

Received 7 December 2014 Accepted 29 December 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; decavanadate; heteropolyanion; manganese(II); organic cations

CCDC references: 1041495; 1041494 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structures of two decavanadates(V) with

CrossMark

pentaaquamanganese(II) pendant groups: $(NMe_4)_2[V_{10}O_{28}\{Mn(H_2O)_5\}_2]\cdot 5H_2O$ and $[NH_3C(CH_2OH)_3]_2[V_{10}O_{28}\{Mn(H_2O)_5\}_2]\cdot 2H_2O$

Maurício P. Franco,^a André Luis Rüdiger,^a Jaísa F. Soares,^a Giovana G. Nunes^a and David L. Hughes^b*

^aDepartamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba, PR, Brazil, and ^bSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England. *Correspondence e-mail: d.l.hughes@uea.ac.uk

Two heterometallic decavanadate(V) compounds, bis(tetramethylammonium) decaaquadi- μ_4 -oxido-tetra- μ_3 -oxido-hexadeca- μ_2 -oxido-hexaoxidodimanganese(II)decavanadate(V) pentahydrate, $(Me_4N)_2[V_{10}O_{28}\{Mn(H_2O)_5\}_2]$ ·5H₂O, A, and bis{[tris(hydroxymethyl)methyl]ammonium} decaaquadi- μ_4 -oxido-tetra- μ_3 -oxido-hexadeca- μ_2 -oxido-hexaoxidodimanganese(II)decavanadate(V) dihydrate, $[NH_3C(CH_2OH)_3]_2[V_{10}O_{28}\{Mn(H_2O)_5\}_2]\cdot 2H_2O$, **B**, have been synthesized under mild reaction conditions in an aqueous medium. Both polyanions present two $[Mn(OH_2)_5]^{2+}$ complex units bound to the decavanadate cluster through oxide bridges. In A, the decayanadate unit has 2/m symmetry, whereas in B it has twofold symmetry. Apart from this, the main differences between A and **B** rest on the organic cations, tetramethylammonium and [tris(hydroxymethyl)methyl]ammonium, respectively, and on the number and arrangement of the water molecules of crystallization. In both compounds, the H atoms from the coordinating water molecules participate in extensive three-dimensional hydrogen-bonding networks, which link the cluster units both directly and through solvent molecules and, in **B**, through the 'tris' cation hydroxyl groups. The cation in **B** also participates in $N-H \cdots O$ hydrogen bonds. A number of C-H...O interactions are also observed in both structures.

1. Chemical context

Research on the electronic properties, catalytic activities and biological roles of polyoxidovanadates has advanced enormously during the last few decades (Bošnjaković-Pavlović et al., 2009; Liu & Zhou, 2010). Among these aggregates, the decavanadate(V) anion is the most intensively studied because of its biological effect on the activities of several enzymes (Aureliano & Ohlin, 2014) and its insulin-mimetic action (Chatkon et al., 2013; Aureliano, 2014). The first functionalization of decavanadate anions, $[H_n V_{10} O_{28}]^{(6-n)-}$, with transition metal complexes was reported in 2007 (Li et al., 2007). Since then, structures involving different binding modes with non-equivalent terminal and bridging oxido ligands have been described (Wang, Sun et al., 2008; Wang, Yan et al., 2008; Wang et al., 2011; Long et al., 2010; Xu et al., 2012) and examples with first-row, d-block metal ions include complexation with copper(II), manganese(II) and zinc(II) (Wang, Sun et al., 2008; Wang et al., 2011; Klištincová et al., 2009, 2010; Pavliuk et al., 2014).

Polyoxidovanadates containing manganese cations have been synthesized as ionic pairs (Shan & Huang, 1999; Lin et

al., 2011) or as heterometallic aggregates in which the oxidovanadate cluster acts as a metalloligand to the manganese complex (Inami *et al.*, 2009; Klištincová *et al.*, 2009). Recent interest in this kind of compound lies in a possible synergistic effect (involving the two metal elements) for the enhancement of the catalytic activity towards oxidation of organic substrates, such as in the photocatalytic degradation of dyes (Wu *et al.*, 2012).

While the synthesis of decavanadates with different organic cations as building blocks for supramolecular assemblies is largely explored (da Silva et al., 2003), a systematic procedure for their functionalization with transition metal complexes has not been well established. Our research group is currently involved in the synthesis of heterometallic polyoxidovanadates containing manganese(II) because of their potential activity as catalysts of olefin epoxidation. In this context, the reaction between NH₄VO₃ and mannitol to give A was carried out in aqueous solution in the presence of tetramethylammonium chloride (molar proportion 2:1:2), following a procedure described earlier by our group to produce the mixed-valence polyoxidovanadate $(Me_4N)_6[V_{15}O_{36}(Cl)]$ (Nunes et al., 2012). The dark-green solution obtained after reflux for 24 h received one molar equivalent of Mn(OAc)₂·4H₂O and was kept under reflux for 24 more hours. A mixture of dark-green crystals of $(Me_4N)_6[V_{15}O_{36}(Cl)]$ and yellow prisms of $(NMe_4)_2[V_{10}O_{28} \{Mn(H_2O)_5\}_2$ \cdot 5H₂O (A) was isolated after four weeks at room temperature, the latter in 9% yield. Product A contains two tetramethylammonium cations and the $[V_{10}O_{28}]^{6-}$ unit is covalently bound to two $[Mn(OH_2)_5]^{2+}$ complexes by terminal oxido bridges.

Compound A

The rational synthesis of the heteropolyanion $[V_{10}O_{28}\{Mn(H_2O)_5\}_2]^{2-}$, in its turn, was achieved by reaction of NH_4VO_3 with tris(hydroxymethyl)methylamine ('tris') and

manganese(II) chloride at pH 3 in a 5:3:1 molar proportion. Yellow crystals of $[NH_3C(CH_2OH)_3]_2[V_{10}O_{28}{Mn(H_2O)_5}_2]$. 2H₂O (**B**) were isolated in 12% yield, as the only reaction product, after one week at room temperature. X-ray diffraction analyses revealed very similar structures for the heteropolyanions in **A** and **B**.

2. Structural commentary

The anionic heteropolyanions are essentially identical in the two complexes. However, in **A**, the molecule lies about the centre of the cell which is a point of 2/m symmetry, so that the unique part of the anionic cluster is one quarter of that heteropolyanion. The anion lies about a mirror plane which

View of the components of $(NMe_4)_2[V_{10}O_{28}\{Mn(H_2O)_5]_2]\cdot 5H_2O$, **A**, indicating the atom-numbering scheme. No H atoms were identified on the disordered solvent water molecules. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (1) 1 - x, y, 1 - z; (2) 1 - x, 1 - y, 1 - z; (3) x, 1 - y, z; (4) 1 - x, -y, -z; (5) 1 - x, y, -z.]

research communications

Figure 2

The corresponding view for $[NH_3C(CH_2OH)_3]_2[V_{10}O_{28}{Mn(H_2O)_5}_2] \cdot 2H_2O$, **B**. [Symmetry code: (1) $1 - x, y, \frac{1}{2} - z$.]

passes through the V2, V4 and manganese atoms, and there is a twofold symmetry axis which is perpendicular to the mirror plane and passes through V3 and the centre of the cell, Fig. 1.

The $V_{10}O_{28}$ moiety in the structure of compound **B** lies about a twofold symmetry axis which passes through the vanadium atoms V6 and V7, Fig. 2. This is the only crystallographic symmetry in this ion which, nevertheless, shows a very similar structure to that found in the ion in compound **A**;

Figure 3

The anion of compound **B** viewed approximately down the *a* axis of the $V_{10}O_{28}$ moiety. [Symmetry code: (1) $1 - x, y, \frac{1}{2} - z$.]

Figure 4

The anion of compound **B** viewed approximately down the *b* axis of the $V_{10}O_{28}$ moiety. [Symmetry code: (1) 1 - x, y, $\frac{1}{2} - z$.]

Figure 5 The anion of compound **B** viewed approximately down the *c* axis of the $V_{10}O_{28}$ moiety. [Symmetry code: (1) 1 - x, y, $\frac{1}{2} - z$.]

views showing this pseudo-symmetry are presented in Figs. 3, 4 and 5. The unique part here is one half of the anion. The previously reported analysis of this anion [with a 2-(2-hydroxyethyl)pyridinium cation] showed the cluster to be lying about an inversion centre (Klištincová *et al.*, 2009).

Bond angles and lengths determined for $[V_{10}O_{28}{Mn(H_2O_{5})_2}^{2-}$ are in the ranges reported in the literature (Klištincová et al., 2009). In both our compounds, there is a wide range of V-O bond lengths. The vanadium atoms on the outer shell of the heteropolyanions, e.g. V4 and V5 in **A**, and V2–V5 in **B**, are five-coordinate with a squarepyramidal pattern; there is a sixth oxygen atom in the direction of an octahedral site but, at ca 2.3 Å from the vanadium atom, rather longer than the normal coordination distance. Of the five bonded oxygen atoms, the apical site (opposite the distant, sixth, site) has the shortest V–O distance, ca 1.6 Å, corresponding to a vanadyl group. The more 'internal' vanadium atoms in each structure, viz V3 in A, and V6 and V7 in B, have more uniform V-O distances in more regular octahedral patterns.

Table 1				
Hydrogen-bond geometry	(Å, °)	for	compound	A.

		-		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1A\cdots O11^{i}$	0.76 (2)	1.97 (2)	2.7199 (14)	168 (2)
$O2-H2A\cdots O7^{i}$	0.72 (2)	2.04 (2)	2.7457 (15)	167 (2)
$O2-H2B\cdots O3^{ii}$	0.78 (2)	2.05 (2)	2.8295 (18)	178 (2)
$O3-H3A\cdots O6^{ii}$	0.74 (3)	1.92 (3)	2.6573 (16)	174 (3)
O3−H3B···O13	0.87 (3)	1.91 (3)	2.737 (3)	158 (3)
C10−H10A···O11 ⁱⁱⁱ	0.96	2.51	3.362 (2)	148
$C10-H10B\cdots O11^{iv}$	0.96	2.51	3.362 (2)	148
$C10-H10C\cdots O2^{v}$	0.96	2.58	3.370 (3)	139
$C10-H10C\cdots O2^{vi}$	0.96	2.57	3.370 (3)	141
$C11 - H11A \cdots O8^{vii}$	0.96	2.48	3.384 (3)	156
$C12 - H12A \cdots O12^{iii}$	0.96	2.60	3.474 (4)	152
$C12-H12C\cdots O12^{iv}$	0.96	2.59	3.474 (4)	153

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) x + 1, y, z; (vi) x + 1, -y + 1, z; (vii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$.

3. Supramolecular features

In both compounds, $O-H\cdots O$ hydrogen bonds from all the coordinating water molecules link the anions with neighbouring anions, either directly, through both the cluster O atoms and the coordinating water molecules, or indirectly through the solvent water molecules (Tables 1 and 2). In compound **B**, additional hydroxyl groups are available in the 'tris' cation, and these add further links in the extensive hydrogen bonding scheme. Additional $C-H\cdots O$ interactions are observed in the structures of both compounds.

