single analysis can provide information about nanoparticles size and
distribution and also the elemental composition. When applying ICP-MS, two different modes can
be used: single particle mode (SP-ICP-MS) or ICP can be connected to the field-flow fractionation
(FFF) technique to provide an additional separation step according to nanoparticles size. Moreover,
the shape, size, and image of nanoparticles can be done using scanning electron microscopy (SEM),
transmission electron microscopy (TEM), or atomic force microscopy (AFM). Nevertheless, these
techniques have their limitations: at low concentrations of nanoparticles, which very often happens in
case of migration assays, they have poor sensitivity [76].
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6. Conclusions

The increased investigation on new packaging materials, enforced by market trends and consumer
demand, results in the development of more complex FCMs, therefore, migration and food safety
continue to be a very important topic. Nevertheless, comprehensive analysis of migration samples
requires different analytical techniques as well as a wide knowledge about the types of technologies
and materials applied in the packaging industry, the application of novel scientific solutions such as
active packaging, and the type of potential migrants. All these compounds are molecules that should
be qualified and quantified.

The most difficult group of compounds to identify in migration samples are NIAS, because they
may be originated from different places and even be a product of side-reaction of polymer components.
Moreover, the composition of new polymers and packaging is very often confidential, therefore, there is
lack of information on materials additives. All of this makes the qualitative analysis a very challenging
task. It would be highly demanded of the collaboration of chemical and plastic industries with the
researchers working on plastic safety, in order to provide the necessary information about the chemicals’
and polymers’ impurities, additives, and possible side-reactions.

When applying the analytical procedures for migration tests of antimicrobial packaging analysis,
new substances coming from biotransformation should be taken into account. It was shown that
micro-organisms from food can interact with essential oils used as the active agent in antimicrobial
packaging and can produce new substances as metabolites. Moreover, those results show how
important the application is to real food, and not only using food simulants, for migration assays. In
this case, new analytical methods should be developed, as the analysis of food is always a difficult task
due to the complexity of the matrix.

From the analytical techniques point of view, advances in instrumental analysis and development
and improvement of chemical databases would facilitate the quick detection of migrants. Currently,
GC-MS, APGC-Q-TOF-MSE, and GC-Q-Orbitrap-MS are used for analysis of volatile compounds. In
the case of new polymers, especially biopolymers, the analysis of odors should not be forgotten, due
to their possible negative influence on the organoleptic properties of packaged food. Such analysis
can be done by combination of olfactometry and gas chromatography; while complex analysis of
non-volatile compounds is currently performed using high-resolution mass spectrometry techniques
such as UPLC-Q-TOF-MSE, LTQ-Orbitrap, or UPLC-IMS Q-TOF-MSE. In the case of quantitative
analysis, the application of UPLC-QqQ-MS is highly recommended due to its selectivity and sensitivity.
Thermal desorption techniques for direct analysis of FCMs solid food simulant are also available. They
can be used as the first screening step for determination of known and unknown volatile migrants as
they are quick and do not require any sample handling. In the near future, the development of new
analytical methods for nontarget analysis can be expected, using HRMS equipment to determine and
quantify unknown migrants from food contact materials.

The introduction of nanotechnology to polymer science resulted in the creation of
nanotechnology-enabled food packaging. It draws a need for evaluation of safety of polymers
with nanoparticles. Therefore, in this specific case, sensitive analytical techniques able to detect and
quantify nanoparticles should be used.
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