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Abstract: Lung cancer is one of the most common cancers and has a high mortality rate. Due to its
high incidence, the clinical management of the disease remains a major challenge. Several reports
have documented a relationship between the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B
(AKT)/ mammalian target of rapamycin (mTOR) pathway and lung cancer. The recognition of this
pathway as a notable therapeutic target in lung cancer is mainly due to its central involvement in
the initiation and progression of the disease. Interest in using natural and synthetic medications to
target these signaling pathways has increased in recent years, with promising results in vitro, in vivo,
and in clinical trials. In this review, we focus on the current understanding of PI3K/AKT/mTOR
signaling in tumor development. In addition to the signaling pathway, we highlighted the therapeutic
potential of recently developed PI3K/AKT/mTOR inhibitors based on preclinical and clinical trials.

Keywords: mammalian target of rapamycin (mTOR); natural compounds; protein kinase B (PKB/AKT);
phosphatidylinositol-3-kinase (PI3K)

1. Introduction

Lung cancer is the most common cancer worldwide and the leading cause of cancer-
related death, affecting millions of people every year [1]. Among the common subtypes of
lung cancer, non-small cell lung cancer (NSCLC) represents 85% of lung cancer cases [2],
while small cell lung cancer (SCLC) represents approximately 15% of all cases of lung
cancer [3]. Smoking is the major risk factor for NSCLC, while this disease also affects never-
smokers [4]. NSCLC is divided into squamous cell carcinomas, adenocarcinomas and large-
cell carcinomas [5]. Squamous cell carcinoma is responsible for 30% of lung cancer cases
worldwide and is related to a smoking history. It usually grows in the bronchi that branch
off the main left or right bronchus in the center of the chest [6]. Lung adenocarcinoma is
responsible for 40% of all lung cancers. Large cell lung carcinoma is the least common type
of NSCLC, accounting for approximately 10–15% of cases. Approximately 60% of patients
with NSCLC present metastatic disease, with only a 4% 5-year survival rate [7]. The most
common metastatic sites for NSCLC are the bone, respiratory tract, adrenal glands, nervous
system and liver [8].

The main strategy in the treatment of lung cancer is chemotherapy, which may improve
the quality of life of patients [9]. Chemotherapeutic drugs have many benefits in some
cases, but they have multiple side effects. These agents are highly toxic to all cells in the
body, eliminating both normal and cancer cells [10]. Chemotherapeutic drugs also lead
to changes in the normal function of the cells, and fatigue, inflammation, anemia, hair
loss and bleeding complications often occur. Furthermore, patients may acquire resistance
to chemotherapy, and other combinations of chemotherapeutic drugs must be used for
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treatment [11]. Other choices for the early stages of lung cancer are surgery and radiation;
however, these two choices of treatment have disadvantages, such as a lower efficacy on
microscopic cancer cells at the edges of the tumor [12].

As lung cancer treatment increases interest in targeted therapy, systemic chemother-
apy is still the standard treatment for lung cancer [13]. Unfortunately, the drug resistance
in advanced stage lung cancer limits the success rate of clinical outcome. More than 90%
of lung cancer has an intrinsic drug resistance, and the early responders who undergo
chemotherapy develop resistance swiftly [14]. The standard therapy for lung cancer in-
cludes platinum-based drugs (cisplatin) and taxanes (paclitaxel and docetaxel) [15]. Despite
massive clinical progress, drug resistance has limited the therapeutic effectiveness [16,17].
Although the identification of the molecular causes and prediction of biomarkers for
chemotherapy sensitivity are important, they need persistent investigation to overcome
this problem.

At present, the treatment paradigm for lung cancer has shifted to targeted therapy.
This type of treatment attacks specific features of cancer cells known as molecular targets
that are either cell surface receptors or intracellular molecules. Many types of targeted
therapies for lung cancer are currently available, such as epidermal growth factor receptor
(EFGR) inhibitors (erlotinib and gefitinib) or anaplastic lymphoma kinase (ALK) inhibitors
(crizotinib and alectinib). The development of specific targeted therapy such as EGFR
inhibitors has been shown to increase overall survival (OS) at around 42.6% (from 4.7 to
6.7 months), which shows the benefit of targeting an oncogenic driver compared to the
standard first-line chemotherapy [18]. Targeted therapy, on the other hand, does not work
if the tumor does not contain the specified target. If the target turns out to be less critical for
cancer growth than previously expected, the drug may not be effective. Moreover, cancer
cells may develop resistance to targeted therapy, resulting in a poor response [19].

Currently, PI3K/AKT/mTOR signaling has been reported as an emerging source of
lung cancer aggressiveness [20]. The development of therapies targeting PI3K/AKT/mTOR
signaling is receiving extensive attention from researchers and new drugs continue to be dis-
covered. Several PI3K/AKT/mTOR-targeted therapies, such as buparlisib (PI3K inhibitor),
MK2206 (AKT inhibitor), sirolimus (mTOR inhibitor), and perifosine (dual PI3K/AKT
inhibitor), are undergoing clinical trials as treatments for lung cancer [21–24]. Furthermore,
several preclinical studies of natural compounds are attracting interest, and their potent
inhibitory effects on this signaling pathway have been reported [25–27]. As an excellent ex-
ample, natural compounds with the quinones structure, widely distributed naturally, have
attracted enormous attention due to their several mechanisms as an anticancer therapy [28].
The current review will focus on the role of the PI3K/AKT/mTOR pathway in lung cancer
aggressiveness and promising drugs/natural compounds targeting this signaling pathway
that are undergoing clinical or preclinical trials.

2. PI3K/AKT/mTOR Signaling Pathway

The protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is
initiated by the activation of phosphoinositide 3-kinases (PI3K). PI3K, an enzyme con-
sisting of a large family of lipid and serine/threonine kinases, is normally involved in
lipid synthesis [29]. PI3K, a heterodimeric protein, is composed of p110 catalytic and p85
regulatory subunits [30]. It is a downstream effector that is activated in response to a variety
of extracellular stimuli, such as hormones, cytokines and growth factors. The binding of
growth factors to their cell surface receptors, including G protein-coupled receptor (GPCR)
and growth factor/receptor tyrosine kinase (RTK), activates the receptor complex, which
induces the dimerization and phosphorylation of PI3K (Figure 1) [31–34]. The p110 catalytic
subunit of PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidyli-
nositol 3,4,5-trisphosphate (PIP3). Incidental proteins, known as PIP2 and PIP3, interact
with PH domain proteins located on the inner layer of the plasma membrane, resulting
in conformational changes in the protein molecules [35]. During activation, PIP3 induces
the activation of phosphoinositide-dependent kinase-1 (PDK1) and downstream targets of
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AKT. Under normal conditions, phosphatase and tensin homolog (PTEN) functions as a
tumor suppressor protein that suppresses the activation of AKT [36].

Figure 1. Summary of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin
(mTOR) signaling pathway (created with BioRender.com). The PI3K pathway is activated when receptor tyrosine kinases
(RTKs) or G protein-coupled receptors (GPCR) bind to growth factors and lead to AKT activation. Upon activation, AKT
triggers the phosphorylation of mTOR, p70S6 kinase 1 (p70S6K) and eukaryotic translation factor 4E-binding protein 1
(4EBP1), resulting in the modulation of gene transcription related to cancer aggressiveness. AKT also stimulates cell death
resistance by upregulating mouse double minute 2 homolog (MDM2) and prosurvival proteins such as Bcl2 and X-linked
inhibitor of apoptosis protein (XIAP) and downregulating Forkhead box O3 (FOXO3) and proapoptotic proteins. mTORC2
phosphorylates AKT and induces actin reorganization, resulting in cell motility.