4. Database survey

For structures with the $[V_{10}O_{28}{Mn(H_2O)_5}_2]^{2-}$ heteropolyanion, see: Klištincová *et al.* (2009). For structures with manganese(II) coordination complexes as counter-ions for $[V_{10}O_{28}]^{6-}$, see: Klištincová *et al.* (2010); Shan & Huang (1999); Lin *et al.* (2011) and Mestiri *et al.* (2013).

5. Synthesis and crystallization

General

All reactions were performed in air with purified (Milli-Q[®]) water. Commercial reagents were used without purification. The starting materials NH_4VO_3 , $MnCl_2\cdot 4H_2O$ and $Mn(OAc)_2\cdot 4H_2O$ were supplied by Aldrich, while mannitol $[C_6H_8(OH)_6]$ and $(Me_4N)Cl$ were purchased from USB and Merck, respectively. Infrared (FTIR) spectra were recorded on a BIORAD FTS-3500GX spectrophotometer from KBr pellets in the 400–4000 cm⁻¹ region.

Synthesis of $(NMe_4)_2[V_{10}O_{28}\{Mn(H_2O)_5\}_2] \cdot 5H_2O$ (A)

Solid NH₄VO₃ (0.500 g, 4.27 mmol) and [(CH₃)₄N]Cl (0.468 g, 4.27 mmol) were added to a solution of mannitol (0.366 g, 2.13 mmol) in 60 mL of water to produce a suspension that turned into a deep blue–greenish solution after one hour under reflux. After 24 more hours, a solution of Mn(OAc)₂·4H₂O (1.04 g, 4.27 mmol) in 10 mL of water was added to this reaction mixture, which remained under reflux for one more day. The solution was concentrated to one third of its initial volume and, after four weeks at room temperature, a mixture of deep-green crystals of $(Me_4N)_6[V_{15}O_{36}(Cl)]$ (Nunes *et al.*, 2012) and yellow prisms of **A** was obtained, the latter in 9% yield based on vanadium (56 mg). The FTIR spectrum recorded for **A** shows the characteristic bands of the Me_4N^+ cation at 3031, 1639, 1485 and 1263 cm⁻¹ and of the inorganic anion at 966, 833, 744, 584 and 455 cm⁻¹.

Synthesis of $[NH_3C(CH_2OH)_3]_2[V_{10}O_{28}{Mn(H_2O)_5}_2] \cdot 2H_2O(B)$

A solution containing tris(hydroxymethyl)methylamine (0.720 g, 6.0 mmol) in 20 mL of water was added to a solution of NH_4VO_3 (1.17 g, 10.0 mmol) in the same volume of solvent. This reaction mixture was then refluxed until it became a clear solution, after which its pH was adjusted to 3 with aqueous HCl. A solution of $MnCl_2 \cdot 4H_2O$ (0.394 g, 2.0 mmol) in 10 mL of water was then added as a layer on top of the reaction mixture and, after two weeks at room temperature, yellow

Table 2Hydrogen-bond geometry (Å, °) for compound **B**.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W-H1 A ···O14 ⁱ	0.70 (12)	2.01 (12)	2.703 (7)	167 (12)
$O1W - H1B \cdot \cdot \cdot O12^{ii}$	0.70 (7)	2.04 (8)	2.727 (8)	169 (8)
$O2W-H2A\cdots O5^{iii}$	0.60(7)	2.12 (7)	2.716 (7)	172 (9)
$O2W - H2B \cdots O12A$	0.87 (10)	2.01 (10)	2.858 (8)	164 (8)
$O3W-H3A\cdots O7^{iii}$	0.70 (9)	1.94 (9)	2.636 (7)	176 (10)
$O3W - H3B \cdot \cdot \cdot O11A^{iv}$	0.88 (8)	1.91 (8)	2.752 (8)	160 (7)
$O4W-H4A\cdots O6^{v}$	0.82 (11)	1.90 (11)	2.708 (6)	167 (10)
$O4W - H4B \cdots O2W^{v}$	0.76 (9)	2.12 (9)	2.871 (7)	169 (9)
$O5W-H5A\cdotsO8^{v}$	0.55 (11)	2.18 (11)	2.725 (10)	170 (16)
$O5W-H5B\cdots O13A^{iv}$	0.83 (14)	2.12 (13)	2.699 (12)	127 (12)
$O5W - H5B \cdots O13B^{iv}$	0.83 (14)	1.95 (14)	2.77 (2)	168 (13)
$N1-H1C\cdots O3W^{v}$	0.89	2.03	2.898 (7)	164
$N1-H1D\cdots O2$	0.89	2.31	3.032 (7)	138
$N1-H1D\cdots O4W$	0.89	2.45	3.105 (7)	130
$N1-H1E\cdots O4^{v}$	0.89	1.91	2.787 (6)	166
$C11 - H11C \cdot \cdot \cdot O11^{v}$	0.97	2.46	3.392 (9)	160
$O11A - H11A \cdots O6WA^{v}$	0.82	1.96	2.758 (12)	166
$O12A - H12A \cdot \cdot \cdot O3^{iii}$	0.82	1.94	2.756 (7)	174
$C13-H13E\cdots O2$	0.97	2.40	3.280 (10)	151
$O13B - H13B \cdots O6WB^{vi}$	0.77	1.92	2.60 (2)	148
$O6WA - H6A \cdots O3$	0.82 (2)	2.23 (9)	2.966 (9)	150 (15)
$O6WA - H6B \cdot \cdot \cdot O10^{vii}$	0.82 (2)	2.16 (5)	2.952 (10)	165 (17)
O6WB−H6C···O3	0.82 (2)	2.03 (13)	2.802 (17)	156 (29)
$O6WB - H6D \cdots O10^{vii}$	0.82 (2)	1.93 (8)	2.720 (19)	161 (24)

Symmetry codes: (i) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (ii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x, -y + 1, z - \frac{1}{2}, z$; (v) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) $x, -y + 1, z + \frac{1}{2}, z$; (vii) -x + 1, -y + 1, -z.

crystals of **B** were obtained (180 mg) in 12% yield based on vanadium. The FTIR spectrum of **B** shows characteristic bands of the trisH⁺ cation at 3188, 2927, 2856, 1743, 1637, 1417, 1161 and 1112 cm⁻¹ and of the inorganic anion at 941, 842 and 684 cm⁻¹.

6. Refinement details

Crystal data, data collection and structure refinement details for the two structures are summarized in Table 3.

Hydrogen atoms on the cation were included in idealized positions (with methyl and methylene group C–H distances set at 0.96 and 0.97 Å, N–H at 0.89 Å and O–H at 0.82 Å) and their $U_{\rm iso}$ values were set to ride on the $U_{\rm eq}$ values of the parent atoms. Hydrogen atoms in the anions (on coordinating water molecules) were located in difference maps and were refined freely.

There are two independent solvent water molecules, one of which is disordered over two sites close to a centre of symmetry, in compound **A**. No hydrogen atoms were identified in these water molecules.

In **B**, there is one solvent water molecule which is disordered over two sites; the hydrogen atoms here were located in difference maps and were refined with distance restraints [O - H = 0.82 (2) Å].

Acknowledgements

Financial support from the Brazilian agencies CNPq (grant No. 307592/2012–0) and CAPES (grant PVE A099/2013) is

research communications

 Table 3

 Experimental details.

	Compound A	Compound B
Crystal data		
Chemical formula	$(C_4H_{12}N)_2 \cdot [Mn_2V_{10}O_{28}(H_2O)_{10}] \cdot 5H_2O$	$(C_4H_{12}NO_3)_2[Mn_2V_{10}O_{28}(H_2O)_{10}]$ 2H ₂ O
$M_{\rm r}$	1485.81	1527.76
Crystal system, space group	Monoclinic, <i>I</i> 2/ <i>m</i>	Monoclinic, C2/c
Temperature (K)	292	295
a, b, c (Å)	13.2434 (7), 9.6402 (5), 17.7628 (13)	19.3147 (8), 9.7733 (4), 22.7952 (10)
β (°)	98.626 (2)	96.392 (1)
$V(\dot{A}^3)$	2242.1 (2)	4276.3 (3)
Ζ	2	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.64	2.78
Crystal size (mm)	$0.48 \times 0.38 \times 0.15$	$0.49 \times 0.26 \times 0.13$
Data collection		
Diffractometer	Bruker D8 Venture/Photon 100 CMOS	Bruker D8 Venture/Photon 100 CMOS
Absorption correction	Multi-scan (SADABS; Bruker, 2012)	Multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.562, 0.746	0.542, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	81983, 2953, 2752	71752, 3936, 3280
R _{int}	0.025	0.039
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.668	0.605
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.020, 0.060, 1.09	0.052, 0.114, 1.12
No. of reflections	2953	3936
No. of parameters	194	385
No. of restraints	0	6
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0329P)^2 + 2.2668P]$ where $P = (F^2 + 2F^2)(3$	H atoms treated by a mixture of indepen- dent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0062P)^2 + 110.7865P]$ where $P = (F^2 + 2F^2)/3$
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.58, -0.34	0.78, -1.11

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97, SHELXL97 (Sheldrick, 2008), SHELXL2013 and SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012).

gratefully acknowledged. The authors also thank CNPq, CAPES and Fundação Araucária (Brazil) for fellowships.

References

- Aureliano, M. (2014). Inorg. Chim. Acta, 420, 4-7.
- Aureliano, M. & Ohlin, C. A. (2014). J. Inorg. Biochem. 137, 123-130.
- Bošnjaković-Pavlović, N., Spasojević-de Biré, A., Tomaz, I., Bouhmaida, N., Avecilla, F., Mioč, U. B., Pessoa, J. C. & Ghermani, N. E. (2009). *Inorg. Chem.* 48, 9742–9753.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chatkon, A., Chatterjee, P. B., Sedgwick, M. A., Haller, K. J., Crans, D. C. (2013). Eur. J. Inorg. Chem. pp. 1859–1868.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Inami, S., Nishio, M., Hayashi, Y., Isobe, K., Kameda, H. & Shimoda, T. (2009). *Eur. J. Inorg. Chem.* pp. 5253–5258.
- Klištincová, L., Rakovský, E. & Schwendt, P. (2009). Acta Cryst. C65, m97–m99.
- Klištincová, L., Rakovský, E. & Schwendt, P. (2010). *Transition Met. Chem.* **35**, 229–236.
- Li, T. H., Lu, J., Gao, S. Y., Li, F. & Cao, R. (2007). Chem. Lett. 36, 356–357.
- Lin, S. W., Wu, Q., Tan, H. Q. & Wang, E. B. (2011). J. Coord. Chem. 64, 3661–3669.

