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BRIEF DEFINITIVE REPORT

      Signals emanating from the ER induce a tran-
scriptional program that enables cells to survive 
ER stress. This highly coordinated response is 
essential for the folding, processing, export, and 
degradation of all proteins emanating from the 
ER during stressed and normal conditions. Ex-
amples of physiological conditions that require 
the unfolded protein response (UPR) include 
plasma cell diff erentiation ( 1 ) and pancreatic 
 �  cell function ( 2 ). Adaptation of tumor cells 
to hypoxic conditions and glucose deprivation 
also induces the ER stress response ( 3 ). Addi-
tionally, there is increasing evidence of protein 
misfolding in neurodegenerative diseases such as 
Huntington ’ s, Alzheimer ’ s, and prion-related 
diseases ( 4 ).The UPR exists in all eukaryotes 
and consists of multiple signaling pathways, the 
most conserved of which is mediated by IRE1. 
Upon sensing unfolded proteins, IRE1 oligo-
merizes, is activated by autophosphorylation, 
and uses its endoribonuclease activity to excise 
an intron from the transcription factor Hac1p 
in yeast or its mammalian homologue, XBP-1, 
a cyclic-AMP response element binding protein/
activating transcription factor family member 

fi rst isolated in our laboratory ( 5 ). This uncon-
ventional mRNA splicing event results in the 
conversion of the inactive 267 – amino-acid un-
spliced XBP-1 (XBP-1u) protein to an active 
371 – amino-acid spliced XBP-1 (XBP-1s) pro-
tein ( 6 – 8 ). We have previously shown that XBP-1 
is essential for the diff erentiation of highly se-
cretory cells, including embryonic hepatocytes, 
exocrine pancreatic acinar cells, and plasma 
cells ( 1, 9 – 11 ). 

 Much has been learned about the factors 
that control DC diff erentiation. The fms-related 
tyrosine kinase 3 ligand (Flt3L) ( 12, 13 ) and 
GM-CSF ( 14, 15 ) are well known positive 
regulators of DC development. A more recent 
study described the involvement of Toll-like 
receptor (TLR) stimulation in hematopoietic 
cell proliferation and subsequent DC diff eren-
tiation ( 16 ). Additionally, several intracellular 
signaling molecules and transcription factors —
 including Gfi 1, Id2, Ikaros, IFN regulatory 
factor 2 (IRF-2), IRF-4, IRF-8, relB, Runx3, 
Spi-B, and STAT3 — that aff ect the develop-
ment of individual DC subsets in vivo have been 
reported ( 17 – 24 ). The control of DC survival 
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 Dendritic cells (DCs) play a critical role in the initiation, maintenance, and resolution of an 

immune response. DC survival is tightly controlled by extracellular stimuli such as cytokines 

and Toll-like receptor (TLR) signaling, but the intracellular events that translate such 

extracellular stimuli into life or death for the DC remain poorly understood. The endoplas-

mic reticulum (ER) stress, or unfolded protein response (UPR), is a signaling pathway that is 

activated when unfolded proteins accumulate in the ER. The most conserved arm of the 

UPR involves IRE1 � , an ER transmembrane kinase and endoribonuclease that activates the 

transcription factor XBP-1 to maintain ER homeostasis and prevent activation of cell death 

pathways caused by sustained ER stress. We report that XBP-1 is essential for DC develop-

ment and survival. Lymphoid chimeras lacking XBP-1 possessed decreased numbers of both 

conventional and plasmacytoid DCs with reduced survival both at baseline and in response 

to TLR signaling. Overexpression of XBP-1 in hematopoietic progenitors rescued and en-

hanced DC development. Remarkably, in contrast to other cell types we have examined, the 

XBP-1 pathway was constitutively activated in immature DCs. 
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oligonucleotides (ODNs; unpublished data). However, to 
our surprise, analysis of the relative amounts of XBP-1s ver-
sus XBP-1u transcripts by RT-PCR revealed that freshly iso-
lated DC subsets spontaneously exhibited high levels of XBP-1 
splicing relative to unactivated T and B lymphocytes ( Fig. 
2 B ). We also examined the transformed mouse DC line 
CY15 ( 31 ) and found that it also exhibited high levels of 
XBP-1 splicing. Protein levels of the spliced version of XBP 
in DCs and the CY15 DC line were determined by Western 
blot analysis and were elevated, consistent with the mRNA 
expression and splicing experiments ( Fig. 2 C ). These results 
stand in marked contrast to the low levels of XBP-1 mRNA 
and absent XBP-1 splicing observed in mature B cells before 
their diff erentiation to plasma cells ( 11 ). However, like the 
XBP-1 – defi cient terminally diff erentiated B cells and pan-
creatic acinar cells ( 10, 32 ), pDCs without XBP-1 lacked the 
highly elaborate rough ER with multiple layers of closely spaced 
cisternae seen in WT pDCs; instead, the ER in the mutant 
pDCs was poorly developed and had few, disorganized cis-
ternae ( Fig. 2 D ). Further, such XBP-1 – defi cient pDCs had 
markedly reduced production of the major pDC cytokine, 
IFN- �  ( Fig. 2 E ). 