AKT is a serine/threonine kinase that contains a core kinase domain with a threonine
residue (T308) and a C-terminal tail domain that binds to mTOR complex 2 (mTORC2). Several
studies have reported that phosphorylated AKT (p-AKT) promotes aggressive cancer behaviors
such as cell proliferation, invasion, metastasis, and angiogenesis, and prevents programmed cell
death through the regulation of several downstream effectors [37–40]. Three different isoforms
of AKT have been identified: AKT1, AKT2 and AKT3. Activating phosphorylation of the AKT
protein at Ser473 and Thr308 further induces the phosphorylation of tuberous sclerosis complex
1/2 (TSC1/2) to inhibit its function; as a result, Rheb activates mTORC1 [41–43].

Overexpression of mTOR is commonly observed in various types of cancers [44].
mTOR forms two types of complexes, namely, mTORC1 and mTORC2 [45]. Each complex
shares similarities in the mTOR kinase (central catalytic component), mLST8 (scaffolding
protein), DEPTOR (mTOR regulatory subunit) and Tti1/Tel2 complex (complex assembly
and stability of mTOR) domains. mTORC1 contains Raptor and PRAS40, while mTORC2
contains Rictor and mSin1. In contrast to mTORC1, mTORC2 regulates AKT, which is
activated by direct signal transduction from PDK1 [46].

The PI3K/AKT/mTOR signaling pathway is engaged in a wide spectrum of metabolic
processes in which it monitors energy, nutrient and stress levels. Transcription of genes
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associated with the cancer promotor stimulated by mTORC1 occurs through the phos-
phorylation of its downstream effectors eukaryotic translation factor 4E-binding protein 1
(4EBP1) and p70S6 kinase 1 (S6K1) [44]. They regulate translational initiation by upregulat-
ing the expression of positive regulators of mRNA translation, which are required for the S
phase of the cell cycle. mTORC2 phosphorylates AKT and serine/threonine protein kinase
1 (SGK1) at the C-terminus, which regulates remodeling of the actin cytoskeleton [47].

Deregulation of the PI3K/AKT/mTOR signaling pathway by either the mutation or
amplification of genes involved in the PI3K pathway, loss of the tumor suppressor PTEN,
or overactivation of RTKs, has been observed in various cancer cells, contributing to tumor
progression and metastasis [48–51]. PIK3CA, the gene encoding the catalytic subunit of
the PI3Kα isoform, is frequently mutated in various human cancers, including breast,
ovarian and lung cancers [52–54]. Two hotspot E542K and E545K mutations in the p110
subunit alter the conformation of PI3Kα, in which an active site of PI3Kα is exposed at
the membrane and is subsequently activated [55,56]. The H1047R mutation located in the
kinase domain is able to mimic Ras action, which induces the membrane localization of
PI3K [57].

Mutation or loss of PTEN, a negative regulator of the PI3K signaling pathway, has
also been observed in many cancers [58,59]. PTEN mutations frequently occur in the
phosphatase domain, which impairs its tumor suppressor activity [59,60]. Furthermore,
the mutation of AKT itself also increases AKT activity in cancer cells. The E17K muta-
tion in the PH domain of AKT enhances the binding of AKT to PIP3, leading to AKT
phosphorylation [61]. EGFR, an upstream regulator of the PI3K signaling pathway, is
commonly mutated and/or overexpressed in various cancers. Missense mutations and
in-frame deletions in EGFR have been found to autoactivate downstream targets, including
the PI3K signaling pathway [62].

3. PI3K/AKT/mTOR Pathway in Cell Survival and Chemotherapeutic Resistance

Cell survival and chemotherapeutic resistance are inseparable from the PI3K/AKT/mTOR
signaling pathway. Several factors related to this signaling pathway include the Bcl-2 family,
X-linked inhibitor of apoptosis protein (XIAP), mouse double minute 2 homolog (MDM-2) and
Forkhead box O3 (FOXO3a) transcription factor (Figure 1) [63–67]. Based on accumulating
evidence, the PI3K/AKT/mTOR signaling pathway is abnormally activated in many cancers,
causing apoptosis deregulation and chemotherapeutic resistance [68]. In an apoptosis process,
the Bcl-2 protein family is the main factor contributing to cancer survival and multidrug resis-
tance [69]. Bcl-2 family proteins alter the permeability of the mitochondrial membrane, which
leads to the release of cytochrome C and caspase activation-mediated cell death. Overexpression
of components of the AKT signaling pathway disturbs the balance of Bcl-2 family proteins.
AKT itself induces the phosphorylation of BAD (Bcl-2-associated agonist of cell death) at Ser136
or Ser112, resulting in the disruption of heterodimerization of prosurvival Bcl-2 proteins such as
Bcl-xL and Bcl-2 and subsequently prevents apoptosis [70,71].

Several studies have shown that XIAP is regulated by AKT signaling [55,64,65]. Acti-
vated XIAP directly binds to and inhibits caspase activity; as a result, the apoptosis process
is suppressed. According to Dan et al., AKT stabilizes XIAP at the Ser87 amino acid by phos-
phorylation, and this mechanism is able to inhibit cisplatin-induced cell death [63,72,73].
MDM-2, a negative regulator of the tumor suppressor p53, is also phosphorylated by
AKT at Ser166 and Ser186. Phosphorylated MDM-2 binds to and blocks the N-terminal
transactivation domain of p53, which mediates p53 degradation by the ubiquitination
process [74,75]. The degradation of p53 disturbs the balance between prosurvival and
proapoptotic proteins, since p53 is responsible for proapoptotic BAX transcription [76,77].
In contrast, a loss of p53 induces resistance to apoptosis mediated by chemotherapeutic
agents [64,65].

The FOXO3 protein is a FOXO transcription factor and a member of a subgroup of the
Forkhead family. FOXO3 promotes apoptosis signaling by either inducing the expression
of multiple proapoptotic members of the Bcl-2 family proteins or stimulating the expression
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of death receptor ligands such as Fas ligand and tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) [78]. FOXO3 is phosphorylated and is transported out of the
nucleus through an AKT-dependent mechanism [78,79]. Overexpression of AKT also
inhibits the expression of the FOXO3 transcription factor [78,80].

4. PI3K/AKT/mTOR Pathway in Cell Proliferation

Activated AKT/mTOR are considered important key elements that regulate cell
proliferation [81]. Several inhibitors of mTOR, either chemical agents such as rapamycin
or nutrient starvation, induce cell cycle arrest in the G1 phase [82]. Downstream effectors
of mTOR, such as 4E-BP1 and P70S6K, are required for G1 phase progression through
the transcriptional regulation of G1 cyclins (D- and E-type cyclins) or the cytoplasmic
sequestration of cyclin-dependent kinase inhibitor 1 (p21CIP1/WAF1) and cyclin-dependent
kinase inhibitor 1B (p27Kip1), which inhibit these cyclin kinase inhibitors [82,83]. mTOR also
facilitates the binding of cyclin D1 to cyclin-dependent kinase (CDK) to initiate cell division.
Overexpression of cyclin D1 induces the cell cycle transition from the G1 to the S phase. In
addition, mTOR plays a key role in controlling the synthesis of biological macromolecules
such as proteins, nucleotides and lipids that are necessary for cell growth [82].