- Liu, J. L. & Zhou, Y. Z. (2010). Prog. Chem. 22, 51-57.
- Long, D. L., Tsunashima, R. & Cronin, L. (2010). Angew. Chem. Int. Ed. 49, 1736–1758.
- Mestiri, I., Ayed, B. & Haddad, A. (2013). J. Cluster Sci. 24, 85-96.
- Nunes, G. G., Bonatto, A. C., de Albuquerque, C. G., Barison, A., Ribeiro, R. R., Back, D. F., Andrade, A. V. C., de Sá, E. L., Pedrosa, F. de O., Soares, J. F. & de Souza, E. M. (2012). *J. Inorg. Biochem.* **108**, 36–46.
- Pavliuk, M. V., Makhankova, V. G., Khavryuchenko, O. V., Kokozay, V. N., Omelchenko, I. V., Shishkin, O. V. & Jezierska, J. (2014). *Polyhedron*, 81, 597–606.
- Shan, Y. K. & Huang, S. D. (1999). J. Chem. Crystallogr. 29, 93-97.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Silva, J. L. F. da, da Piedade, M. F. M. & Duarte, M. T. (2003). Inorg. Chim. Acta, 356, 222–242.
- Wang, L., Li, Y., Wang, Y. Y., Liang, Z. Q., Yu, J. H. & Xu, R. R. (2011). Inorg. Chem. Commun. 14, 1640–1643.
- Wang, L., Sun, X. P., Liu, M. L., Gao, Y. Q., Gu, W. & Liu, X. (2008). J. Cluster Sci. 19, 531–542.
- Wang, J. P., Yan, Q. X., Du, X. D. & Niu, J. Y. (2008). J. Clust Sci. 19, 491–498.
- Wu, Q., Hao, X. L., Feng, X. J., Wang, Y. H., Li, Y. G., Wang, E. B., Zhu, X. Q. & Pan, X. H. (2012). *Inorg. Chem. Commun.* 22, 137– 140.
- Xu, W. T., Jiang, F. L., Zhou, Y. F., Xiong, K. C., Chen, L., Yang, M., Feng, R. & Hong, M. C. (2012). *Dalton Trans.* **41**, 7737–7745.

supporting information

Acta Cryst. (2015). E71, 146-150 [doi:10.1107/S2056989014028230]

Crystal structures of two decavanadates(V) with pentaaquamanganese(II) pendant groups: $(NMe_4)_2[V_{10}O_{28}\{Mn(H_2O)_5\}_2]\cdot 5H_2O$ and $[NH_3C(CH_2OH)_3]_2[V_{10}O_{28}\{Mn(H_2O)_5\}_2]\cdot 2H_2O$

Maurício P. Franco, André Luis Rüdiger, Jaísa F. Soares, Giovana G. Nunes and David L. Hughes

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) for Compound-A; *SHELXS97* (Sheldrick 2008) for Compound-B. Program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015) for Compound-A; *SHELXL2014* (Sheldrick, 2015) for Compound-B. For both compounds, molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *WinGX* (Farrugia, 2012).

(Compound-A) Bis(tetramethylammonium) decaaquadi- μ_4 oxido-tetra- μ_3 -oxido-hexadeca- μ_2 -oxido-hexaoxidodimanganesedecavanadate pentahydrate

$(C_4H_{12}N)_2 \cdot [Mn_2V_{10}O_{28}(H_2O)_{10}] \cdot 5H_2O$	F
$M_r = 1485.81$	D_{i}
Monoclinic, <i>I</i> 2/ <i>m</i>	Μ
a = 13.2434 (7) Å	С
b = 9.6402 (5) Å	θ
c = 17.7628 (13) Å	μ
$\beta = 98.626 \ (2)^{\circ}$	T
V = 2242.1 (2) Å ³	Pı
Z = 2	0.

Data collection

Bruker D8 Venture/Photon 100 CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.4167 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2012) $T_{\min} = 0.562, T_{\max} = 0.746$ F(000) = 1480 $D_x = 2.201 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9256 reflections $\theta = 3.1-28.3^{\circ}$ $u = 2.64 \text{ mm}^{-1}$ T = 292 KPrism, yellow $0.48 \times 0.38 \times 0.15 \text{ mm}$

81983 measured reflections 2953 independent reflections 2752 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28.4^\circ, \theta_{min} = 3.1^\circ$ $h = -17 \rightarrow 17$ $k = -12 \rightarrow 12$ $l = -23 \rightarrow 23$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.020$	Hydrogen site location: mixed
$wR(F^2) = 0.060$	H atoms treated by a mixture of independent
S = 1.09	and constrained refinement
2953 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0329P)^2 + 2.2668P]$
194 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mnl	0.23106 (3)	0.5000	0.18528 (2)	0.02403 (8)	
V2	0.32741 (2)	0.5000	0.39643 (2)	0.01725 (8)	
V3	0.5000	0.66921 (3)	0.5000	0.01425 (8)	
V4	0.54714 (3)	0.5000	0.35620 (2)	0.01948 (8)	
V5	0.28084 (2)	0.65841 (2)	0.54017 (2)	0.02209 (7)	
O1	0.15020 (19)	0.5000	0.07177 (11)	0.0480 (6)	
O2	0.13101 (10)	0.32849 (12)	0.20645 (7)	0.0293 (2)	
O3	0.33574 (10)	0.33360 (12)	0.15931 (7)	0.0310 (3)	
O4	0.28574 (12)	0.5000	0.30500 (8)	0.0253 (3)	
O5	0.50366 (14)	0.5000	0.26708 (8)	0.0328 (4)	
O6	0.25845 (7)	0.36038 (10)	0.43170 (6)	0.0223 (2)	
O7	0.44883 (7)	0.62838 (10)	0.39540 (5)	0.01665 (18)	
O8	0.64321 (8)	0.36184 (11)	0.36540 (5)	0.0230 (2)	
O9	0.40458 (10)	0.5000	0.51485 (7)	0.0153 (2)	
O10	0.20825 (11)	0.5000	0.54989 (9)	0.0257 (3)	
O11	0.40317 (7)	0.77369 (10)	0.51675 (5)	0.02001 (19)	
O12	0.20299 (9)	0.78080 (13)	0.55243 (7)	0.0365 (3)	
H1A	0.1272 (17)	0.437 (2)	0.0491 (13)	0.053 (7)*	
H2A	0.1052 (16)	0.285 (2)	0.1767 (12)	0.038 (6)*	
H2B	0.1397 (15)	0.285 (2)	0.2440 (13)	0.038 (6)*	
H3A	0.3060 (19)	0.283 (3)	0.1339 (14)	0.053 (7)*	
H3B	0.392 (2)	0.359 (3)	0.1441 (17)	0.087 (10)*	
N1	0.85954 (17)	0.5000	0.23196 (11)	0.0348 (4)	
C10	0.9084 (2)	0.5000	0.16133 (14)	0.0373 (5)	
H10A	0.8883	0.4181	0.1321	0.056*	0.5
H10B	0.8870	0.5807	0.1315	0.056*	0.5
H10C	0.9813	0.5011	0.1750	0.056*	
C11	0.8902 (2)	0.3739 (2)	0.27733 (14)	0.0706 (8)	

H11A	0.8699	0.2930	0.2473	0.106*	
H11B	0.9630	0.3735	0.2920	0.106*	
H11C	0.8577	0.3735	0.3221	0.106*	
C12	0.7469 (3)	0.5000	0.2091 (2)	0.0895 (16)	
H12A	0.7269	0.4184	0.1797	0.134*	0.5
H12B	0.7142	0.5007	0.2539	0.134*	
H12C	0.7270	0.5810	0.1791	0.134*	0.5
013	0.5022 (2)	0.3567 (5)	0.0856 (2)	0.1752 (17)	
O14A	0.5000	0.0973 (14)	0.0000	0.143 (14)	0.280 (18)
O14B	0.4760 (18)	0.0000	0.0562 (15)	0.158 (18)	0.220 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.03393 (17)	0.01631 (15)	0.01903 (15)	0.000	-0.00521 (12)	0.000
V2	0.01907 (15)	0.01704 (15)	0.01409 (15)	0.000	-0.00259 (11)	0.000
V3	0.01883 (15)	0.01043 (13)	0.01303 (14)	0.000	0.00088 (10)	0.000
V4	0.02432 (16)	0.02264 (17)	0.01183 (14)	0.000	0.00388 (11)	0.000
V5	0.02267 (12)	0.01995 (13)	0.02474 (13)	0.00444 (9)	0.00709 (9)	-0.00058 (9)
01	0.0908 (17)	0.0167 (8)	0.0266 (9)	0.000	-0.0232 (9)	0.000
O2	0.0407 (6)	0.0190 (5)	0.0250 (6)	-0.0052 (4)	-0.0054 (5)	-0.0005 (4)
03	0.0325 (6)	0.0240 (5)	0.0345 (6)	-0.0022 (5)	-0.0016 (5)	-0.0062 (5)
O4	0.0290 (7)	0.0270 (8)	0.0168 (6)	0.000	-0.0066 (5)	0.000
05	0.0423 (9)	0.0413 (9)	0.0144 (7)	0.000	0.0030 (6)	0.000
06	0.0219 (5)	0.0214 (5)	0.0223 (5)	-0.0047 (4)	-0.0010 (4)	-0.0013 (4)
O7	0.0214 (4)	0.0149 (4)	0.0128 (4)	0.0009 (3)	-0.0001 (3)	0.0016 (3)
08	0.0285 (5)	0.0222 (5)	0.0195 (4)	0.0022 (4)	0.0078 (4)	-0.0029 (4)
09	0.0191 (6)	0.0138 (6)	0.0128 (6)	0.000	0.0011 (5)	0.000
O10	0.0216 (7)	0.0268 (7)	0.0301 (8)	0.000	0.0082 (6)	0.000
011	0.0256 (5)	0.0141 (4)	0.0202 (4)	0.0030 (4)	0.0031 (4)	-0.0001 (3)
012	0.0341 (6)	0.0312 (6)	0.0458 (7)	0.0121 (5)	0.0113 (5)	-0.0029 (5)
N1	0.0484 (12)	0.0300 (10)	0.0304 (10)	0.000	0.0201 (9)	0.000
C10	0.0470 (14)	0.0381 (13)	0.0311 (12)	0.000	0.0204 (10)	0.000
C11	0.128 (2)	0.0406 (12)	0.0531 (13)	0.0137 (13)	0.0449 (15)	0.0168 (10)
C12	0.051 (2)	0.153 (5)	0.071 (3)	0.000	0.0329 (19)	0.000
013	0.0805 (18)	0.238 (4)	0.220 (4)	0.022 (2)	0.064 (2)	0.065 (3)
014A	0.027 (5)	0.059 (8)	0.33 (4)	0.000	-0.022 (10)	0.000
O14B	0.101 (15)	0.21 (4)	0.135 (19)	0.000	-0.077 (14)	0.000

Geometric parameters (Å, °)

Mn1—O1	2.1365 (18)	V5—O10	1.8264 (8)
Mn1—O4	2.1412 (14)	V5—08 ⁱⁱⁱ	1.8322 (10)
Mn1—O2	2.1863 (12)	V5—06 ⁱ	1.9136 (10)
Mn1-O2 ⁱ	2.1863 (12)	V5—O11	2.0579 (10)
Mn1—O3	2.2136 (12)	V5—09	2.3326 (10)
Mn1—O3 ⁱ	2.2136 (12)	V5—V5 ⁱ	3.0543 (5)
V2—O4	1.6350 (14)	V5—V4 ⁱⁱⁱ	3.1068 (4)