 The chimeric mice used in this study were produced 
by the injection of XBP-1  � / �   embryonic stem cells into 
C57BL/6 – RAG-2  � / �   blastocysts. Hence, it was likely that 
the defect found in DCs and pDCs was cell autonomous 
for XBP-1  � / �   hematopoietic precursor cells. Therefore, we 
considered that high basal level expression of XBP-1s might 
infl uence DC development or survival. We tested this hy-
pothesis by using a Flt3L-based in vitro culture system to 
generate DCs. Lin  �  IL-7R �   �  Thy1.1  �  c-Kit � Ly9 �  BM cells 
were sorted from 129/RAG2  � / �   and XBP-1/RAG-2  � / �   
chimeric mice. BM cultures were analyzed for cell number 
and CD11c �  cell production at days 6 and 9. As expected, 
phenotypic analysis showed that WT BM cultures were able 
to produce CD11c �  and CD11c � B220 �  cells. Consistent 
with the in vivo data described above, XBP-1  � / �   BM cul-
tures produced fewer CD11c �  or CD11c � B220 �  cells ( Fig. 
3, A and B ).  Indeed, XBP-1  � / �   BM cultures were mainly 
composed of cells that stained exclusively for CD11c �  but 
not cells expressing both CD11c �  and B220 by day 6. By 
day 9 of culture, XBP-1  � / �   BM cultures did yield CD11c �  
and B220 �  cells; however, the numbers were greatly reduced 
( Fig. 3, A and B ). 

 A previous study demonstrated that in vitro and in vivo 
pDC and DC diff erentiation potential is restricted to Flt3-
expressing hematopoietic progenitors ( 33 ). To determine if 
XBP-1 may infl uence the ability of pDCs and DCs to de-
velop from these committed progenitors, we used a bicistronic 
retroviral transduction system to transduce the spliced form 
of mouse XBP-1 into progenitor cells. This approach also 
enabled us to test whether ectopically expressed XBP-1s in 
XBP-1  � / �   progenitors can rescue the developmental defect. 
Lin  �  IL-7R  �  Thy1.1  �  c-Kit � Ly9 �  BM cells were sorted into 
Flt3  �   and Flt3 �  cell fractions. Of note, there was no dif-
ference in the percentage of Flt3 �  progenitors between 

plays an important role in regulating T cell activation and 
function. Components of the immune system involved in DC 
survival include TLR stimulation and engagement of CD40 
on the DC by CD154 expressed on activated T cells. Stud-
ies with infl ammatory cytokines and tumor necrosis – related 
activation-induced cytokine/receptor activator for NF- � B 
demonstrated an augmentation of T cell priming through an 
enhanced DC survival response ( 25, 26 ). The intracellular 
signaling pathway mediated by the NF- � B family has been 
shown to be responsible for the enhancement of DC sur-
vival by these stimuli ( 27, 28 ). Because the ER stress response 
functions to regulate the balance between homeostasis and 
apoptosis, we asked whether the UPR and, in particular, the 
IRE1/XBP-1 branch of the UPR might contribute to the 
diff erentiation and survival of the DC ( 29 ). 