5. PI3K/AKT/mTOR Pathway in Cancer Cell Metastasis

Cancer metastasis is the process by which cancer cells dissociate, migrate, and invade
other sites. The PI3K/AKT/mTOR pathway participates in cancer metastasis in which
cancer cells are stimulated by the activation of RTKs, cytokines, or hormones. Active
AKT induces phosphorylation of mTORC1 and its downstream targets, such as 4EBP1
(Thr 37/46) and p70S6K (Thr 389). Activation of 4EBP1 induces the translation of several
transcription factors, such as Snail, Slug, and Twist [84–86]. Activation of these transcription
factors leads to an upregulation of epithelial-mesenchymal transition (EMT) markers
(vimentin and N-cadherin) and a decrease in the expression of epithelial markers (E-
cadherin, ZO-1, and claudin) [87,88].

According to previous findings, the PI3K/AKT/mTOR pathway governs cancer cell
migration and invasion by regulating F-actin reorganization [89]. AKT activates palladin,
an actin-associated protein, by phosphorylating Ser507 to regulate cell migration [90].
Activated p70S6K, which is mediated by the PI3K/AKT/mTOR axis, functions as an
upstream regulator of Rac1 and Cdc42 that controls actin reorganization during cancer cell
movement [91,92]. Activated p70S6K directly interacts with cross-linked F-actin to prevent
actin depolymerization by cofilin family proteins [91]. The loss of mTOR activity induced
by Akt inhibition contributes to a disruption of protrusive structure formation (lamellipodia
and filopodia) and F-actin organization [93]. In addition, p70S6K is also involved in the
expression and activity of matrix metalloproteinases (MMPs), proteolytic enzymes that are
responsible for extracellular matrix degradation during cell invasion [94]. Activation of
p70S6K promotes MMP-9 mRNA expression and stimulates proteolytic activity in ovarian
cancer cells [95]. Moreover, knockdown of AKT expression, which leads to a loss of
functional mTOR and p70S6K, results in MMP-2 and MMP-9 mRNA downregulation in
lung cancer cells [96]. In addition, phospho-eIF4E induces the translation of MMP-3 and
MMP-9 [88,97]. Based on these findings, the PI3K/AKT/mTOR signaling pathway plays a
pivotal role in cancer cell migration and invasion, and the blockade of molecules in this
pathway represents a potential approach for cancer treatment.

6. PI3K/AKT/mTOR Pathway in Cancer Angiogenesis

Angiogenesis or the development of new blood vessels is one of the common hall-
marks of cancer and is crucial for cancer progression, development and metastasis. This
process is necessary to supply nutrients and oxygen to compensate for rapid tumor
growth [98,99]. Tumor blood vessel growth is initiated by hypoxia-mediated upregu-
lation of both the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein. In a normal
oxygen environment, HIF-1α undergoes ubiquitination through activation of hydroxyla-
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tion by prolyl hydroxylase domain proteins (PHDs) at residues Pro 402 and 564. Under
hypoxic conditions, the level of HIF-1α is stabilized as a result of PHD inhibition, subse-
quently causing an accumulation of the HIF-1α protein [100–102]. HIF-1α forms a complex
with HIF-1β and activates the transcription factor hypoxia response element (HRE), which
induces the transcription of several proangiogenic factors, such as MMPs, vascular en-
dothelial growth factor (VEGF), angiopoietin-1/2 and nitric oxide synthase (NOS) [103].
Several studies have shown that a high level of HIF-1α activates MMP transcription, which
is crucial for the degradation of extracellular matrix (ECM) and connective tissue barriers
and is necessary for proangiogenic factors to reach endothelial cells [104,105]. HIF-1α also
induces the production of VEGF, a secretory cytokine, leading to the growth of endothelial
cells [106].

HIF-1α was reported to be regulated by the PI3K/AKT/mTOR signaling pathway.
AKT/mTOR induces downstream signaling, such as 4EBP1, which is essential for in-
hibiting cap-dependent mRNA translation and increasing the translation of the HIF-1α
transcription factor [101]. In addition to its effects on HIF-1α activity, AKT induces angio-
genesis by promoting cell motility and invasion in NSCLC [101]. The overactivation of
AKT alters the distribution of endothelial nitric oxide synthase 3 (eNOS), which leads to an
accumulation of nitric oxide (NO) and the remodeling and formation of blood vessels [40].
Furthermore, the suppression of AKT/mTOR/p70S6K signaling is reported to attenuate
endothelial cell proliferation, which is critical for controlling the tumor microenvironment
and angiogenesis [107,108].

7. Current Research on PI3K/AKT/mTOR Inhibitors in Lung Cancer

Due to the substantial increase in the number of new therapeutic agents that target
specific molecular pathways, a higher degree of biochemical precision in therapeutic drugs
can now be achieved than were previously available with conventional chemotherapeutic
drugs. Since the PI3K/AKT/mTOR pathway is considered a potential target for anticancer
drug research and development, numerous potent molecules or combinations are under-
going clinical trials. This review summarizes several drugs targeting PI3K/AKT/mTOR
signaling pathways that are being investigated in various phases of clinical trials (Table 1).

7.1. PI3K Inhibitors

The PI3K family is divided into four groups (classes I, II, III and IV) according to their
structure, regulation and substrate specificity [109]. Class I PI3Ks are most widely reported
to play a key role in the regulation of tumor progression and metastasis, providing important
therapeutic targets [109]. Class I PI3Ks are further classified into two subclasses, namely,
subclass IA (PI3Kα, β and δ) and subclass IB (PI3Kγ) [109]. Class IA enzymes are heterodimeric
molecules containing p110 catalytic and p85 regulatory subunits (Figure 2). Five domains of
p110 subunits are present in class IA enzymes, including an adaptor binding domain (ABD), a
Ras-binding domain (RBD), a C2 domain, a helical domain and a catalytic kinase domain (CAT).
The p85 subunit contains five domains: an N-terminal SH3 domain, a Rho-GAP domain, an
nSH2 domain, an iSH2 domain and a cSH2 domain [110,111]. In the basal state, p110 and p85
subunits form a complex via the interaction of four domains (ABD-CAT domain, ABD-iSH2
domain, and helical-nSH2 domain), and part of the RBD domain of the p110 subunit is locked
in the ATP binding site of the neighboring kinase domain, resulting in the inhibition of enzyme
activity [112]. Class IB PI3Kγ also shares structural features; however, it does not contain an
N-terminal p85-binding motif that controls its activity [110].
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Figure 2. Structure of class IA PI3K (created with BioRender.com). Each class IA PI3K consists of
p110 catalytic and p85 regulatory subunits.