V2-06	1,7916 (10)	O1—H1A	0.76 (2)
$V2-O6^{i}$	1 7916 (10)	Ω^2 —H2A	0.70(2)
$V_{2}^{-0.7i}$	2.0314(10)	Ω^2 H2R	0.72(2) 0.78(2)
V2_07	2.0314(10)	O3H3A	0.76(2)
$V_2 = O_1$	2.0514(10) 2.1064(12)	O3 H3B	0.77(3)
V2_09	2.1904(12) 2.0088(5)	06 V5i	1.0127(10)
$\sqrt{2}$ $\sqrt{4}$ $\sqrt{2}$ $\sqrt{5}$	3.0988(3)		1.9137(10) 1.9222(10)
$\sqrt{2}$ $\sqrt{5}$ $\sqrt{2}$ $\sqrt{5}$	3.1152(4)		1.8322(10)
$\sqrt{2}$	5.1155(4)	09 - V3	2.1041(9)
V2 011	1.0917(10)	$09 - \sqrt{4^{11}}$	2.2840(12)
V3-07	1.0918 (10)	$09 - \sqrt{3}$	2.3327(10)
V3-07	1.9205 (9)	$010 - \sqrt{3}$	1.8264 (8)
V3-0/"	1.9205 (9)	NI-CII ⁴	1.481 (2)
V3-09	2.1041 (9)	NI-CII	1.481 (2)
V3-09 ^m	2.1041 (9)	NI-Cl2	1.486 (4)
V3—V5	3.0928 (3)	N1—C10	1.496 (3)
$V3-V5^{n}$	3.0928 (3)	C10—H10A	0.9600
V4—O5	1.6013 (15)	C10—H10B	0.9600
V4—O8 ⁱ	1.8322 (10)	C10—H10C	0.9600
V4—O8	1.8322 (10)	C11—H11A	0.9600
V4—O7	1.9959 (10)	C11—H11B	0.9600
V4—O7 ⁱ	1.9959 (10)	C11—H11C	0.9600
V4—O9 ⁱⁱⁱ	2.2840 (12)	C12—H12A	0.9600
V4—V5 ⁱⁱ	3.1069 (4)	C12—H12B	0.9600
V4—V5 ⁱⁱⁱ	3.1069 (4)	C12—H12C	0.9600
V5—O12	1.6030 (11)		
O1—Mn1—O4	169.83 (9)	O5—V4—V5 ⁱⁱⁱ	135.13 (5)
O1—Mn1—O2	86.07 (6)	08 ⁱ —V4—V5 ⁱⁱⁱ	82.35 (3)
O4—Mn1—O2	87.28 (4)	08—V4—V5 ⁱⁱⁱ	32.02 (3)
$O1$ — $Mn1$ — $O2^i$	86.07 (6)	07—V4—V5 ⁱⁱⁱ	123.83 (3)
$O4$ — $Mn1$ — $O2^{i}$	87.28 (4)	07 ⁱ —V4—V5 ⁱⁱⁱ	86.97 (3)
O2-Mn1-O2 ⁱ	98.27 (7)	O9 ⁱⁱⁱ —V4—V5 ⁱⁱⁱ	48.37 (3)
O1—Mn1—O3	92.53 (6)	V2—V4—V5 ⁱⁱⁱ	119.596 (11)
O4-Mn1-O3	94.47 (4)	V5 ⁱⁱ —V4—V5 ⁱⁱⁱ	58.884 (11)
Ω_2 —Mn1— Ω_3	84.40 (5)	012	104.13 (6)
$\Omega^{2^{i}}$ Mn1-O3	176.89 (5)	$012 - V5 - 08^{iii}$	103.30 (6)
Ω_1 Mn1 Ω_3^i	92.53 (6)	$010 - V5 - 08^{iii}$	92.80(6)
04 —Mn1— 03^{i}	94 47 (4)	$012 - V5 - 06^{i}$	101 58 (6)
Ω^2 —Mn1— Ω^3^i	176.88 (5)	$010 - V5 - 06^{i}$	90.67 (6)
Ω^{2i} Mn1 Ω^{3i}	84 40 (5)	0^{3}	153.19(5)
O_2 Mn1 O_3^{i}	07.80(7)	012 V5 011	00 00 (6)
04 V2 06	103.51(5)	$012 - \sqrt{5} - 011$	155 80 (5)
$04 V_2 06^{i}$	103.51(5) 103.51(5)	$010 - \sqrt{5} - 011$	133.80(3) 84.37(4)
$O_{4} = \sqrt{2} = O_{0}$	105.51(5) 07.40(7)	$O_{0}^{i} = V_{0}^{i} = O_{1}^{i}$	81.68 (4)
$0 - \sqrt{2} - 0 $	7/.40(7)	$00 - \sqrt{3} - 011$	01.00(4) 172(12(5))
$04 - \sqrt{2} - 0/^{2}$	90.09 (J)	$012 - \sqrt{3} - 09$	1/3.12(3)
00 - V2 - 0/	07.47 (4) 155.02 (4)	010 - 10 - 09	02.29 (4) 79.56 (4)
$U_0 - V_2 - U_1^{\prime}$	155.05 (4)	$V_{0} = V_{0} = V_{0}$	/8.30 (4)
U4 - V2 - U/	98.09 (3)	00	/3.39 (4)

or 110 of	1.5.5.00 (4)	011 1/2 00	72 50 (2)
$06 - \sqrt{2} - 07$	155.03 (4)	01109	73.59 (3)
$06^{-1} V2 - 0^{7}$	89.49 (4)	$012 - \sqrt{5} - \sqrt{5^{1}}$	137.39 (5)
0/10/	75.07 (5)	010	33.27 (4)
04—V2—09	172.10 (7)	$08^{m} - V5 - V5^{1}$	83.88 (3)
06—V2—09	81.57 (4)	$O6^{1}-V5-V5^{1}$	84.57 (3)
O6 ⁱ —V2—O9	81.57 (4)	011—V5—V5 ⁱ	122.69 (3)
07^{i} —V2—O9	75.72 (4)	09—V5—V5 ⁱ	49.10 (2)
O7—V2—O9	75.72 (4)	O12—V5—V3	130.66 (5)
O4—V2—V4	87.69 (6)	O10—V5—V3	125.13 (4)
O6—V2—V4	128.77 (3)	O8 ⁱⁱⁱ —V5—V3	79.01 (3)
O6 ⁱ —V2—V4	128.77 (3)	O6 ⁱ —V5—V3	77.29 (3)
O7 ⁱ —V2—V4	39.28 (3)	O11—V5—V3	30.76 (3)
O7—V2—V4	39.28 (3)	O9—V5—V3	42.84 (2)
O9—V2—V4	84.41 (4)	V5 ⁱ —V5—V3	91.929 (7)
O4—V2—V5	137.34 (4)	O12—V5—V4 ⁱⁱⁱ	135.29 (5)
O6—V2—V5	84.70 (3)	O10—V5—V4 ⁱⁱⁱ	83.26 (4)
O6 ⁱ —V2—V5	34.01 (3)	O8 ⁱⁱⁱ —V5—V4 ⁱⁱⁱ	32.02 (3)
O7 ⁱ —V2—V5	124.08 (3)	O6 ⁱ —V5—V4 ⁱⁱⁱ	122.63 (3)
O7—V2—V5	87.88 (3)	O11—V5—V4 ⁱⁱⁱ	81.71 (3)
O9—V2—V5	48.39 (3)	09—V5—V4 ⁱⁱⁱ	47.04 (3)
V4—V2—V5	119.816 (10)	V5 ⁱ —V5—V4 ⁱⁱⁱ	60.558 (6)
$O4-V2-V5^{i}$	137.34 (4)	V3—V5—V4 ⁱⁱⁱ	61.520 (9)
06—V2—V5 ⁱ	34.02 (3)	012—V5—V2	133.04 (5)
$O6^{i}$ V2 V2	84.70 (3)	010—V5—V2	80.75 (4)
0.0^{-1} V2 V2 V5 ⁱ	87.88 (3)	08^{iii} V5 V2	123.30 (3)
$07 - V2 - V5^{i}$	124 08 (3)	$O6^{i} - V5 - V2$	31 58 (3)
$09-V2-V5^{i}$	48 39 (3)	011 - V5 - V2	80.81 (3)
$V4 V2 V5^{i}$	119 816 (10)	09 - V5 - V2	44.75(3)
V5	58 710 (11)	$V_{5^{i}}$ V_{5} V_{2}	60 645 (6)
$011 - V3 - 011^{ii}$	106.92 (7)	V3V5V2	61 274 (8)
01107	97.20(4)	V_{J}^{iii} V_{J}^{iii} V_{J}^{iii} V_{J}^{iii}	91.545(10)
011^{ii} V3 07	96.82(4)	Mn1 O1 H1A	1270(17)
$011 - \sqrt{3} - 07$	96.82 (4)	Mn1 = O2 = H2A	127.0(17) 123.2(17)
$011 - \sqrt{3} - 07$	90.02(4)	Mn1 = O2 = H2P	123.2(17) 122.5(15)
$011 - \sqrt{5} - 07$	97.20(4)		122.3(13)
$0/-\sqrt{3}-0/2$	130.33(0)	$\Pi 2A - O2 - \Pi 2D$	108(2)
$011 - \sqrt{3} - 09$	$\frac{6}{.5}$ (4)	MIII—O3—H3A	108.1(19)
07 V2 00	105.09(5)		11/(2)
$0/-\sqrt{3}-09$	80.27 (4)	H3A—O3—H3B	114 (3)
$0/1 - \sqrt{3} - 09$	81.45 (4)	$V_2 = O_4 = Mn_1$	1/9.96 (10)
011-03-09	165.69 (5)	V2-06-V5 ¹	114.40 (5)
0111	87.38 (4)	V3-07-V4	108.10 (4)
07—V3—09 ^m	81.45 (4)	V3-07-V2	106.33 (4)
07 ⁱⁱ —V3—09 ⁱⁱⁱ	80.27 (4)	V4—O7—V2	100.60 (4)
O9—V3—O9 ^m	78.34 (6)	V5 ^m —O8—V4	115.96 (5)
011—V3—V5	38.47 (3)	V3 ^m —O9—V3	101.66 (6)
011 ⁿ —V3—V5	145.38 (4)	V3 ^m —O9—V2	94.70 (4)
07—V3—V5	90.52 (3)	V3—O9—V2	94.70 (4)
O7 ⁱⁱ —V3—V5	88.69 (3)	V3 ⁱⁱⁱ —O9—V4 ⁱⁱⁱ	92.45 (4)