  RESULTS AND DISCUSSION  

 Flow cytometric analysis of DC-enriched low density frac-
tions from spleens of XBP-1/RAG-2  � / �   chimeric mice and 
control 129/RAG-2  � / �   chimeric or 129/SvImJ mice was 
performed using the surface markers CD11c and CD11b. The 
total number of spleen cells was the same in XBP-1/RAG-2  � / �   
and control mice. However, the percentage of CD11c �  
CD11b �  DCs was markedly reduced in XBP-1/RAG-2  � / �   
mice compared with control animals ( Fig. 1 A ).  The CD11c �  
population was further subdivided by the expression of 
CD4 and CD8 into two subsets (CD11c hi CD4  �  CD8 �  and 
CD11c hi CD4 � CD8). Both subsets were decreased in XBP-1/
RAG-2  � / �   versus control chimeric mice ( Fig. 1, B and C ). 
Interestingly, the most profound reduction was observed 
in a third subset of DCs, the plasmacytoid DCs (pDCs). 
This DC subset is characterized by the surface phenotype 
CD11c int B220 � DX5  �   and displays extensive ER expansion 
and high level secretion of the cytokine IFN- �  ( Fig. 1 A ) ( 30 ). 
As we previously reported, XBP-1/RAG-2  � / �   versus con-
trol chimeric mice had similar numbers of CD19 � , CD3 � , 
and CD11b �  CD11c  �   cells when compared with WT ( Fig. 
1 C, bottom ) ( 1 ). In the absence of stimulation, CD11c �  DCs 
express low levels of co-stimulatory molecules such as CD86 
and moderate levels of MHC class II. However, splenic DCs 
from XBP-1/RAG-2  � / �   mice constitutively expressed higher 
levels of these activation markers ( Fig. 1 D ). This hyperacti-
vated state was most profound in the pDC (CD11c int B220 � ) 
population. Thus, XBP-1 RAG-2  � / �   mice had reduced 
numbers of both conventional and pDCs, and these DCs 
were hyperactivated. 

 To understand how XBP-1 controls DC number, we 
examined XBP-1 mRNA expression and splicing by real-
time PCR to assess whether total levels of XBP-1 mRNA 
and/or the extent of XBP-1 splicing correlated with DC dif-
ferentiation. As shown in  Fig. 2 A , total XBP-1 mRNA tran-
scripts including both the unspliced and spliced versions of 
XBP-1 were expressed at high levels in the pDC subset 
relative to immature conventional DCs and unactivated T 
and B lymphocytes.  This expression was not further increased 
upon stimulation with TLR ligands such as LPS and CpG 
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XBP-1s –  GFP  – transduced Flt3  �   progenitors gave rise to no 
pDCs or DCs (unpublished data). As seen in untransduced pro-
genitors,  GFP -transduced WT progenitors produced signifi -
cantly greater numbers of both pDCs and DCs when compared 
with  GFP -transduced XBP-1  � / �   BM progenitors ( Fig. 3, 
C and D ). Interestingly, XBP-1s –  GFP  – transduced Flt3 �  WT 
progenitors produced a signifi cantly higher percentage of and 
total numbers of both pDCs and DCs compared with  GFP -
transduced Flt3 �  progenitors ( Fig. 3, C and D ). Surprisingly, 

WT and XBP-1  � / �   BM cells (unpublished data). There-
fore, the absence of XBP-1 did not aff ect diff erentiation to 
the Flt3 �  progenitor stage. To study the eff ects of enforced 
XBP-1 expression on pDC and DC development, Flt3  �   and 
Flt3 �  progenitors were transduced with control- GFP  or 
XBp-1s  –  GFP   retroviruses and cultured in mouse Flt3L –  and 
stem cell factor (SCF) – supplemented media. Cultures were 
analyzed for cell number and the presence of pDCs and 
DCs at day 6. As expected, control  GFP -transduced or 

 Figure 1.   XBP-1 – defi cient lymphoid chimeras have reduced numbers of conventional and pDCs. (A) Low density mouse spleen cells from WT or 

XBP-1  � / �   animals were isolated and depleted of CD19 �  and DX5 �  cells by immunomagnetic bead negative selection. DCs were analyzed by fl ow cytometry 

for CD11b or B220 staining on CD11c �  cells (CD19  �  DX5  �  ). (B) CD4 and CD8 �  staining of CD11c �  (CD19  �  DX5  �  )-enriched low density mouse spleen cells from 

WT or XBP-1  � / �   animals. (C) Percentage of splenic DC (top) and lymphocyte (bottom subsets from WT (shaded bar) or XBP-1  � / �   (open bar) animals. The data 

represent the mean + SEM ( n  � 3). Values in A represent the percentage of each DC subset from low density mouse spleen cells isolated and depleted of 