Class IA PI3Ks are activated in response to activation of RTKs and Ras proteins.
The SH2 domain of p85 is released from the complex and binds to the phosphorylated
tyrosine motif (pyxxm) in RTKs, and the RBD domain also directly interacts with the active
Ras protein (Ras-GTP) to promote membrane localization of PI3K [112]. ATP occupies
the pocket site to mediate the phosphorylation of membrane-localized PIP2 to PIP3, a
secondary messenger required for the AKT activation or other downstream molecules.
Meanwhile, PI3Kγ is activated by G-protein-coupled receptors (GPCRs) and is regulated
via heterotrimeric G proteins [113]. Small-molecule inhibitors of PI3K have been developed
to target the ATP binding site in the kinase domain, since class I PI3Ks have a highly
conserved ATP binding region and have similar three-dimensional structures among PI3K
isoforms [111]. The ATP binding site is located between the two lobes of the kinase domain
and is separated by a hinge region [114]. The structure of a small molecule mimicking the
adenine ring of ATP anchors in the binding site via hydrogen bonds, leading to a disruption
of enzyme activity [115]. The presence of the hinge interaction is preserved in most PI3K
inhibitors; however, the interaction of small molecules with other regions surrounding
the ATP binding site, including the lower hinge, kβ3-kβ4 strands and p-loop region, also
contributes to isoform selectivity [114].

Numerous studies indicate that hyperactivity of PI3K signaling is strongly associated
with tumor growth, tumor microvessel density and the increased invasive and chemotactic
abilities of cancer cells [116]. Currently, several groups of drugs targeting PI3K have been
developed, such as selective PI3K inhibitors, pan-PI3K inhibitors and dual PI3K/AKT
or PI3K/mTOR inhibitors. Buparlisib (BKM-120) is a selective PI3K inhibitor of p110α,
β, δ and γ with IC50 values of 52 nM, 166 nM, 116 nM and 262 nM, respectively, in an
ATP-competitive manner, thereby inhibiting the activation of the secondary messenger
phosphatidylinositol–3,4,5-trisphosphate [117,118]. It is now being investigated in lung
cancer either alone or in combination with other agents (NCT01723800, NCT01570296,
NCT01911325, and NCT02194049) [21,119–121]. The clinical treatment of patients with
alterations in the PI3K pathway (mutated or amplified PIK3CA and/or mutated PTEN
and/or null/low PTEN protein expression) in advanced solid tumors with buparlisib at a
maximum tolerated dose (MTD) of 100 mg/d is safe and well tolerated [122].

Pictilisib or GDC-0941 is a potent inhibitor of PI3Kα/δ with an IC50 of 3 nM [123]. In
a clinical study of patients with advanced solid tumors, the administration of pictilisib
reduced the level of phosphorylated AKT at serine 473 by more than 90% in platelet-
rich plasma at 3 h following the administration of the MTD [124]. Pictilisib itself is un-
dergoing clinical trials in patients with advanced NSCLC in combination with several
chemotherapies, such as paclitaxel, carboplatin, pemetrexed, cisplatin, and bevacizumab
(NCT00974584) [125]. Based on the data, pictilisib can be used safely in combination ther-
apy, with only common adverse events that normally occur in the standard treatment for
NSCLC recorded [126].

Idelalisib is an oral competitive inhibitor of the ATP binding site, specifically at
the PI3Kδ catalytic domain, with an IC50 of 2.5 nM [127]. Idelalisib is the first PI3K in-
hibitor approved by the US Food and Drug Administration (FDA) for the treatment of
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lymphoma [128]. Currently, the combination of pembrolizumab and idelalisib is under-
going a clinical trial in patients with NSCLC who do not respond to immunotherapy
(NCT03257722) [129].

Alpelisib (BYL719) is a selective PI3Kα inhibitor derived from 2-aminothiazole with an
IC50 of 5 nM [130,131]. Alpelisib has been approved by the FDA for the treatment of HER2-
positive advanced breast cancer with a PIK3CA mutation, which increases the 7.9-month
survival rate of patients with advanced breast cancer, according to a phase III clinical trial
(NCT04208178) [132,133]. Alpelisib is being investigated as a treatment for advanced solid
tumors in combination with MEK162, an inhibitor of MEK (NCT01449058) [134], using the
MTD of 200 mg/d [135].

Serabelisib (TAK-117) is a potent and selective oral PI3Kα inhibitor (IC50 of 21 nM).
A phase I study on dose escalation reported that TAK-117 showed an acceptable safety
profile at the intermittent MTD (900 mg). Observations of grade ≥3 drug-related ALT/AST
elevations were lower after the intermittent treatment than after daily treatment with
TAK-117 [136]. A further clinical trial of serabelisib in combination with canagliflozin in
patients with lung cancer is being performed [137].

Taselisib (GDC-0032) is a potent and selective inhibitor of class I PI3Ks (α, δ, and γ)
with IC50 values of 0.29, 0.12 nM, and 0.97 nM, respectively, and satisfactory antitumor ef-
fects on MCF7 and HER2 xenograft models [138]. Taselisib is being investigated in a clinical
trial for several types of advanced or metastatic solid tumor and non-Hodgkin’s lymphoma
(NHL), together with hormone receptor-positive breast cancer (NCT01296555) [139]. For
lung cancer, a phase II clinical trial (NCT02785913) was conducted in patients with recur-
rent and stage IV squamous cell lung carcinoma and showed that single-agent treatment
with taselisib does not sufficiently improve the overall survival rate of patients with lung
cancer, prompting a speculative hypothesis that taselisib may work better in combination
with other agents in patients with advanced NSCLC [140].

Gedatolisib (PF05212384) is another type of PI3K inhibitor that also functions as an
mTOR inhibitor. Gedatolisib is potent and selective for PI3Kα and PI3Kγ with IC50 values
of 0.4 and 5.4 nM, respectively [141]. In an in vivo xenograft model of MDA-361 breast
cancer cells, gedatolisib induced tumor growth arrest at a dose of more than 10 mg/kg [142].
Due to its promising efficacy, a phase I (NCT02920450) dose escalation trial of gedatolisib
is being performed with the combination of paclitaxel and carboplatin in patients with
advanced or metastatic NSCLC [143]. Another phase I clinical trial (NCT03065062) of
gedatolisib with a CDK4/6 inhibitor (palbociclib) has been ongoing since 2017 in patients
with several advanced solid tumors, such as squamous cell lung, pancreatic and head and
neck cancers [144].

Voxtalisib (SAR245409/XL765) is a dual-targeting drug that acts by inhibiting the
kinase activities of PI3K and mTOR with an IC50 of 9 nM for PI3Kγ [145]. An in vitro study
conducted in mucinous ovarian cancer cells indicated that pimasertib and voxtalisib exhibit
potent synergistic activity [146]; however, their clinical efficacy in a dose-escalation trial of
patients with advanced solid tumors, including NSCLC (phase IB), was not sufficient to
consider further due to their poor tolerability (NCT01390818) [147].

7.2. AKT Inhibitors

The AKT kinase family consists of three isoforms: AKT1, AKT2, and AKT3. All AKT
isoforms are comprised of three conserved domains: an N-terminal pleckstrin homology
(PH) domain, a central kinase catalytic (CAT) domain and a C-terminal extension (EXT)
containing a regulatory hydrophobic motif (HM) (Figure 3). The PH and CAT domains of
AKT are connected to the linker region (LINK), which shows no significant homology to
other protein kinases [148]. AKT activity is regulated by phosphorylation and dephospho-
rylation in an Akt conformation-dependent manner. In the absence of stimulation, the PH
and CAT domains of AKT are connected by intramolecular interactions to maintain AKT in
an inactive state (PH-in conformation) in the cytoplasm [149]. AKT is activated in response
to the binding of PIP3 to the PH domain of AKT, which leads to conformational changes
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in AKT (PH-out conformation) and translocation to the plasma membrane. The PH-out
conformation exposes the CAT and regulatory domains, resulting in phosphorylation at
two main residues: threonine residues in the activation loop of the CAT domain (Thr308
in AKT1, Thr309 in AKT2 and Thr305 in AKT3) and serine residues in the HM domain
(Ser473 in AKT1, Ser474 in AKT2 and Ser472 in AKT2) [150,151]. Moreover, ATP occupies
the ATP binding site located in the CAT domain to decelerate the dephosphorylation of
AKT, leading to its full activation [152].