00 M2 M2	40.00 (0)	112 O.O. 114 ¹¹¹	00 45 (4)
09—V3—V5	48.93 (3)	V3—O9—V4 ^m	92.45 (4)
O9 ⁱⁱⁱ —V3—V5	127.22 (3)	V2—O9—V4 ⁱⁱⁱ	168.68 (7)
O11—V3—V5 ⁱⁱ	145.38 (4)	V3 ⁱⁱⁱ —O9—V5	169.81 (5)
O11 ⁱⁱ —V3—V5 ⁱⁱ	38.47 (3)	V3—O9—V5	88.231 (11)
07—V3—V5 ⁱⁱ	88.68 (3)	V2—O9—V5	86.86 (4)
O7 ⁱⁱ —V3—V5 ⁱⁱ	90.52 (3)	V4 ⁱⁱⁱ —O9—V5	84.59 (4)
O9—V3—V5 ⁱⁱ	127.22 (3)	V3 ⁱⁱⁱ —O9—V5 ⁱ	88.232 (11)
O9 ⁱⁱⁱ —V3—V5 ⁱⁱ	48.93 (3)	V3—09—V5 ⁱ	169.81 (5)
V5-V3-V5 ⁱⁱ	176 145 (13)	V2-09-V5 ⁱ	86 86 (4)
$05 - V4 - 08^{i}$	103 31 (5)	$V4^{iii}$ O9 V5 ⁱ	84 59 (4)
05V408	103.31(5)	V_{5} O_{9} V_{5}^{i}	81.79 (4)
O_{2}^{i} VA O_{2}^{i}	105.50(5) 03.26(7)	$V_{3} = 0_{10} = V_{3}$	(113 47 (8))
$08 - \sqrt{4} - 08$	95.20 (7) 100.85 (C)	$V_{3} = 010 = V_{3}$	113.47(6)
$03 - \sqrt{4} - 07$	100.85 (6)		110.76(5)
08	89.92 (4)		110.3 (3)
08-V4-07	154.18 (4)	C11 ^L —N1—C12	109.32 (18)
$O5-V4-O7^{1}$	100.85 (6)	C11—N1—C12	109.32 (18)
$O8^{i}$ V4 $O7^{i}$	154.18 (4)	$C11^{i}$ —N1—C10	109.79 (14)
08—V4—07 ⁱ	89.92 (4)	C11—N1—C10	109.79 (14)
O7—V4—O7 ⁱ	76.64 (6)	C12—N1—C10	108.3 (2)
O5—V4—O9 ⁱⁱⁱ	175.24 (8)	N1-C10-H10A	109.5
O8 ⁱ —V4—O9 ⁱⁱⁱ	79.88 (4)	N1-C10-H10B	109.5
08—V4—09 ⁱⁱⁱ	79.88 (4)	H10A-C10-H10B	109.5
O7—V4—O9 ⁱⁱⁱ	75.47 (4)	N1—C10—H10C	109.5
O7 ⁱ —V4—O9 ⁱⁱⁱ	75.48 (4)	H10A-C10-H10C	109.5
O5—V4—V2	90.98 (7)	H10B—C10—H10C	109.5
$O8^{i}$ V4 V2	130.01 (3)	N1—C11—H11A	109.5
08—V4—V2	130.01(3)	N1—C11—H11B	109.5
07—V4—V2	40.12 (3)	H11A_C11_H11B	109.5
$O7^{i}$ V4 V2	40.12 (3)	N1_C11_H11C	109.5
O^{0} V^{+} V^{2}	40.12 (3) 84.26 (3)		109.5
$05 - \sqrt{4} - \sqrt{2}$	125 12 (5)	HIIR CII HIIC	109.5
$03 - \sqrt{4} - \sqrt{5}$	133.13(3)	NIL CI2 HI2A	109.5
$08 - \sqrt{4} - \sqrt{3}$	52.02 (5) 92.25 (2)	NI-CI2-HI2D	109.5
	82.35 (3)	NI-CI2-HI2B	109.5
0'/V4V5"	86.97 (3)	H12A—C12—H12B	109.5
$O7^{1}$ V4 V5 ⁿ	123.83 (3)	N1—C12—H12C	109.5
O9 ^m —V4—V5 ⁿ	48.37 (3)	H12A—C12—H12C	109.5
V2—V4—V5 ⁱⁱ	119.596 (11)	H12B—C12—H12C	109.5
$O4-V2-O6-V5^{i}$	-174.84 (6)	O12—V5—O10—V5 ⁱ	-178.86 (8)
$O6^{i}$ —V2—O6—V5 ⁱ	-68.97 (7)	O8 ⁱⁱⁱ —V5—O10—V5 ⁱ	-74.39 (8)
$O7^{i}$ —V2—O6—V 5^{i}	86.96 (6)	$O6^{i}$ —V5—O10—V5 ⁱ	79.02 (8)
07—V2—06—V5 ⁱ	35.96 (13)	O11-V5-O10-V5 ⁱ	8.1 (2)
$O9-V2-O6-V5^{i}$	11.32 (5)	O9-V5-O10-V5 ⁱ	3.67 (8)
V4V2	87.13 (6)	V3-V5-010-V5 ⁱ	4.14 (11)
V5-V2-06-V5 ⁱ	-37.34 (5)	V4 ⁱⁱⁱ —V5—O10—V5 ⁱ	-43.77 (7)
05—V4—08—V5 ⁱⁱⁱ	174.45 (7)	V2-V5-010-V5 ⁱ	48.91 (7)
$08^{i} V4 08 V5^{iii}$	69.96 (7)	011^{ii} V3 011 V5	-178.88(6)
$07 - V4 - 08 - V5^{iii}$	-26.63(13)	07 - V3 - 011 - V5	81 71 (5)
	20.05 (15)	0, 10 011 10	51.71 (5)

O7 ⁱ —V4—O8—V5 ⁱⁱⁱ	-84.41 (6)	07 ⁱⁱ —V3—O11—V5	-79.19 (5)
O9 ⁱⁱⁱ —V4—O8—V5 ⁱⁱⁱ	-9.15 (5)	O9—V3—O11—V5	1.87 (5)
V2—V4—O8—V5 ⁱⁱⁱ	-82.75 (6)	O9 ⁱⁱⁱ —V3—O11—V5	-1.9 (2)
V5 ⁱⁱ —V4—O8—V5 ⁱⁱⁱ	39.78 (5)	V5 ⁱⁱ —V3—O11—V5	179.893 (6)

Symmetry codes: (i) *x*, -*y*+1, *z*; (ii) -*x*+1, *y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01—H1A····O11 ^{iv}	0.76 (2)	1.97 (2)	2.7199 (14)	168 (2)
O2— $H2A$ ···O7 ^{iv}	0.72 (2)	2.04 (2)	2.7457 (15)	167 (2)
O2—H2 <i>B</i> ···O3 ^v	0.78 (2)	2.05 (2)	2.8295 (18)	178 (2)
O3—H3 <i>A</i> ···O6 ^v	0.74 (3)	1.92 (3)	2.6573 (16)	174 (3)
O3—H3 <i>B</i> …O13	0.87 (3)	1.91 (3)	2.737 (3)	158 (3)
C10—H10A…O11 ^{vi}	0.96	2.51	3.362 (2)	148
C10—H10 <i>B</i> ···O11 ^{vii}	0.96	2.51	3.362 (2)	148
C10—H10C····O2 ^{viii}	0.96	2.58	3.370 (3)	139
C10—H10C····O2 ^{ix}	0.96	2.57	3.370 (3)	141
C11—H11 <i>A</i> ···O8 ^x	0.96	2.48	3.384 (3)	156
C12—H12A····O12 ^{vi}	0.96	2.60	3.474 (4)	152
C12—H12C····O12 ^{vii}	0.96	2.59	3.474 (4)	153

Symmetry codes: (iv) -*x*+1/2, *y*-1/2, -*z*+1/2; (v) -*x*+1/2, -*y*+1/2, -*z*+1/2; (vi) *x*+1/2, *y*-1/2, *z*-1/2; (vii) *x*+1/2, -*y*+3/2, *z*-1/2; (viii) *x*+1, *y*, *z*; (ix) *x*+1, -*y*+1, *z*; (x) -*x*+3/2, -*y*+1/2, -*z*+1/2.

(Compound-B) Bis{[tris(hydroxymethyl]ammonium} decaaquadi- μ_4 oxido-tetra- μ_3 -oxido-hexadeca- μ_2 -oxido-hexaoxidodimanganesedecavanadate dihydrate

Crystal data

$(C_{4}H_{12}NO_{3})_{2}[Mn_{2}V_{10}O_{28}(H_{2}O)_{10}]_{2}H_{2}O$	F(000) = 3032
$M_r = 1527.76$	$D_{\rm x} = 2.373 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $C2/c$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 19.3147 (8) Å	Cell parameters from 38099 reflections
b = 9.7733 (4) Å	$\theta = 3.0-25.4^{\circ}$
c = 22.7952 (10) Å	$\mu = 2.78 \text{ mm}^{-1}$
$\beta = 96.392 \ (1)^{\circ}$	T = 295 K
$V = 4276.3 (3) Å^3$	Plate, yellow
Z = 4	$0.49 \times 0.26 \times 0.13 \text{ mm}$

Data collection

Bruker D8 Venture/Photon 100 CMOS	71752 measured reflections
diffractometer	3936 independent reflections
Radiation source: fine-focus sealed tube	3280 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
Detector resolution: 10.4167 pixels mm ⁻¹	$\theta_{\rm max} = 25.5^\circ, \ \theta_{\rm min} = 2.9^\circ$
φ and ω scans	$h = -23 \rightarrow 23$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Bruker, 2012)	$l = -27 \rightarrow 27$
$T_{\min} = 0.542, \ T_{\max} = 0.745$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: mixed
$wR(F^2) = 0.114$	H atoms treated by a mixture of independent
S = 1.12	and constrained refinement
3936 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0062P)^2 + 110.7865P]$
385 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.78 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.11 \text{ e } \text{\AA}^{-3}$
	•

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mn1	0.80093 (5)	0.43409 (10)	0.18078 (4)	0.0239 (2)	
V2	0.60396 (5)	0.43006 (10)	0.17920 (4)	0.0172 (2)	
V3	0.62652 (5)	0.43454 (11)	0.31542 (4)	0.0182 (2)	
V4	0.47896 (5)	0.58914 (11)	0.11421 (5)	0.0226 (3)	
V5	0.47615 (5)	0.27690 (11)	0.11376 (5)	0.0222 (2)	
V6	0.5000	0.59971 (13)	0.2500	0.0165 (3)	
V7	0.5000	0.26656 (14)	0.2500	0.0153 (3)	
O1	0.6885 (2)	0.4257 (4)	0.17944 (18)	0.0228 (9)	
O2	0.7094 (2)	0.4358 (5)	0.31283 (18)	0.0239 (9)	
O3	0.5769 (2)	0.5689 (4)	0.12912 (18)	0.0223 (9)	
O4	0.5757 (2)	0.2948 (4)	0.12929 (18)	0.0195 (9)	
O5	0.59743 (19)	0.5594 (4)	0.24810 (17)	0.0185 (8)	
O6	0.59724 (18)	0.3057 (4)	0.24851 (17)	0.0148 (8)	
O7	0.6131 (2)	0.5718 (4)	0.36695 (18)	0.0234 (9)	
O8	0.6144 (2)	0.2967 (4)	0.36707 (18)	0.0220 (9)	
O9	0.4718 (3)	0.7085 (5)	0.0667 (2)	0.0362 (12)	
O10	0.4714 (2)	0.4332 (5)	0.06979 (18)	0.0255 (9)	
O11	0.4680 (2)	0.1569 (5)	0.0664 (2)	0.0324 (11)	
O12	0.4913 (2)	0.7043 (4)	0.19037 (19)	0.0251 (10)	
O13	0.49147 (19)	0.4337 (4)	0.19135 (17)	0.0157 (8)	
O14	0.4907 (2)	0.1636 (4)	0.18997 (18)	0.0186 (9)	
O1W	0.9115 (3)	0.4350 (7)	0.1854 (4)	0.056 (2)	
O2W	0.8106 (3)	0.2701 (6)	0.2493 (2)	0.0282 (12)	
O3W	0.7972 (3)	0.2741 (5)	0.1120 (2)	0.0260 (10)	
O4W	0.8094 (3)	0.5982 (5)	0.2475 (2)	0.0255 (10)	
O5W	0.7904 (4)	0.5909 (8)	0.1149 (3)	0.0463 (17)	
H1A	0.929 (6)	0.497 (12)	0.182 (5)	0.08 (4)*	
H1B	0.936 (4)	0.383 (8)	0.187 (3)	0.015 (19)*	