CD19 �  and DX5 �  cells by immunomagnetic bead negative selection. Values for lymphocyte subsets in B represent percentages from unenriched low density 

spleen preparations. *, P  �  0.02 when comparing WT with XBP-1 samples; **, NS. (D) Activated phenotype of XBP-1  � / �   splenic DCs. Enriched low density 

populations from WT and XBP-1  � / �   animals were gated for CD11c �  and CD11c � B220 �  subsets and analyzed for CD86 and MHC class II expression. Numbers 

indicate the percentage of cells in each CD11c �  subset. The experiment shown is representative of three independent experiments performed.   
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members of the TLR family: the TLR4 ligand LPS, derived 
from the Gram-negative bacterium  Escherichia coli , and the 
TLR9 ligand CpG DNA16 ( 34, 35 ). To examine DC sur-
vival, we cultured cells in the absence and presence of TLR 
stimulation. As shown in  Fig. 4 A , without stimulation 
(nCPG)  � 45% of WT DCs underwent apoptosis at 24 h, as 
indicated by staining for annexin V and 7-amino- actinomycin 
D (7-AAD) staining.  This was in marked contrast to XBP  � / �   
DCs, which exhibited increased apoptosis with  � 65% cells 
staining positive for annexin V and 7-AAD at 24 h. In addition, 
viable cells were counted at 24 h to assess cell survival. Consis-
tent with the increased apoptosis, 46% of WT DCs were still 
viable at 24 h, whereas only 24% of XBP  � / �   DCs were still 
viable at that time. As reported earlier in this paper, treatment 

XBP-1s –  GFP  – transduced Flt3 �  XBP-1  � / �   progenitors pro-
duced signifi cantly higher total numbers of both pDCs and 
DCs compared with  GFP -transduced Flt3 �  progenitors from 
WT and XBP-1  � / �   BM. Collectively, these results indicate 
that ectopic expression of XBP-1s into WT and XBP-1  � / �   
Flt3 �  hematopoietic progenitors can enhance and rescue the 
development of pDCs and DCs. 

 Our results showed that there was an especially marked 
impairment in the production of the pDC subset. We won-
dered if XBP-1 might regulate both the development and 
lifespan of DCs. Therefore, we next examined whether XBP-1 
controlled DC survival. Because it has been reported that 
TLR components of the innate immune system promote DC 
survival, we examined ligands for two of the best characterized 

 Figure 2.   Constitutive expression and splicing of XBP-1 in DCs. (A) Enriched low density spleens cell were sorted for CD3 � , CD19 � , CD11c � , and 

CD11c � B220 �  (DX5  �  ) cell subsets. Purifi ed subsets and the transformed DC line CY15 were analyzed by RT-PCR using XBP-1 and  � -actin – specifi c probes. 

*, P  �  0.05 when comparing with all other groups. The data represent mean values  	  SD from three independent experiments. (B) Total RNA from puri-

fi ed subsets (shown in A) and CY15 cells was isolated for RT-PCR analysis. Primers spanning the splice junction in mice  Xbp-1  were used to amplify prod-

ucts of unspliced and spliced mRNA. PCR products were separated by electrophoresis on a 3% agarose gel and visualized by ethidium bromide staining. 

(C) Immunoblot analysis of XBP-1s protein in CD11c �  and CY15 cells and splenic B cells stimulated with LPS. Results are representative of three separate 

experiments. (D) Electron micrographs of FACS-sorted WT and XBP-1  � / �   CD11c � B220 �  pDCs (arrows indicate ER cisternae). (E) IFN- �  production of 

FACS-sorted WT and XBP-1  � / �   CD11c � B220 �  pDCs in response to 1  
 M CpG for 24 h. The data represent the mean � SEM ( n  � 3). *, P  �  0.002 when 

comparing WT with XBP-1  � / �   samples. Bars, 50 nm.   
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 To further test the function of the XBP-1 arm of the 
UPR in DCs, we generated transformed DC lines function-
ally defi cient in XBP-1 by transducing Cy15 cells with a 
potent dominant-negative XBP-1 (dnXBP-1) retrovirus or 

with TLR4 and TLR9 ligands increased WT DC survival 
at 24 h with  � 60 – 70% survival rate ( 34, 35 ). However, 
XBP  � / �   DCs were resistant to survival signals given by TLR 
engagement ( Fig. 4 B ). 