Figure 3. Structure of human AKT family isoforms (created with BioRender.com). Each family
member consists of a pleckstrin homology (PH) domain, a catalytic (CAT) domain and a hydrophobic
motif (HM).

The development of small-molecule AKT inhibitors is mainly focused on the inhibition
of AKT-mediated phosphorylation. To date, ATP-competitive inhibitors are some of the
most common AKT inhibitors and have been shown to strongly suppress AKT activity.
These inhibitors directly bind to the ATP binding pocket of active AKT in a PH-out confor-
mation that leads to paradoxical increases in AKT phosphorylation at threonine and serine
residues [153]. Hyperphosphorylation of AKT by ATP-competitive inhibitors has been
reported to have noncatalytic functions [154]. However, these drugs are poorly selective
inhibitors, since the ATP binding site is highly conserved in many protein kinases [148].
Allosteric inhibitors have been developed to improve the selectivity at AKT. They form
irreversible intramolecular interactions with residues in AKT located at the linker region to
stabilize AKT in the PH-in conformation, preventing AKT phosphorylation [153]. Several
studies have revealed that allosteric inhibitors show a greater specificity and fewer side
effects, and some of them have been studied in clinical trials, such as MK2206 [155,156].

MK2206 is an AKT inhibitor that targets all three isoforms of AKT (AKT1, AKT2, and
AKT3) with IC50 values of 8, 12, and 65 nM, respectively [157]. According to Hirai et al., a
combination of MK2206 (120 mg/kg/d) with carboplatin (50 mg/kg/d) or gemcitabine
(100 mg/kg/d) inhibits tumor growth in an NSCLC-H460 xenograft model [158]. In a
phase I clinical trial for advanced solid tumors, MK2206 was associated with stable disease
in patients with lung cancer, in which AKT phosphorylation at S473 was decreased in all
tumor biopsies assessed [159]. A combination of MK2206 and docetaxel, carboplatin, and
paclitaxel or erlotinib was well tolerated in all tested regimens (NCT00848718) [160,161].
MK2206 was administered as a second-line therapy to patients with advanced NSCLC
accompanied by brain metastases, and the data showed that patients with EGFR mutations
have a longer median progression-free survival (PFS) than those with wild-type EGFR (15.2
months vs 4.4 months/NCT00663689) [162]. The additional treatment with MK2206 also
increased the responsiveness of patients with erlotinib-resistant NSCLC (NCT01294306) [22,
156]. A similar trial of MEK2206 in patients with NSCLC who were nonresponsive to prior
chemotherapy and gefitinib is being conducted in Taiwan [163].

Capivasertib (AZD5363) is similar to MEK2206, as it inhibits all isoforms of AKT
(IC50 of 3 nM for AKT1 and 8 nM for AKT2 and AKT3) [164]. A phase I study using dose
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escalation of capivasertib and enzalutamide in patients with prostate cancer showed that a
400 mg (twice daily) treatment increased the responsiveness in patients with PTEN loss or
upregulation of mutations in AKT with a good tolerance limit [165]. Currently, capivasertib
is undergoing a phase II clinical trial in patients with NSCLC [166].

Uprosertib (GSK2141795) is an oral ATP-competitive AKT inhibitor with IC50 values
of 180, 328, and 38 nM for AKT1, AKT2, and AKT3, respectively [145,167]. An early
clinical trial of uprosertib in combination with trametinib documented a high incidence
of vomiting as an adverse effect, leading to dose interruptions. Approximately 60% of
patients receiving this combination develop grade 3 side effects, and thus the clinical trial
terminated at an early stage due to fewer pharmacological benefits [168]. An additional
clinical trial examining combinations of uprosertib, trametinib, and dabrafenib was being
patients in patients with stage IIIC-IV lung cancer [169].

Perifosine is an alkyl-phospholipid that functions as a dual PI3K/AKT inhibitor,
which is being investigated in a phase I trial in patients with NSCLC (NCT00399789).
This clinical trial aimed to determine the MTD of perifosine that is tolerated in the gas-
trointestinal tract. Patients with NSCLC will receive daily or weekly doses of perifosine
(150 mg/900 mg) [24,170]. Apart from lung cancer, perifosine has also been investigated in
colorectal cancer in combination with capecitabine, but failed to undergo a phase 3 clinical
trial due to the lack of improvement in the overall survival of the patients [171].

Aspirin is a nonsteroidal anti-inflammatory drug (NSAID). In vitro and in vivo exper-
iments showed that additional treatment with aspirin sensitizes NSCLC cells to osimer-
tinib through a Bim-mediated apoptosis induction [172]. In individuals with colorectal
cancer carrying a PI3KCA mutation, treatment with aspirin suppresses the proliferation
and decreases p-4EBP1 and p-S6K1 levels. In addition to the downstream effect of as-
pirin, the activation of upstream pathways, such as PI3K, AKT, mTOR, and Raptor, is
also decreased [173,174]. Currently, aspirin is being investigated in a phase I clinical
trial with osimertinib, an EGFR inhibitor, in patients with osimertinib-resistant NSCLC
(NCT03543683). According to a retrospective analysis of 45 patients with NSCLC in Daping
Hospital (China), the patients who received aspirin and osimertinib showed a significantly
prolonged median progression-free survival compared to patients treated with osimertinib
alone [172,175].

7.3. mTOR Inhibitors

The mTOR kinase family is composed of three functional molecules, mTOR1, mTOR2
and mTOR3, according to the components of the complex, signaling inputs and down-
stream targets [176]. However, only mTOR1 and mTOR2 have been reported to be closely
associated with cancer [46]. Both mTOR1 and mTOR2 molecules consist of two main core
subunits: HEAT repeats (NH2-terminat HEAT (N-HEAT), middle HEAT (M-HEAT)), FAT,
FRB, and kinase domains (Figure 4a) [176,177]. Each mTOR protein interacts with different
molecules in a distinct complex. mTOR complex 1 (mTORC1) includes Raptor, which plays
an important role in mTORC1 assembly and stability, and substrate identification; mLST8,
which stabilizes the complex and phosphorylates the substrate; and PRAS40 and Deptor,
which negatively regulate mTORC1 [178]. In addition to mSLT8 and Deptor, mTORC2
contains Rictor, which regulates substrate identification, and Proto 1

2 and mSIN1, which
stabilize and enhance mTORC2 activity (Figure 4b).
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Figure 4. (a) Structures of mTOR1 and mTOR2 (created with BioRender.com). Each mTOR consists
of HEAT repeats, FAT, FRB, and kinase domains. (b) mTOR complex 1 (mTORC1) is composed of
mTOR, Raptor, mLST8, Deptor, and PRAS40, whereas mTORC2 includes mTOR, Rictor, mLST8,
Deptor, mSin1, and Protor 1/2.

mTOR inhibitors are a class of drugs that specifically block the activity of mTOR.
In general, mTOR inhibitors consist of two main groups, namely, rapamycin and its
analog (rapalog) and ATP-competitive mTOR kinase inhibitors [176]. Rapalog forms a
complex with FK506-binding protein (FKBP12) and directly interacts with the FRB domain
of mTORC1. This interaction limits access to the ATP binding site cleft in mTOR and
prevents its phosphorylation [179]. Since rapalog only binds to the mTORC1 complex,
ATP-competitive inhibitors have been developed to overcome this limitation [180]. ATP-
competitive inhibitors are designed to target ATP binding sites in the catalytic domains of
both mTORC1 and mTORC2, leading to the inhibition of mTOR activity [181]. Some ATP-
competitive inhibitors function as dual PI3K/mTOR inhibitors due to structural similarities
of the catalytic domain among the protein kinases, and show higher potency in anticancer
activity [182,183].