H2A	0.832 (4)	0.227 (8)	0.248 (3)	0.01 (2)*	
H2B	0.820 (5)	0.297 (10)	0.286 (4)	0.06 (3)*	
H3A	0.820 (5)	0.220 (10)	0.119 (4)	0.05 (3)*	
H3B	0.799 (4)	0.295 (8)	0.075 (4)	0.03 (2)*	
H4A	0.841 (6)	0.653 (11)	0.245 (4)	0.08 (4)*	
H4B	0.775 (5)	0.636 (9)	0.245 (4)	0.04 (3)*	
H5A	0.812 (6)	0.626 (12)	0.119 (5)	0.06 (5)*	
H5B	0.774 (7)	0.564 (14)	0.082 (6)	0.11 (5)*	
N1	0.8230 (3)	0.5979 (5)	0.3845 (2)	0.0246 (12)	
H1C	0.7881	0.6509	0.3932	0.029*	
H1D	0.8090	0.5474	0.3529	0.029*	
H1E	0.8588	0.6500	0.3770	0.029*	
C10	0.8451 (3)	0.5061 (7)	0.4357 (3)	0.0275 (14)	
C11	0.8775 (4)	0.5944 (7)	0.4861 (3)	0.0341 (16)	
H11B	0.8885	0.5386	0.5211	0.041*	
H11C	0.9205	0.6343	0.4758	0.041*	
O11A	0.8302 (3)	0.7007 (6)	0.4981 (3)	0.0517 (15)	
H11A	0.8462	0.7751	0.4899	0.078*	
C12	0.8985 (4)	0.4081 (8)	0.4159 (4)	0.047 (2)	
H12B	0.9374	0.4588	0.4034	0.056*	
H12C	0.9159	0.3489	0.4484	0.056*	
012A	0.8665 (4)	0.3279 (6)	0.3681 (3)	0.0591 (18)	
H12A	0.8860	0.2534	0.3679	0.089*	
C13	0.7796 (5)	0.4328 (9)	0.4506 (4)	0.050 (2)	
H13C	0.7442	0.4997	0.4573	0.061*	0.694 (13)
H13D	0.7615	0.3755	0.4177	0.061*	0.694 (13)
H13E	0.7442	0.4383	0.4170	0.061*	0.306 (13)
H13F	0.7902	0.3369	0.4580	0.061*	0.306 (13)
O13A	0.7939 (7)	0.3553 (10)	0.4991 (4)	0.073 (4)	0.694 (13)
H13A	0.8064	0.2791	0.4896	0.110*	0.694 (13)
O13B	0.7539 (9)	0.487 (3)	0.4988 (9)	0.062 (8)	0.306 (13)
H13B	0.73 (2)	0.44 (3)	0.510 (12)	0.093*	0.306 (13)
O6WA	0.6367 (5)	0.4696 (11)	0.0226 (4)	0.051 (3)	0.694 (13)
H6A	0.617 (6)	0.465 (16)	0.053 (3)	0.077*	0.694 (13)
H6B	0.612 (6)	0.509 (16)	-0.003 (4)	0.077*	0.694 (13)
O6WB	0.6316 (9)	0.596 (3)	0.0209 (8)	0.046 (6)	0.306 (13)
H6C	0.627 (13)	0.58 (4)	0.055 (4)	0.069*	0.306 (13)
H6D	0.595 (8)	0.58 (3)	0.000 (8)	0.069*	0.306 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>L</i> / ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
Mn1	0.0168 (4)	0.0170 (5)	0.0383 (6)	(4)	0.0049 (4)	-0.0002 (4)
V2	0.0108(4) 0.0119(4)	0.0170(5) 0.0152(5)	0.0248(5)	0.0012(4)	0.0049(4) 0.0037(4)	0.0002 (4)
V3	0.0119 (4)	0.0167 (5)	0.0258 (5)	-0.0004(4)	0.0012 (4)	-0.0009(4)
V4	0.0206 (5)	0.0193 (6)	0.0279 (6)	0.0007 (4)	0.0024 (4)	0.0071 (4)
V5	0.0191 (5)	0.0225 (6)	0.0252 (6)	-0.0010 (4)	0.0029 (4)	-0.0040 (4)
V6	0.0137 (7)	0.0058 (6)	0.0301 (8)	0.000	0.0025 (6)	0.000

supporting information

V7	0.0103 (6)	0.0120 (7)	0.0240 (7)	0.000	0.0029 (5)	0.000
01	0.0148 (19)	0.022 (2)	0.032 (2)	0.0009 (18)	0.0057 (17)	0.0007 (19)
O2	0.0143 (19)	0.027 (2)	0.030 (2)	0.0033 (19)	0.0016 (17)	-0.0001 (19)
O3	0.020 (2)	0.021 (2)	0.027 (2)	-0.0017 (19)	0.0046 (17)	0.0027 (19)
O4	0.017 (2)	0.016 (2)	0.026 (2)	0.0000 (17)	0.0064 (17)	-0.0027 (18)
05	0.0172 (19)	0.014 (2)	0.024 (2)	0.0007 (17)	0.0026 (16)	-0.0001 (17)
O6	0.0073 (17)	0.0087 (19)	0.029 (2)	0.0015 (15)	0.0031 (15)	0.0002 (16)
07	0.020 (2)	0.021 (2)	0.028 (2)	-0.0034 (19)	0.0000 (17)	-0.0054 (19)
O8	0.016 (2)	0.020 (2)	0.029 (2)	0.0006 (17)	0.0030 (17)	0.0019 (18)
O9	0.035 (3)	0.032 (3)	0.041 (3)	0.000 (2)	0.002 (2)	0.019 (2)
O10	0.022 (2)	0.031 (2)	0.023 (2)	0.000 (2)	0.0011 (17)	0.005 (2)
O11	0.027 (2)	0.036 (3)	0.034 (3)	-0.004 (2)	0.002 (2)	-0.009 (2)
O12	0.022 (2)	0.019 (2)	0.034 (3)	0.0004 (19)	0.0054 (18)	0.0065 (19)
O13	0.0134 (18)	0.0105 (18)	0.023 (2)	0.0000 (17)	0.0030 (15)	0.0035 (16)
O14	0.0148 (19)	0.0076 (18)	0.034 (2)	-0.0003 (16)	0.0046 (17)	-0.0011 (17)
O1W	0.016 (3)	0.014 (3)	0.139 (7)	0.002 (3)	0.013 (3)	0.002 (3)
O2W	0.031 (3)	0.021 (3)	0.033 (3)	0.010 (2)	0.005 (2)	0.000(2)
O3W	0.026 (3)	0.017 (2)	0.035 (3)	0.002 (2)	0.004 (2)	0.001 (2)
O4W	0.015 (2)	0.018 (2)	0.045 (3)	-0.003 (2)	0.007 (2)	-0.004 (2)
O5W	0.055 (4)	0.038 (4)	0.046 (4)	-0.014 (3)	0.003 (3)	0.007 (3)
N1	0.024 (3)	0.015 (3)	0.035 (3)	-0.004 (2)	0.002 (2)	-0.001 (2)
C10	0.032 (4)	0.020 (3)	0.030 (3)	0.001 (3)	0.001 (3)	0.002 (3)
C11	0.037 (4)	0.034 (4)	0.031 (4)	-0.002 (3)	0.003 (3)	-0.004 (3)
011A	0.082 (4)	0.033 (3)	0.039 (3)	0.010 (3)	0.002 (3)	-0.013 (3)
C12	0.049 (5)	0.041 (5)	0.046 (5)	0.018 (4)	-0.012 (4)	-0.008 (4)
O12A	0.082 (5)	0.043 (3)	0.046 (3)	0.038 (3)	-0.020 (3)	-0.021 (3)
C13	0.069 (6)	0.040 (5)	0.045 (5)	-0.030 (5)	0.020 (4)	-0.005 (4)
O13A	0.122 (10)	0.053 (6)	0.041 (5)	-0.038 (7)	-0.005 (5)	0.013 (4)
O13B	0.010 (8)	0.13 (2)	0.049 (11)	-0.012 (10)	0.010 (7)	-0.020 (13)
O6WA	0.059 (6)	0.061 (7)	0.035 (5)	0.007 (5)	0.009 (4)	0.002 (4)
O6WB	0.024 (9)	0.081 (18)	0.034 (10)	-0.008 (10)	0.007 (7)	0.001 (10)

Geometric parameters (Å, °)

Mn1—O1W	2.126 (5)	V7—O6	1.921 (4)
Mn1—O5W	2.139 (7)	V7—O6 ⁱ	1.921 (4)
Mn1—O1	2.169 (4)	V7—O13	2.106 (4)
Mn1—O4W	2.204 (5)	V7—013 ⁱ	2.106 (4)
Mn1—O3W	2.209 (5)	V7—V5 ⁱ	3.0900 (11)
Mn1—O2W	2.231 (5)	$O7$ — $V4^{i}$	1.884 (4)
V2—O1	1.634 (4)	08—V5 ⁱ	1.860 (4)
V2—O4	1.789 (4)	O13—V3 ⁱ	2.267 (4)
V2—O3	1.812 (4)	O1W—H1A	0.70 (12)
V2—O6	2.009 (4)	O1W—H1B	0.70 (7)
V2—O5	2.031 (4)	O2W—H2A	0.60 (7)
V2—O13	2.221 (4)	O2W—H2B	0.87 (10)
V2—V3	3.0875 (14)	O3W—H3A	0.70 (9)
V2—V4	3.1056 (14)	O3W—H3B	0.88 (8)