 Figure 3.   Decreased development and survival of XBP-1  � / �   DCs. (A) c-Kit � lin  �   – enriched BM cells were sorted and cultured for 6 d in msFlt3L- and 

SCF-supplemented media. Flow cytometric analysis of WT and XBP-1  � / �   BM cells stained for CD11c and B220. Numbers in gates represent percentages of 

gated cells. (B) Graph depicts numbers of WT and XBP-1  � / �   DCs derived from 10 5  BM cells cultured with msFlt3L and SCF at day 6. The data represent 

mean values  	  SD from three independent experiments. * and **, P  �  0.01 when comparing CD11c and CD11c/B220 WT with XBP-1  � / �   samples. (C) Flow 

cytometric analysis of  GFP  �  cells derived from control- GFP  –  and XBP-1s –  GFP  – transduced Flt3 �  progenitors cultured for 6 d in Flt3L- and SCF-supple-

mented media. Values represent percentages of total plotted cells. Results are representative of three independent experiments. (D) Graph depicts num-

bers of pDCs (shaded bars) and DCs (open bars) derived from 0.75  �  10 5   GFP -transduced Flt3 �  progenitors and XBP-1s –  GFP  – transduced Flt3 �  progenitors 

cultured with Flt3L and SCF for 6 d. Bars represent mean values  	  SD from three independent experiments. *, P  �  0.04 when comparing WT gfp with 

XBP-1  � / �   gfp samples; **, P  �  0.04 when comparing WT gfp with WT XBP-1s – gfp samples; ***, P  �  0.02 when comparing XBP-1  � / �   XBP-1s – gfp with WT 

gfp and XBP-1  � / �   gfp samples.   
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gfp-control retrovirus. Because dnXBP-1 does not possess 
the C-terminal destabilization motif present in XBP-1u, it 
is stably expressed and effi  ciently inhibits XBP-1s – induced 
transactivation. Suppression of XBP-1 activity by dnXBP-1 
markedly inhibits the expression of known XBP-1 – depen-
dent UPR target genes such as  ERdj4  and  p58 IPK   ( 36, 37 ). 
No eff ect on cell proliferation was observed at baseline. How-
ever, upon treatment with the ER stressor tunicamycin, 
dnXBP-1 Cy15 cells displayed considerably increased apop-
tosis when compared with control  GFP -transduced Cy15 
cells, demonstrating that the IRE1 – XBP-1 pathway contrib-
utes to the survival of transformed DCs under ER stress con-
ditions ( Fig. 4 C ). We should note that Cy15 cells transduced 
with a potent XBP-1 siRNA were diffi  cult to stably maintain 
in culture, consistent with an essential function for XBP-1 in 
DC survival. 

 To test whether blockade of the XBP-1 signaling path-
way might alter tumor growth in vivo, CY15-gfp and 
CY15 – dnXBP-1 cells were injected into BALB/c-RAG2  � / �   
mice. By 4 wk, all animals injected with 10 6  CY15-gfp cells 
had developed large numbers of macroscopically visible me-
tastases in the spleen, liver, lung, and kidney. In contrast, the 
growth and metastasis of CY15 cells expressing the dnXBP-1 
protein were greatly decreased. Although macroscopically 
visible metastases were present, the number of nodules was 
markedly reduced, and by fl ow cytometry, the number of 
malignant CY15 – dnXBP-1 cells was  � 10 – 20-fold less than 
the control CY15-gfp – transduced cells in the various tissues 
examined ( Fig. 4 D ). Consistent with the in vitro studies in 
Fig. 4 C, injection of XBP-1 siRNA knockdown Cy15 cells 
led to the outgrowth of metastases containing XBP-1 siRNA –
 nonexpressing Cy15 cells. 

 In the present study, we provide the fi rst evidence for 
a critical function of the ER stress response in the survival 
of DCs. Chimeric mice lacking the UPR transcription fac-
tor XBP-1 had markedly reduced numbers of the four DC 
subsets, with the most severe reduction seen in the pDC 
compartment. Our data suggested that the disappearance of 
XBP-1 – defi cient DCs refl ected an increased sensitivity to 
apoptotic cell death during diff erentiation, two processes that 
are intimately linked to the lifespan of the DC and play a key 
role in controlling immune responses ( 25 ). In addition, ret-
roviral transduction of the spliced form of mouse XBP-1 into 
progenitor cells into WT and XBP-1  � / �   Flt3 �  hematopoietic 
progenitors not only enhanced pDC and DC development in 
WT progenitors but also rescued the development of pDCs 
and DCs in XBP-1  � / �   progenitors. These results provide 
strong evidence for a key function of XBP-1 in pDC and 
DC diff erentiation. The unexpected fi nding that IRE1 was 

 Figure 4.   DC lines with reduced XBP-1 activity are more sensi-

tive to ER stress-induced apoptosis and exhibit decreased survival 

in vivo. (A) Increased apoptosis of XBP-1  � / �   DCs. WT and XBP-1  � / �   

DCs. Apoptotic cell death was analyzed by fl ow cytometric staining with 

annexin V and 7-AAD. Numbers in gates represent percentages of gated 

cells. Data are representative of three to four independent experiments. 