As the first-generation mTOR inhibitor, rapamycin is currently being investigated in a
clinical trial in patients with NSCLC in several combinations of sunitinib (NCT00555256)
and afatinib (NCT00993499) [184,185]. Its combination with afatinib in patients with
NSCLC presenting erlotinib or gefitinib resistance showed lower responsiveness, with an
increase in adverse effects and poor tolerability [23].

Another drug derived from rapamycin, temsirolimus, has been approved by the FDA
for the treatment of advanced renal cell carcinoma. Preclinical treatment with temsirolimus
inhibits the proliferation of several NSCLC lines as well as the antitumor activity of NSCLC
xenografts [186]. In another phase II clinical trial of patients with NSCLC carrying HER2
mutations, a combination of temsirolimus and neratinib significantly increased the overall
survival rate compared to neratinib alone (NCT01827267) [187]. Currently, treatment
with temsirolimus alone is being investigated in a clinical trial conducted in patients
with stage IIIB or stage IV NSCLC and small cell lung carcinoma (NCT00079235 and
NCT00028028) [188,189]. The combination of temsirolimus and standard chemotherapy
(pemetrexed) for NSCLC is also being investigated (NCT00921310) [190]. The MTDs of
pemetrexed (375 mg/m2/day) and temsirolimus (15 mg i.v. weekly) for stable disease
were observed in 37.5% of the total patients [191]. The Washington University School of
Medicine reported that three patients achieved a partial response, and two out of eight
patients with advanced NSCLC being evaluated had a stable disease after treatment with
the combination of temsirolimus (15 mg/week) and radiation, indicating that the treatment
was well tolerated (NCT00796796) [192,193].
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Metformin is the first-line medication for the treatment of type 2 diabetes mellitus,
but recently, several studies have also shown that metformin has anticancer properties by
inhibiting mTOR. Metformin is effective at reducing the cancer incidence, and it improves
the prognosis of patients whose cancer is diagnosed [194]. Previous retrospective and
cohort studies showed that metformin administration was associated with a significantly
longer overall survival rate in patients with NSCLC [195,196]. Currently, treatment with
metformin alone is being examined in a phase II clinical trial for patients with stage I-IIIa
NSCLC [197] or in combination with an anti-PD1 inhibitor such as sintilimab [198].

Onatasertib (CC223) is an mTOR inhibitor that binds to the ATP-binding region in
the catalytic site of mTOR. A preclinical experiment showed that onatasertib inhibits the
proliferation of several NSCLC cell lines, such as A549, H460, and H23 cells, with IC50
values of 0.208, 0.2 and 1.039 µM, respectively. An evaluation of onatasertib in a patient-
derived lung adenocarcinoma xenograft showed a 47% reduction in tumor growth after
treatment with 10 mg/kg/day [199]. A phase I clinical trial (NCT01545947) of onatasertib
is being conducted either with or without combination with erlotinib or azacytidine [200].
In addition to onatasertib, other dual mTOR inhibitors, such as sapanisertib (NCT02417701)
and vistusertib (NCT03106155), are also undergoing clinical trials in patients with stage IV
or recurrent lung cancer [201,202].

Table 1. Ongoing clinical trials of several drugs targeting PI3K/AKT/mTOR signaling in lung cancer.

Drugs Mechanism of Actions Combination with Phase Refs.

Buparlisib (BKM120) Class I Pan-PI3K
inhibitor

Carboplatin and
pemetrexed disodium Phase I [119]

Gefitinib Phase I [120]

Docetaxel Phase I [21]

Cisplatin and etoposide Phase I [121]

Pictilisib (GDC-0941) PI3Kα/δ inhibitor

Paclitaxel
Carboplatin (with or

without bevacizumab)
or pemetrexed,
cisplatin, and
bevacizumab

Phase I [125]

Idelalisib PI3Kδ inhibitor Pembrolizumab Phase IB/II [129]

Alpelisib (BYL719) PI3Kα inhibitor MEK162 Phase I [134]

Serabelisib PI3K inhibitor Canagliflozin Phase IB/II [137]

Taselisib (GDC-0032) PI3Kα, δ, and γ

inhibitor
- Phase I [139]

- Phase II [140]

Gedatolisib
(PF05212384)

Dual PI3K/mTOR
inhibitor

Paclitaxel
Carboplatin Phase I/II [143]

Palbociclib Phase I [144]

Voxtalisib
(SAR245409/XL765)

Dual PI3K/mTOR
inhibitor

MSC1936369B
(Pimasertib) Phase I [147]

MK2206 AKT inhibitor

Erlotinib Phase II [162]

Erlotinib Phase II [22,156]

Standard
chemotherapy
and erlotinib

Phase I [163]

Gefitinib Phase I [161]

Capivarsetib
(AZD5363) AKT inhibitor - Phase I [166]
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Table 1. Cont.

Drugs Mechanism of Actions Combination with Phase Refs.

Perifosine Dual PI3K/AKT
inhibitor - Phase I/II [24]

Uprosertib
(GSK-2141795) AKT inhibitor Trametinib dimethyl

sulfoxide Phase I/II [169]

Aspirin Decrease AKT
phosphorylation Osimertinib Phase I [175]

Rapamycin mTORC1 inhibitor
Sunitinib Phase I [184]

Afatinib (BIBW2992) Phase I [23,185]

Temsirolimus mTORC1 inhibitor

Neratinib Phase II [187]

- Phase II [188]

Pemetrexed Phase I [189]

Radiation Phase I/II [192]

Metformin mTOR inhibitor
- Phase II [197]

Sintilimab Phase II [198]

Onatasertib
(CC223) Dual mTOR inhibitor Erlotinib

Azacytidine Phase I [200]

Sapanisertib Dual mTOR inhibitor - Phase II [201]

Vistusertib
(AZD2014) Dual mTOR inhibitor - Phase II [202]

8. Natural Compounds Targeting the PI3K/AKT/mTOR Pathway in Lung Cancer

Approximately two-thirds of the anticancer drugs currently available are synthetic
products that are derived from natural sources [203]. The increasing abundance of natural
resources, especially natural compounds, and their functions as potential templates for
efficacious analogs and prodrugs, ensures that natural products are still a versatile source of
both active and diverse chemicals [204]. On the other hand, few natural products have been
developed into clinically effective drugs, and these unique natural compounds can serve as
precursors for the chemical preparation of more efficacious analogs and prodrugs [204,205].
Overall, the important roles of natural products in the discovery and development of novel
anticancer drugs have been extensively discussed [203]. The following sections describe the
recent research and development of natural compounds targeting the PI3K/AKT/mTOR
signaling pathway in lung cancer, particularly new natural compounds that are currently
in the preclinical stages of development (Table 2).