V3—O2	1.609 (4)	O4W—H4A	0.82 (11)
V3—07	1.821 (4)	O4W—H4B	0.76 (9)
V3—08	1.821 (4)	O5W—H5A	0.55 (11)
V3—05	1.992 (4)	O5W—H5B	0.83 (14)
V3-06	2,010 (4)	N1-C10	1 496 (8)
V_{3} 013 ⁱ	2.010(1) 2.267(4)	N1_H1C	0.8900
V3V5 ⁱ	2.207(4) 3 1025 (14)	N1_H1D	0.8900
V_{4} O_{9}	1.587(5)	N1 H1E	0.8900
$V_{4} = 0$	1.367(5) 1.826(5)	C_{10} C_{12}	1.513(10)
$V_4 = 010$ $V_4 = 07^{i}$	1.820(3) 1.884(4)	C10 - C12	1.515(10) 1.517(0)
V4_07	1.004 (4)	C10-C12	1.517(9) 1.525(10)
V4-03	1.695(4)		1.323(10)
V4-012	2.061 (5)		1.431 (9)
V4—013	2.316 (4)	CII—HIIB	0.9700
V4—V5	3.0521 (15)	CII—HIIC	0.9700
V4—V6	3.0786 (11)	O11A—H11A	0.8200
V5—O11	1.590 (5)	C12—O12A	1.426 (9)
V5—O10	1.824 (5)	C12—H12B	0.9700
V5—O8 ⁱ	1.860 (4)	C12—H12C	0.9700
V5—O4	1.925 (4)	O12A—H12A	0.8200
V5—O14	2.053 (4)	C13—O13A	1.343 (12)
V5—O13	2.334 (4)	C13—O13B	1.36 (2)
V5—V7	3.0900 (11)	C13—H13C	0.9700
V5—V3 ⁱ	3.1025 (14)	C13—H13D	0.9700
V6—O12	1.694 (4)	C13—H13E	0.9700
V6—012 ⁱ	1.694 (4)	C13—H13F	0.9700
V6—05	1.928 (4)	O13A—H13A	0.8200
V6—O5 ⁱ	1.928 (4)	013B—H13B	0.8 (4)
$V6-013^{i}$	2 097 (4)	O6WA—H6A	0.82(2)
V6-013	2.097(1) 2.097(4)	O6WA—H6B	0.02(2)
$V6 V4^{i}$	3.0786(11)	O6WB_H6C	0.02(2)
V7 O14	1.602 (4)	OGWB-HOC	0.02(2)
V7_014	1.092(4) 1.602(4)		0.82 (2)
V/014	1.092 (4)		
	(1) (2)		105.9 (2)
O1W = Mi1 = O1	92.8 (3)	012 - 10 - 012	103.8(3)
01 W - Mn1 = 01	1/7.2(2)	$012 - \sqrt{6} - 05$	96.61 (19)
05W - Mn1 - 01	90.0 (3)	012	97.57 (19)
OIW—MnI—O4W	88.0 (2)	012	97.57 (19)
O5W—Mn1—O4W	87.5 (3)	$O12^{i}$ V6 $O5^{i}$	96.61 (19)
Ol—Mnl—O4W	91.99 (18)	$O5-V6-O5^{1}$	156.4 (3)
O1W—Mn1—O3W	89.5 (2)	O12—V6—O13 ¹	166.4 (2)
O5W—Mn1—O3W	90.9 (3)	O12 ⁱ —V6—O13 ⁱ	87.80 (18)
O1—Mn1—O3W	90.57 (17)	O5—V6—O13 ⁱ	81.29 (16)
O4W—Mn1—O3W	177.02 (19)	O5 ⁱ —V6—O13 ⁱ	80.50 (16)
O1W—Mn1—O2W	87.9 (3)	O12—V6—O13	87.80 (18)
O5W—Mn1—O2W	179.3 (3)	O12 ⁱ —V6—O13	166.4 (2)
O1—Mn1—O2W	89.35 (19)	O5—V6—O13	80.50 (16)
O4W—Mn1—O2W	92.61 (19)	O5 ⁱ —V6—O13	81.28 (16)
O3W—Mn1—O2W	88.9 (2)	O13 ⁱ —V6—O13	78.6 (2)

O1—V2—O4	102.5 (2)	O12—V6—V4	39.04 (15)
O1—V2—O3	103.9 (2)	O12 ⁱ —V6—V4	144.81 (16)
O4—V2—O3	96.10 (18)	O5—V6—V4	89.45 (12)
O1—V2—O6	97.69 (18)	O5 ⁱ —V6—V4	89.76 (12)
O4—V2—O6	90.65 (17)	O13 ⁱ —V6—V4	127.39 (11)
O3—V2—O6	155.37 (17)	013—V6—V4	48.76 (10)
01—V2—05	99.30 (19)	012—V6—V4 ⁱ	144.81 (16)
O4—V2—O5	155.64 (17)	$O12^{i}$ V6 V4 i	39.04 (15)
03—V2—05	89.03 (18)	05—V6—V4 ⁱ	89.76 (12)
O6—V2—O5	75.72 (15)	$O5^{i}$ V6 V4 ⁱ	89.45 (12)
O1—V2—O13	172.67 (19)	O13 ⁱ —V6—V4 ⁱ	48.76 (10)
O4—V2—O13	81.85 (16)	013—V6—V4 ⁱ	127.39 (11)
O3—V2—O13	81.31 (16)	V4—V6—V4 ⁱ	176.15 (6)
O6—V2—O13	76.23 (14)	014—V7—014 ⁱ	107.0 (3)
O5—V2—O13	75.39 (15)	014	96.90 (17)
01—V2—V3	88.16 (15)	014 ⁱ —V7—06	96.68 (17)
04—V2—V3	130.47 (14)	$014 - V7 - 06^{i}$	96.68 (17)
03—V2—V3	128.43 (14)	$O14^{i}$ V7 $O6^{i}$	96.90 (17)
06—V2—V3	39.82 (11)	06—V7—06 ⁱ	157.1 (2)
05—V2—V3	39.40 (12)	014-V7-013	87.36 (17)
013—V2—V3	84.54 (10)	014 ⁱ —V7—013	165.61 (18)
O1—V2—V4	137.61 (16)	O6—V7—O13	80.91 (15)
O4—V2—V4	84.31 (13)	O6 ⁱ —V7—O13	81.34 (15)
O3—V2—V4	33.93 (13)	O14—V7—O13 ⁱ	165.61 (18)
O6—V2—V4	124.28 (11)	O14 ⁱ —V7—O13 ⁱ	87.36 (17)
O5—V2—V4	86.88 (11)	O6—V7—O13 ⁱ	81.34 (15)
O13—V2—V4	48.09 (10)	O6 ⁱ —V7—O13 ⁱ	80.91 (15)
V3—V2—V4	119.20 (4)	O13—V7—O13 ⁱ	78.3 (2)
O2—V3—O7	103.4 (2)	O14—V7—V5	38.37 (13)
O2—V3—O8	103.3 (2)	O14 ⁱ —V7—V5	145.37 (15)
O7—V3—O8	95.17 (19)	O6—V7—V5	90.71 (12)
O2—V3—O5	99.42 (19)	O6 ⁱ —V7—V5	88.54 (12)
O7—V3—O5	89.87 (18)	O13—V7—V5	49.01 (11)
O8—V3—O5	154.91 (18)	O13 ⁱ —V7—V5	127.24 (12)
O2—V3—O6	100.03 (19)	O14—V7—V5 ⁱ	145.37 (15)
O7—V3—O6	154.59 (17)	O14 ⁱ —V7—V5 ⁱ	38.37 (13)
O8—V3—O6	88.95 (18)	$O6-V7-V5^{i}$	88.54 (12)
O5—V3—O6	76.57 (15)	O6 ⁱ —V7—V5 ⁱ	90.71 (12)
O2—V3—O13 ⁱ	174.03 (19)	O13—V7—V5 ⁱ	127.24 (12)
O7—V3—O13 ⁱ	80.37 (16)	O13 ⁱ —V7—V5 ⁱ	49.01 (11)
08—V3—013 ⁱ	80.84 (16)	V5	176.25 (7)
O5-V3-O13 ⁱ	75.79 (15)	V2—O1—Mn1	176.3 (3)
O6-V3-013 ⁱ	75.54 (14)	V2—O3—V4	113.8 (2)
O2—V3—V2	89.59 (15)	V2—O4—V5	114.3 (2)
O7—V3—V2	130.18 (15)	V6—O5—V3	107.48 (19)
O8—V3—V2	128.75 (14)	V6—O5—V2	106.83 (18)
O5—V3—V2	40.33 (12)	V3—O5—V2	100.27 (18)
O6—V3—V2	39.80 (11)	V7—O6—V2	106.44 (18)

O13 ⁱ —V3—V2	84.45 (10)	V7—O6—V3	107.72 (18)
$O2-V3-V5^{i}$	136.00 (16)	V2—O6—V3	100.38 (17)
07—V3—V5 ⁱ	83.42 (14)	V3	114.8 (2)
08—V3—V5 ⁱ	32.94 (13)	V3	114.9 (2)
O5-V3-V5 ⁱ	124.28 (12)	V5—O10—V4	113.5 (2)
06—V3—V5 ⁱ	86.64 (11)	V6-012-V4	109.8 (2)
013^{i} V3 V5 ⁱ	48 52 (10)	V6-013-V7	101.55(16)
$V2 V3 V5^{i}$	119 30 (4)	V6-013-V2	94 78 (15)
09 V4 010	103.9(2)	V7013V2	93 34 (14)
$09 V4 07^{i}$	103.9(2) 102.1(2)	V6_013_V3 ⁱ	92.73(14)
$010 V4 07^{i}$	102.1(2) 01.83(10)	V_{7} O_{13} V_{2}^{i}	92.73(14)
00 V4 03	102.0(2)	$V_{1} = 013 = V_{2}$	35.04(14)
$09 - \sqrt{4} - 03$	102.0(2)	$V_2 = 013 = V_3$	108.98 (19)
$010 - \sqrt{4} - 03$	91.00 (19)	V6-013-V4	88.32 (14)
$0/-\sqrt{4}$	154.04 (18)	V/	1/0.1(2)
09	99.6 (2)	V2—013—V4	86.37 (13)
010—V4—012	156.56 (19)	V31—O13—V4	85.80 (13)
O7 ⁱ —V4—O12	83.15 (18)	V6—O13—V5	170.2 (2)
O3—V4—O12	83.47 (18)	V7—O13—V5	88.06 (14)
O9—V4—O13	173.7 (2)	V2—O13—V5	86.46 (13)
O10—V4—O13	82.46 (17)	V3 ⁱ —O13—V5	84.79 (13)
O7 ⁱ —V4—O13	77.84 (16)	V4—O13—V5	82.05 (13)
O3—V4—O13	77.14 (16)	V7—O14—V5	110.9 (2)
O12—V4—O13	74.10 (15)	Mn1—O1W—H1A	120 (9)
O9—V4—V5	137.1 (2)	Mn1—O1W—H1B	132 (6)
O10—V4—V5	33.24 (13)	H1A—O1W—H1B	107 (10)
O7 ⁱ —V4—V5	83.91 (14)	Mn1—O2W—H2A	119 (7)
O3—V4—V5	85.01 (14)	Mn1—O2W—H2B	116 (6)
O12—V4—V5	123.32 (13)	H2A—O2W—H2B	101 (9)
O13—V4—V5	49.23 (10)	Mn1—O3W—H3A	115 (8)
09—V4—V6	130.8 (2)	Mn1—O3W—H3B	121 (5)
010—V4—V6	125.37(14)	H3A_O3W_H3B	107 (9)
0.07^{i} V4 V6	78 24 (13)	Mn1—O4W—H4A	107(3) 115(7)
$O_3 V_4 V_6$	78.80 (13)	Mn1O4WH4B	108 (6)
012 VA V6	31.10(12)	HAA OAW HAB	100(0)
$012 - \sqrt{4} - \sqrt{6}$	(12)	Mn1 O5W H5A	109(9)
$V_{13} = V_{4} = V_{0}$	42.92(10)	Mn1 = 05W = H5R	108(10)
$\sqrt{3}$	92.13(4)		114(9)
$09 - \sqrt{4} - \sqrt{2}$	134.20(18)	HJA—UJW—HJB	120 (10)
$010 - \sqrt{4} - \sqrt{2}$	81.76(13)	CIO-NI-HIC	109.5
$0/-\sqrt{4}$	123.37 (13)	CIO—NI—HID	109.5
03—V4—V2	32.27 (13)	HIC—NI—HID	109.5
O12—V4—V2	81.98 (12)	C10—N1—H1E	109.5
013—V4—V2	45.54 (9)	H1C—N1—H1E	109.5
V5—V4—V2	60.90 (3)	H1D—N1—H1E	109.5
V6—V4—V2	61.87 (3)	N1—C10—C12	107.0 (6)
O11—V5—O10	104.4 (2)	N1-C10-C11	107.9 (5)
O11—V5—O8 ⁱ	102.2 (2)	C12—C10—C11	110.4 (6)
O10—V5—O8 ⁱ	92.89 (19)	N1-C10-C13	106.5 (6)
O11—V5—O4	102.3 (2)	C12—C10—C13	112.3 (7)