(B) Failure to rescue apoptosis of XBP-1  � / �   DCs in response to TLR sig-

naling. 3  �  10 5  WT and XBP-1  � / �   pDCs were incubated with 1  
 M CpG 

DNA or nCpG DNA, or 1  
 g/ml LPS, for 24 h. Viable WT and XBP-1  � / �   

cells were counted after Trypan blue dye exclusion at 24 h. Data are 

representative of three to four independent experiments. * and **, P  �  

0.01; and ***, P  �  0.025 when comparing WT with XBP-1  � / �   samples. 

*, P  �  0.01 when comparing WT versus ** and ***; *, NS when comparing 

XBP-1 versus ** and ***. (C) CY15 cells that express control  GFP  or 

dnXBP-1 –  GFP  were treated with the indicated amount of tunicamycin 

for 24 h. Apoptotic cell death was analyzed by fl ow cytometric staining 

with annexin V and 7-AAD. (D) 10 6  control  GFP  or dnXBP-1 –  GFP  CY15 

cells were injected s.c. into RAG1  � / �   BALB/c mice. Mice were killed 30 d 

later, and the percentage of CY15- GFP  cells in the respective organs was 

determined by fl ow cytometry. The data represent mean values  	  SD 

from three independent experiments. *, P  �  0.01; and **, P  �  0.05 when 

comparing with XBP-1  � / �   samples.   
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extend or shorten the lifespan of a DC to achieve tolerance 
or immunity and that may be therapeutic in the setting of 
malignant histiocytosis. 

 MATERIAL AND METHODS 
 Mice.   129SV6, C57BL/6, and BALB/c RAG1  � / �   mice were purchased 

from Taconic and used at 6 – 8 wks of age. The generation and screening of 

XBP-1/RAG-2  � / �   chimeric mice were done as previously described ( 1 ). 

All mice were housed in a pathogen-free facility at the Harvard School of 

Public Health, and all animal studies were performed according to institu-

tional and National Institutes of Health guidelines for animal use and care. 

 Reagents and cell lines.   The sequences of phosphorothioate ODNs 

(QIAGEN) are as follows: TCCATGACGTTCCTGATGCT for stimula-

tory CpG ODN and TTCATGAGCTTCCTGATGCT for control (nCpG) 

ODN. Endotoxin-free LPS (InvivoGen). The CY15 DC line was provided 

by T. Blankenstein (Institute of Immunology, Berlin, Germany). 

 Purifi cation and isolation of DCs.   DCs were isolated as previously de-

scribed ( 38 ). In brief, CD11c �  DCs were isolated from collagenase-treated 

spleen preparations and enriched by centrifugation in a cell separation medium 

(Accudenz; Accurate Chemicals). B lymphocytes and NK cells were depleted 

by using coated magnetic beads (anti-CD19 and anti-DX5, respectively) before 

FACS sorting (Miltenyi Biotec). DC subsets were sorted and analyzed using a 

FACSAria (Becton Dickinson) and DIVA software (Becton Dickinson). 

 Flow cytometry.   Cells were stained with the following mouse reactive anti-

bodies: anti-CD16/32 (2.4G2); anti – MHC class II (IA/IE; 2G9); anti-CD8 �  

(53-6.7); anti-CD11c (HL3); anti-CD4 (GK1.5); anti-B220 (RA3-6B2); 

anti-CD11b (M1/70); anti-CD86 (GL1); and pan-NK (DX5). To distin-

guish host from donor DCs in chimaeras, we used the surface marker LY9.1 

(30C7), carried by the 129 but not the B6 strain ( 39 ). For apoptosis assays, 

cells were stained with PE-conjugated annexin V and 7-AAD (BD Biosciences) 

according to the manufacturer ’ s instructions. Analyses of stained cells were 

performed on a FACSCalibur (BD Bioscience) with CellQuest software (BD 

Bioscience). All antibodies were purchased from BD Bioscience. 

 In vitro DC diff erentiation and survival assay.   Hematopoietic progen-

itors were isolated as previously described ( 33 ), with minor changes. BM 

cells were isolated and enriched for c-Kit �  cells by using APC-conjugated 

c-Kit antibodies (BD Biosciences) and APC microbeads (Miltenyi Biotec). 