8.1. Bibenzyl

Bibenzyl compounds have been mainly detected in the Orchidaceae family, particu-
larly Dendrobium species, including 4,5,4′-trihydroxy-3,3′-dimethoxybibenzyl (TDB) and
gigantol [206,207]. Several studies have reported the anticancer activities of TDB, such
as the induction of apoptotic cell death and the suppression of metastatic behavior in
lung cancer [208–210]. TBD was isolated from the Dendrobium genus of the orchid family,
specifically Dendrobium ellipsophyllum [211]. TBD belongs to the bibenzyl group, whose
main structure consists of a double phenyl ring linked by ethane. In lung cancer, TBD was
able to induce cytotoxicity in several NSCLC cell lines, such as H292, H460 and H23 cells,
with IC50 values ranging from 100–190 µM. TBD upregulated the expression of the tumor
suppressor p53 and proapoptotic protein Bax and downregulated the expression of several
antiapoptotic proteins, such as Bcl-2 and Mcl-1. Further experiments reported that TDB
also significantly diminished the level of p-AKT [208]. As an antimetastatic drug in lung
cancer, TBD concentrations of 0.5–5 µM attenuated the migration and invasion of H292
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cells and suppressed the activation of AKT and its downstream signaling, such as focal
adhesion kinase (FAK), cell division control protein 42 homolog (CDC42), integrins and
EMT markers, including snail and vimentin [209,210].

Gigantol, a bibenzyl compound isolated from the Dendrobium genus (Dendrobium
draconis), exhibits potent anticancer activity against NSCLC cell lines (H460 and H292
cells) [212–215]. Gigantol inhibits the migration of H460 cells at concentrations of 5–20
µM. The antimigratory effect of gigantol is mediated by the downregulation of p-AKT and
caveolin-1 (Cav-1), resulting in a decrease in filopodia formation, an actin-rich membrane
protrusion [212]. The expression of several EMT markers, especially slug, is significantly
reduced via the ubiquitination mechanism [214]. Apart from inhibitory effects on migration,
gigantol is able to sensitize H460 lung cancer cells to anoikis, a form of detachment-
induced apoptosis [215]. Bioinformatics analysis using the Kyoto Encyclopedia of the
Genes and Genomes (KEGG) pathway database, showing that gigantol downregulated
two major signaling pathways, namely the PI3K/AKT and JAK/STAT signaling pathways.
Pretreatment with gigantol decreased the levels of cancer stem cell markers, including
prominin-1 (CD133) and aldehyde dehydrogenase 1 family member 1A (ALDH1A1), in
A549, H460, and H292 cells. In an in vivo tumor xenograft study, gigantol significantly
retarded tumor growth, which was characterized by a decrease in Ki-67 expression [213].
Therefore, bibenzyl compounds exert potent anticancer effects through AKT inactivation.

8.2. Phenanthrene

Phenanthrene, a group of polycyclic aromatic hydrocarbon-containing compounds
composed of three connected benzene rings, was identified in the Orchidaceae family, espe-
cially Dendrobium and Juncaceae [216]. Phenanthrene exhibits several biological activities,
such as antifungal, antimicrobial, anti-inflammatory, and antitumor activities [217]. Each
phenanthrene has various levels of potency and pharmacological effects due to its substitu-
tion on the benzene ring. Ephemeranthol A is isolated from Dendrobium infundibulum. As
a promising natural compound, ephemeranthol A exerts anticancer activity by inducing
apoptosis through the activation of several apoptosis-related enzymes, such as caspase-3,
caspase-9, and poly (ADP-ribose) polymerase (PARP). In addition to apoptosis induction,
ephemeranthol A inhibits the migration of lung cancer cells by inactivating AKT and
subsequently suppressing the expression of EMT markers such as N-cadherin, vimentin
and slug [218].

Cypripedin, a phenanthrene quinone isolated from Dendrobium densiflorum, also in-
duces apoptosis and inhibits migration [219,220]. Cypripedin attenuates lung cancer cell mi-
gration through an EMT-dependent mechanism. A mechanistic investigation reported that
AKT activity was suppressed in response to cypripedin treatment, consequently increas-
ing GSK-3β expression and mediating slug degradation via proteasomal processes [220].
Furthermore, overexpression of constitutively active AKT minimizes the pharmacological
activity of cypripedin, indicating that AKT is an important target of its antimetastatic effect.

Likewise, erianthridin is a phenanthrene derived from Dendrobium formosum that was
recently reported to have potent antimetastatic and cytotoxic effects on lung cancer [96,221].
Erianthridin suppresses the metastatic behavior of A549 and H460 lung cancer cells through
the AKT/mTOR pathway. Molecular docking experiments revealed that erianthridin
directly binds to an ATP binding site in the protein kinase domain through hydrogen
bonding and van der Waals interactions. As a downstream signaling molecule in this
pathway, actin stress fiber and lamellipodia formation are gradually decreased, and the
expression of the MMP2 and MMP9 mRNAs are extensively reduced in a dose-dependent
manner. Furthermore, an in vivo metastasis model confirmed the strong suppressive effect
of this compound on lung colonization. Interestingly, erianthridin was not toxic to normal
lung and tubular epithelial cells, whereas cytotoxicity was often observed in response
to cisplatin, a standard therapy for lung cancer [221]. Overall, phenanthrene derivatives
are strong AKT inhibitors, suggesting that they might serve as prototype compounds for
further anti-lung cancer research and development.



Molecules 2021, 26, 4100 15 of 27

8.3. Phenolic and Flavonoids

Phenolic compounds are characterized by molecules containing at least one hydroxyl
group attached to aromatic hydrocarbons. Phenolic compounds exhibit significant benefits
in several diseases, mostly through their antioxidant activity [222]. Phoyunnanin E is a
natural phenolic compound that is isolated from Dendrobium venustum and is abundant in
northern, central and western Thailand. A previous study suggested that phoyunnanin
E induces apoptosis in NSCLC cell lines via a p53-dependent pathway [223]. An in vitro
study indicated that phoyunnanin E exhibits antimetastatic activity in H460 cells. Treatment
of lung cancer cells with phoyunnanin E decreases the levels of active AKT/FAK, integrin-
mediated migration, and the expression of EMT markers such as N-cadherin, vimentin,
snail, and slug [224].

Curcumin, a bright yellow polyphenol-containing compound, is abundant in the
species Curcuma longa. As a well-known natural product, curcumin possesses several
pharmacological activities, such as antioxidant, anti-inflammatory, antidiabetic, antihy-
pertension, and anticholesterol activities [225]. In lung cancer, curcumin suppresses cell
proliferation by inhibiting PI3K/AKT signaling [226]. In addition to its antiproliferative
activity, curcumin exhibits antimetastasis activity in NSCLC cell lines by reducing the
levels of active AKT/mTOR [227].