O10—V5—O4	90.75 (18)	C11—C10—C13	112.4 (6)
O8 ⁱ —V5—O4	153.41 (18)	O11A—C11—C10	109.8 (6)
O11—V5—O14	99.8 (2)	O11A—C11—H11B	109.7
O10—V5—O14	155.59 (19)	C10-C11-H11B	109.7
08 ⁱ —V5—O14	84.32 (17)	O11A—C11—H11C	109.7
O4—V5—O14	81.60 (17)	C10—C11—H11C	109.7
O11—V5—O13	173.5 (2)	H11B—C11—H11C	108.2
O10—V5—O13	82.00 (17)	C11—O11A—H11A	109.5
08 ⁱ —V5—013	78.27 (16)	O12A—C12—C10	108.9 (6)
04—V5—013	76.18 (15)	O12A—C12—H12B	109.9
014—V5—013	73.68 (14)	C10—C12—H12B	109.9
011 - V5 - V4	137 74 (19)	O12A - C12 - H12C	109.9
010 - V5 - V4	33 29 (14)	C10-C12-H12C	109.9
0.00^{3} V5 V4	84 94 (14)	H12B $C12$ $H12C$	108.3
04 - V5 - V4	83 76 (13)	C12 - O12 A - H12A	109.5
014 V5 V4	122.39(12)	0134 - C13 - C10	109.5 110.4(9)
013 V5 V4	48.72(10)	013B-C13-C10	110.4(0)
011 V5 V7	43.72(10) 130.60(10)	013A $C13$ $H13C$	100.6
010 V5 V7	130.00(19) 124.02(15)	C_{10} C_{13} H_{13} H_{13}	109.0
O_{10}^{si} V5 V7	124.92(13)	O_{12}^{12} O_{12}^{13} O_{13}^{13}	109.0
O_{4} V5 V7	7753(12)	C10 $C13$ $H13D$	109.0
04 V5 V7	77.55(12)		109.0
012 V5 V7	30.77(11)	$\begin{array}{c} 11130 \\ 012P \\ 012 \\ 12 \\ 12 \\ 113 $	100.1
$V_1 = V_2 = V_1$	42.93(10)	C_{10} C_{12} H_{12E}	109.1
$\sqrt{4}$ $\sqrt{3}$ $\sqrt{7}$	91.03(4) 124.22(17)	C10-C13-H13E	109.1
010 V5 V2i	134.32(17)	C_{10} C_{12} H_{12E}	109.1
$O_{10} V_{5} V_{2i}$	62.75(14)		109.1
$06 - \sqrt{5} - \sqrt{5}$	52.17(15)		107.8
$04 - \sqrt{3} - \sqrt{3}$	122.87(13)	C13—O13A—H13A	109.5
$012 $ $V5 $ $V3^{-1}$	82.10 (11)		109.5
$013 - \sqrt{3} - \sqrt{3}$	40.09 (9)	HOA—OOWA—HOB	110 (4)
$\sqrt{4}$	60.92(3)	HoC-OOWB-HoD	110 (4)
V/V5V3'	61.69 (3)		
01 V2 02 V4	174.9(2)	014 V5 010 V4	-64(6)
$01 - \sqrt{2} - 03 - \sqrt{4}$	1/4.0(2)	$014 - \sqrt{5} - 010 - \sqrt{4}$	-1.5(2)
$04 - \sqrt{2} - 03 - \sqrt{4}$	-34.8(6)	$V_{13} = V_{13} = 0.10 = V_{14}$	-1.3(2) -2.1(3)
$00 - \sqrt{2} - 03 - \sqrt{4}$	-34.8(0) -85.0(2)	V_{1}^{2i} V5 010 V4	-2.1(3)
$03 - \sqrt{2} - 03 - \sqrt{4}$	-63.9(2)	$\sqrt{3} - \sqrt{3} - \sqrt{10} - \sqrt{4}$	43.04(19)
$V_{13} = V_{2} = 0_{3} = V_{4}$	-10.3(2)	$09 - \sqrt{4} - 010 - \sqrt{5}$	-1/8.9(3)
$v_3 = v_2 = 0_3 = v_4$	-80.4(2)	$0/-\sqrt{4}-010-\sqrt{5}$	-70.0(2)
$09 - \sqrt{4} - 03 - \sqrt{2}$	-170.2(3)	$03 - \sqrt{4} - 010 - \sqrt{5}$	76.5(2)
$010 - \sqrt{4} - 03 - \sqrt{2}$	-71.7(2)	$012 - \sqrt{4} - 010 - \sqrt{5}$	1.0(0)
$0/-\sqrt{4}-03-\sqrt{2}$	25.9 (6)	013—V4—010—V5	1.5(2)
012 - V4 - 03 - V2	03.3 (2) 10.2 (2)	$v_0 - v_4 - 0_{10} - v_5$	0.9 (3)
V15 V4 O2 V2	10.2(2)	$v_2 - v_4 - 010 - v_5$	47.49 (19)
$v_3 - v_4 - 0_3 - v_2$	-39.1(2)	$012 - v_0 - 012 - v_4$	-1/9.3(3)
$v_0 - v_4 - 0_3 - v_2$	54.1(2)	$05 - v_0 - 012 - V_4$	80.9 (2)
$01 - \sqrt{2} - 04 - \sqrt{5}$	-1/6.1(2)	$05 - v_0 - 012 - v_4$	-80.2 (2)
03 - V2 - 04 - V5	-70.4 (2)	013 ^L -V6-012-V4	0.7 (9)

O6—V2—O4—V5	85.9 (2)	O13—V6—O12—V4	0.73 (19)
O5—V2—O4—V5	30.8 (6)	V4 ⁱ —V6—O12—V4	179.93 (3)
O13—V2—O4—V5	9.9 (2)	O14 ⁱ —V7—O14—V5	178.4 (3)
V3—V2—O4—V5	85.5 (2)	O6—V7—O14—V5	-82.4 (2)
V4—V2—O4—V5	-38.54 (19)	O6 ⁱ —V7—O14—V5	79.1 (2)
O2	-174.8 (2)	O13—V7—O14—V5	-1.86 (18)
08-V3-07-V4 ⁱ	-69.9 (2)	O13 ⁱ —V7—O14—V5	-0.3 (8)
O5	85.5 (2)	V5 ⁱ V7O14V5	-179.85 (2)
O6-V3-07-V4 ⁱ	28.6 (6)	N1-C10-C11-O11A	54.2 (7)
O13 ⁱ —V3—O7—V4 ⁱ	9.9 (2)	C12-C10-C11-O11A	170.8 (6)
V2	84.1 (3)	C13—C10—C11—O11A	-63.0 (8)
$V5^{i}$ V3 O7 V4 ⁱ	-39.0 (2)	N1-C10-C12-O12A	-62.1 (8)
$O2-V3-O8-V5^{i}$	174.5 (2)	C11—C10—C12—O12A	-179.3 (6)
07—V3—08—V5 ⁱ	69.4 (2)	C13—C10—C12—O12A	54.4 (9)
O5-V3-O8-V5 ⁱ	-31.4 (6)	N1-C10-C13-O13A	-175.5 (8)
O6-V3-08-V5 ⁱ	-85.5 (2)	C12-C10-C13-O13A	67.7 (10)
O13 ⁱ —V3—O8—V5 ⁱ	-9.9 (2)	C11—C10—C13—O13A	-57.5 (10)
$V2-V3-O8-V5^{i}$	-85.1 (2)	N1-C10-C13-O13B	-102.3 (14)
O11-V5-O10-V4	179.6 (2)	C12-C10-C13-O13B	140.9 (14)
O8 ⁱ V5V4	76.2 (2)	C11—C10—C13—O13B	15.8 (15)
O4—V5—O10—V4	-77.4 (2)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>A</i> ···O14 ⁱⁱ	0.70 (12)	2.01 (12)	2.703 (7)	167 (12)
O1 <i>W</i> —H1 <i>B</i> ···O12 ⁱⁱⁱ	0.70 (7)	2.04 (8)	2.727 (8)	169 (8)
O2W—H2A···O5 ^{iv}	0.60 (7)	2.12 (7)	2.716 (7)	172 (9)
O2 <i>W</i> —H2 <i>B</i> ···O12 <i>A</i>	0.87 (10)	2.01 (10)	2.858 (8)	164 (8)
O3W— $H3A$ ···O7 ^{iv}	0.70 (9)	1.94 (9)	2.636 (7)	176 (10)
$O3W$ —H3B···O11 A^{\vee}	0.88 (8)	1.91 (8)	2.752 (8)	160 (7)
O4 <i>W</i> —H4 <i>A</i> ···O6 ^{vi}	0.82 (11)	1.90 (11)	2.708 (6)	167 (10)
O4W— $H4B$ ··· $O2W$ ^{vi}	0.76 (9)	2.12 (9)	2.871 (7)	169 (9)
O5 <i>W</i> —H5 <i>A</i> ···O8 ^{vi}	0.55 (11)	2.18 (11)	2.725 (10)	170 (16)
$O5W$ —H5B···O13 A^{v}	0.83 (14)	2.12 (13)	2.699 (12)	127 (12)
$O5W$ — $H5B$ ···O13 B^{v}	0.83 (14)	1.95 (14)	2.77 (2)	168 (13)
N1—H1C···O3W ^{vi}	0.89	2.03	2.898 (7)	164
N1—H1D····O2	0.89	2.31	3.032 (7)	138
N1—H1 <i>D</i> ···O4 <i>W</i>	0.89	2.45	3.105 (7)	130
N1—H1 <i>E</i> ···O4 ^{vi}	0.89	1.91	2.787 (6)	166
C11—H11 <i>C</i> ···O11 ^{vi}	0.97	2.46	3.392 (9)	160
O11 <i>A</i> —H11 <i>A</i> ···O6 <i>WA</i> ^{vi}	0.82	1.96	2.758 (12)	166
O12 <i>A</i> —H12 <i>A</i> ···O3 ^{iv}	0.82	1.94	2.756 (7)	174
C13—H13 <i>E</i> ···O2	0.97	2.40	3.280 (10)	151
O13 <i>B</i> —H13 <i>B</i> ···O6 <i>WB</i> ^{vii}	0.77	1.92	2.60 (2)	148
O6 <i>WA</i> —H6 <i>A</i> ···O3	0.82 (2)	2.23 (9)	2.966 (9)	150 (15)

supporting information

O6 <i>WA</i> —H6 <i>B</i> ···O10 ^{viii}	0.82 (2)	2.16 (5)	2.952 (10)	165 (17)
O6 <i>WB</i> —H6 <i>C</i> ···O3	0.82 (2)	2.03 (13)	2.802 (17)	156 (29)
O6WB—H6D····O10 ^{viii}	0.82 (2)	1.93 (8)	2.720 (19)	161 (24)

Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y-1/2, z; (iv) -x+3/2, y-1/2, -z+1/2; (v) x, -y+1, z-1/2; (vi) -x+3/2, y+1/2, -z+1/2; (vii) x, -y+1, z+1/2; (viii) -x+1, -y+1, -z.