Cells were then stained with mAbs for lineage markers (CD3 � , 145-2C11; 

CD4, GK1.5; CD8, 53-6.7; B220, RA3-6B2; CD19, MB19-1; CD11b, 

M1/70; Gr-1, RB6-8C5; and TER119, TER119), IL-7R �   �   (A7R34), and 

Thy1.1  �   (19XE5; BD Biosciences). LY9 � c-Kit � Lin  �   BM progenitors were 

sorted and analyzed using a FACSAria with DIVA software. For XBP-1/

RAG-2  � / �   chimeric mice, the embryonic stem cells were derived from the 

129 strain. Therefore, we used the surface marker Ly9.1, which is an allele 

that is carried by the 129 but not the B6 strain (Rag2  � / �   background) to 

 purify donor from host progenitors. Progenitors were cultured in RPMI 1640 

supplemented with 10% FCS, 10  � 4  M 2- � ME, sodium pyruvate, and anti-

biotics (100 ng/ml msFlt3L and 10 ng/ml msSCF; R & D Systems). Media 

was replaced every 3 d with new media and cytokines. For survival assays, 

3  �  10 5  FACS-sorted CD11c �  cells per well were plated at 1  
 M CpG DNA 

or nCpG DNA, or 1  
 g/ml LPS, for 24 h. Apoptosis assays using annexin V 

and 7-AAD were performed as described in Flow cytometry and expressed 

as the percentage of apoptotic cells. DC survival was quantifi ed by using 

Trypan blue dye exclusion at 24 h. Statistical signifi cance was evaluated by 

using the Student ’ s  t  test. 

 Retroviral transduction of hematopoietic progenitors.   Hematopoi-

etic progenitors were transduced as previously described ( 33 ), with minor 

changes. The full-length mouse  XBP-1s  RV-gfp was used to make retro-

virus supernatants, as previously described ( 11 ). Supernatants were used to 

transduce GP+E-86 cells. After 48 h, the  GFP -expressing GP+E-86 cells 

constitutively active in freshly isolated DCs led to the pre-
diction that its inhibition might result in increased apoptosis 
of transformed DCs. Indeed, the growth and metastasis of a 
malignant DC line was greatly compromised when XBP-1 
activity was reduced. This is consistent with previous results 
from our laboratory that have shown the proapoptotic proteins 
BAX and BAK as essential components of the UPR that in-
teract with the IRE1 cytosolic domain under stress conditions 
to modulate IRE1 signaling. However, levels of transcripts 
encoding BCL-2 family members and BH3-only proteins 
were normal in XBP-1  � / �   splenic DCs (unpublished data). 

 The extraordinarily high levels of XBP-1 transcripts in 
pDCs and, more importantly, the constitutive UPR activa-
tion, as indicated by the presence of abundant XBP-1s pro-
tein in DCs, is without precedent in other tissues. This was 
particularly noticeable in the pDC subset and manifested by 
the more profound reduction of pDCs compared with con-
ventional DCs. pDCs are a distinct DC population with 
spherical plasmacytoid morphology that, interestingly, re-
sembles plasma cells, the only known lymphoid cells that re-
quire XBP-1. During B cell diff erentiation to the plasma cell, 
a remodeling process occurs in which the ER undergoes 
massive expansion to accommodate the large quantities of 
newly synthesized Ig for secretion. Similarly, after activation 
by bacterial DNA or by viral infection, pDCs develop multiple 
cytoplasmic extensions and an expanded ER, and produce 
large amounts of IFN- � . Therefore, it makes sense that a 
vigorous UPR is required in this cell; however, it functions 
at an earlier stage, as indicated by constitutive UPR activa-
tion, suggesting that the pDC is being readied for prompt 
IFN- �  secretion in the setting of viral infection. Indeed, 
ER expansion and IFN- �  levels are diminished in XBP-1 –
 defi cient pDCs ( Fig. 2, D and E ). Although conventional 
DCs are not known to possess plasmacytoid morphology or 
secrete excessive cytokines, basal level XBP-1 splicing dem-
onstrates considerable activation of this vital arm of the UPR. 
Our data suggest that a basal XBP-1 activation state allows for 
optimal DC function. In the absence of XBP-1, DC homeo-
stasis is thus dysregulated, resulting in impaired survival dur-
ing unstimulated and stimulated conditions. As mentioned 
earlier, at this point in our studies we have no evidence to 
support cross talk between the ER stress and TLR signaling 
pathways in DCs via protein load, as TLR stimulation of 
pDCs and DCs fails to either increase XBP-1 mRNA or 
splicing. Hence, we suggest that the XBP-1 survival pathway 
acts at an earlier stage and is distinct from the TLR-induced 
NF- � B – dependent pathway. Consistent with this function at 
an earlier stage is the inability of TLR engagement to rescue 
the impaired survival of XBP-1 – defi cient DCs. In these stud-
ies, we only provide evidence for the eff ect of XBP-1 defi -
ciency on cell death induced by the ER stress response; future 
studies will aim to examine other forms of DC survival/death. 
Identifying the factors that evoke constitutive UPR activa-
tion before DC maturation, excessive protein secretion, and 
ER expansion will be of great interest. This pathway off ers a 
novel target for the development of small molecules that can 
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were FACS sorted and expanded. For transduction of FLT3R � c-Kit � Lin  �   