In addition, sotetsuflavone, an active constituent of many traditional Chinese medicines,
is present in several medicinal plants, especially in the Cycas revoluta. Sotetsuflavone is
classified as a bioflavonoid, a polyphenol compound comprising two identical or noniden-
tical flavones connected to each other by an alkyl or an alkoxy-based linker of varying
lengths [228]. This compound exerts anticancer effects on several cancer models, especially
in lung cancer. Mechanistic investigations of sotetsuflavone in lung cancer have been
reported; for example, it induces G0/G1 cell cycle arrest and cell death in A549 cells via a
mitochondria-dependent pathway [229]. Its antimetastatic effect on A549 cells is mediated
by the suppression of the HIF1α transcription factor and EMT through the PI3K/AKT and
TNF-α/NF-κB signaling pathways [25], and it induces cell autophagy by downregulating
the PI3K/AKT/mTOR pathway [230].

Luteoloside is also one of the active flavonoids detected in several medicinal herbs,
especially in Chrysanthemum morifolium. Zhou and coworkers revealed that luteoloside
inhibits lung cancer cell proliferation by inducing G0/G1 cell cycle arrest. A significant
downregulation of p-AKT/p-mTOR/p-p70S6K was observed in response to luteoloside
treatment. Moreover, luteoloside induces intracellular ROS formation associated with the
suppression of the AKT/mTOR signaling pathway [231].

Cardamonin is a chalcone flavonoid that is abundant in Boesenbergia rotunda, one
species in the Zingiberaceae family [232]. Its anticancer activities, such as apoptosis induction
and metastasis suppression, occur through attenuation of the PI3K/AKT/mTOR pathway.
Treatment with 20 µM cardamonin induces G2/M arrest and decreases the levels of EMT-
related proteins. An in vivo H460 xenograft model showed significantly decreased levels
of p-AKT and p-mTOR in the cardamonin group [233]. As a group of phenolics and
flavonoids, its anticancer activity as an inhibitor of PI3K/AKT/mTOR signaling is mostly
associated with its antioxidant capacity.

8.4. Quinoline

Quinoline is a group of molecules composed of heterocyclic aromatic rings that
exhibit various pharmacological activities, such as antibacterial, antioxidant, and anticancer
activities [222]. Jorunnamycin A is the natural marine tetrahydroisoquinoline isolated from
Thai blue sponges (Xestospongia sp.). Jorunnamycin A shares a similar structure to the
famous ecteinascidin 743 (trabectedin), which was approved by the FDA in 2015 as an
anticancer drug targeting unresectable or metastatic liposarcoma [234]. According to
Sirimangkalakitti et al., jorunnamycin A exhibits strong cytotoxicity toward NSCLC-H292
and H460 cells, with IC50 values of 220 and 160 nM, respectively [235]. Jorunnamycin A
attenuates lung cancer cell migration by inhibiting AKT activity [236].
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Likewise, renieramycin M is a novel tetrahydroisoquinoline natural marine compound
that is isolated from a Thai blue sponge (Xestospongia sp.) [237]. Renieramycin M was re-
ported to suppress cancer stem cell-like phenotypes [238]. Additionally, renieramycin M
triggers lung cancer cell anoikis by decreasing AKT phosphorylation and downregulating
prosurvival Bcl-2 family proteins [239,240]. The compounds in this group exert a strong in-
hibitory effect on AKT signaling at nanomolar concentrations and are promising candidates
for research and development of drugs targeting lung cancer.

Table 2. Preclinical investigation of several natural products targeting the PI3K/AKT/mTOR signaling pathway in lung cancer.

Groups Compound Sources Cell Lines Mechanism of Actions Refs.

Bibenzyl
4,5,4′ -trihydroxy-3,3′ -

dimethoxybibenzyl
(TDB)

Dendrobium
ellipsophyllum H292, H460 and H23

Induce apoptosis by
downregulating AKT and

upregulating p53 and
proapoptotic proteins

[208]

H292
Inhibit migration and invasion by

downregulating AKT, FAK,
CDC42 and integrins

[209]

H292
Suppress metastasis by

downregulating AKT and EMT
signaling

[210]

Gigantol Dendrobium draconis

H460 and H292
Inhibit migration by

downregulating AKT, CDC42 and
Cav-1

[212]

H460

Decrease the cancer stemness
properties

by inhibiting PI3K/AKT and
JAK/STAT signaling

[213]

H460
Downregulate active AKT, EMT

markers and induce slug
degradation

[214]

H460

Sensitize cells to anoikis by
suppressing the expression of

AKT, ERK, Cav-1 and EMT
markers

[215]

Phenanthrene
Ephemeranthol A Dendrobium

infundibulum H460 Downregulate AKT, FAK and
EMT markers [218]

Cypripedin Dendrobium
densiflorum H460 and H23 Downregulate AKT and EMT

markers [220]

Erianthridin Dendrobium
formosum A549 and H460 Downregulate

AKT/mTOR/p70S6K signaling [96]

Phenolic and Flavonoid
Compounds

Phoyunnanin E Dendrobium venustum H460

Inhibit migration by
downregulating AKT and FAK

signaling together with their
downstream targets

[224]

Curcumin Curcuma longa A549

Induce apoptosis and inhibit cell
proliferation through the

suppression of PI3K/AKT
signaling and upregulation of

miR-192-5p

[226]

A549

Inhibit cell migration and
invasion by decreasing

PI3K/AKT/mTOR signaling and
increasing miR-206

[227]

Sotetsuflavone Cycas revolute A549
Induce autophagy by

downregulating
PI3K/AKT/mTOR signaling

[230]

A549

Suppress the expression of
HIF1α and its

downstream targets, such as
VEGF and MMPs, by

downregulating PI3K/AKT and
TNF-α/NF-κB

[25]

Luteoloside Chrysanthemum morifolium A549 and H292

Induce cell cycle arrest and
autophagy by inhibiting

PI3K/AKT/mTOR/p70S6K
signaling

[231]

Cardamonin Boesenbergia
rotunda

H460, H1975, A549,
H292, H1299 and HCC827

Inhibit proliferation and
metastasis by downregulating the
PI3K/Akt/mTOR pathway and

its downstream targets

[233]

Quinoline Jorunnamycin A Xestospongia sp. H460 Inhibition of AKT and EMT
markers [236]

Renieramycin M Xestospongia sp. H460

Sensitize cells to anoikis by
suppressing the expression of

AKT and ERK, and
downregulating Mcl-1 and Bcl-2

[239]
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9. Conclusions and Future Perspectives

In this review, we summarized several drugs and natural compounds that target the
PI3K/AKT/mTOR pathway in lung cancer. Thousands of species from plants, animals, and
marine organisms have been investigated for their pharmacological activities. Both natural
products and semisynthetic drugs are currently being investigated in preclinical and clinical
trials. The majority of natural products that target this pathway and their downstream
signaling intermediates, such as p70S6K, 4EBP1, and HIF1α, are associated with apoptosis
and/or autophagy induction, suppression of the EMT, inhibition of migration and invasion
and sensitization to chemotherapy. PI3K/AKT/mTOR inhibitors are designed to directly
interact and inhibit these molecules.

According to accumulated studies of the PI3K/AKT/mTOR signaling pathway in lung
cancer, this active signaling pathway clearly offers tremendous possibilities for therapies
and challenges for drug research and discovery. However, targeted therapy acting on the
PI3K/AKT/mTOR pathway may cause numerous side effects and defects due to the resis-
tance acquired. The study of the specificity in cancer should be a serious concern, and the
identification of novel dosing regimens that result in greater tolerance and overall efficiency
of PI3K/AKT/mTOR inhibitors is required. Additional research should strive to overcome
resistance to PI3K/AKT/mTOR inhibitors and suggest additional rational drug combinations.
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