BM progenitor cells, GP+E-86 cells were irradiated (20 Gy) and plated in 

24-well plates at 0.75  �  10 5  cells per well for 24 h. Sorted progenitor cells 

were transduced by co-culture with GP+E-86 for 18 h in IMDM (Invitro-

gen) containing 2% FCS, 4  
 g/ml polybrene (Sigma-Aldrich), 100 ng/ml 

mouse Flt3L  �   protein (R & D Systems), 10 ng/ml mSCF (R & D Systems), 

and 10 ng/ml mIL-11 (R & D Systems). Transduced cells were removed by 

gently dispersing and placed in Flt3L diff erentiation cultures. 

 RNA, ELISA, and protein analysis.   Total RNA was isolated from tissues 

using TRI zol  reagent (Invitrogen). cDNA was synthesized from RNA sam-

ples using the iScript cDNA synthesis kit containing oligo (dT) and random 

hexamer primers (Bio-Rad Laboratories). Quantitative real-time PCR reac-

tions using SYBR green fl uorescent reagent were run in an ABI PRISM 7700 

system (Applied Biosystems). The relative amounts of mRNAs were calculated 

from the comparative threshold cycle (C 
 ) values by using  � -actin as control. 

Primer sequences designed by Primer Express software (Applied Biosystems) 

have been previously described ( 10 ). Whole-cell lysates of DCs were prepared 

in RIPA buff er (50 mM Tris [pH 7.4], 150 mM NaCl, 1 mM EDTA, 1% 

Triton X-100, 1% sodium deoxycholate, 0.1% SDS). Western blot analysis 

was performed as previously described ( 11 ), with anti – XBP-1 pAb. ELISA for 

IFN- �  was done by using 5  
 g/ml of capture mAb, 200 U/ml of secondary 

pAb (PBL Biomedical Laboratories), and a 1:1,000 dilution of alkaline phos-

phatase – conjugated anti – rabbit IgG (Jackson ImmunoResearch Laboratories). 

Statistical signifi cance was evaluated using the Student ’ s  t  test. 

 Electron microscopy.   Cells were fi xed in 2.5% glutaraldehyde in 0.1 M 

cacodylate, pH 7.4, for 1 h at room temperature. After washing in cacodylate 

buff er, cells were postfi xed for 1 h in 1% osmium tetroxide in the same buf-

fer at room temperature, washed again, and stained  “ en bloc ”  in 2% uranyl 

acetate in 0.05 M sodium maleate, pH 5.2, for 1 h at room temperature. 

 After dehydration in a graded series of ethanol, cells were embedded in 

 epoxy resin (Embed 812; Electron Microscopy Sciences). Ultrathin sections 

were cut on a ultramicrotome (Reichert), collected on formvar- and carbon-

coated grids, stained with 2% uranyl acetate and lead citrate, and viewed on 

an electron microscope (Tecnai 12 BioTWIN; FEI Company). 

 In vitro and in vivo growth of CY15 cells.   Retroviral transduction to 

produce  GFP  and dnXBP-1 –  GFP  CY15 cells was performed as previously 

described ( 36 ). Assessment of metastasis of CY15- GFP  and dnXBP-1 cells 

was performed as previously described ( 31 ), with minor modifi cations. In 

brief, 10 6  CY15 cells were injected s.c. into RAG1  � / �   BALB/c mice, and 

mice were killed 30 d later. The liver, lung and kidney, and spleen were har-

vested and digested with collagenase treatment (as described for DCs) for 4 h 

at 37 ° C with occasional shaking. The percentage of CY15- GFP  cells in each 

organ was determined by fl ow cytometry on a FACSCalibur with CellQuest 

software. Statistical signifi cance was evaluated using the Student ’ s  t  test. 
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