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Abstract: The stability of proteins is an essential property that has several biological implications.
Knowledge about protein stability is important in many ways, ranging from protein purification and
structure determination to stability in cells and biotechnological applications. Experimental determi-
nation of thermal stabilities has been tedious and available data have been limited. The introduction
of limited proteolysis and mass spectrometry approaches has facilitated more extensive cellular
protein stability data production. We collected melting temperature information for 34,913 proteins
and developed a machine learning predictor, ProTstab2, by utilizing a gradient boosting algorithm
after testing seven algorithms. The method performance was assessed on a blind test data set and
showed a Pearson correlation coefficient of 0.753 and root mean square error of 7.005. Comparison
to previous methods indicated that ProTstab2 had superior performance. The method is fast, so it
was applied to predict and compare the stabilities of all proteins in human, mouse, and zebrafish
proteomes for which experimental data were not determined. The tool is freely available.

Keywords: protein cellular stability; stability prediction; protein property; machine learning predictor;
artificial intelligence; gradient boosting

1. Introduction

Stability is an essential property for all proteins and other biological macromolecules.
Proteins need to be stable in the temperature and conditions where they are active and
functional. In addition, stability is the major property that has been tried to improve with
protein engineering, mainly to increase the thermal stability [1,2]. Among the effects of
disease-related variations, reduced stability is very common [3]. Measurements of stabilities
of purified proteins and those in cells are laborious and available data are limited. Therefore,
computational solutions have been developed.

There are two major categories of protein stability predictors: those that predict the
stability of the entire protein, and those that forecast the effects of sequence changes on
stability. Here, the focus is on entire protein stabilities. Several prediction methods have
been developed for this purpose based on different types of descriptors, such as sequence
lengths [4,5], sequence [6,7], physicochemical [8] and surface [9] features, the living temper-
ature of organism and salt bridges [10], various statistical and sequence potentials [11–13],
and numerous protein characteristics [14]. For a more extensive description of the types of
features and characteristics used in method training, see [14,15].

The field has for long been hampered by the amount of available experimental data.
Stability determination is labor intensive and only limited numbers of validated results
have been known. In recent years, methods for large-scale stability determination have been
introduced. ProTstab [14] was the first machine learning (ML) method in the field and was
based on data for cellular stability measurements combining limited proteolysis and mass
spectrometry of proteins in four organisms: Escherichia coli, Homo sapiens, Saccharomyces
cerevisiae, and Thermus thermophilus [16]. There was information for 3520 proteins. More
recently, meltome atlas was released with protein stabilities in 13 organisms representing
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different branches of the tree of life [17]. There were data for about 48,000 proteins. Thermal
profiles of proteins were obtained by heating cells or lysates at different temperatures,
after which precipitates were removed with centrifugation. The soluble fraction was di-
gested with trypsin and the peptides were separated by offline liquid chromatography and
identified and quantified with online liquid chromatography–tandem mass spectrometry
(LC–MS/MS). Melting profiles were obtained by combining results across the investigated
temperatures. Melting temperature (Tm) means the temperature that shows 50% precipita-
tion or area under the (melting) curve (AUC) for a protein. Test temperatures ranged up to
30 ◦C above the optimal growth temperature (OGT) of the species.

We combined the two data sets and developed a new gradient boosting-based ma-
chine learning method ProTstab2 for protein stability prediction. The method is freely
available as a web service. Its performance is superior to ProTstab [14] and other previously
published methods. Since the tool is fast, it can be used for various tasks and even with
large numbers of proteins. We predicted the stabilities of proteins in human, mouse, and
zebrafish proteomes.

2. Results

A novel protein stability predictor was developed based on systematic method op-
timization. The original ProTstab was trained and tested on stability information for
3520 proteins obtained in a cell-wide analysis of thermal unfolding [16]. There were data
for four organisms, E. coli, S. cerevisiae, T. thermophilus, and humans. Subsequently, a
much wider study for meltome atlas was published [17] for cellular stability of proteins
in 13 species. The method is based on heating of cells and subsequent protein extraction
and identification with liquid chromatography–tandem mass spectrometry. The optimal
growth temperatures of the species ranged from 15 to 70 °C. The details for the data set
and the origin of species are in Table 1. The largest number of proteins (6456) originates
from humans, followed by mice (5800), zebrafish (3362) and Caenorhabditis elegans (3327).

Table 1. Numbers of proteins in species and data sets used for method development.

Species OGT (◦C) ProTstab Meltome Atlas Total

Oleispira antarctica 15 0 1352 1352
Caenorhabditis elegans 20 0 3327 3327
Arabidopsis thaliana 25 0 2489 2489

Danio rerio 28 0 3362 3362
Drosophila melanogaster 28 0 1681 1681

Bacillus subtilis 30 0 1563 1563
Saccharomyces cerevisiae 30 706 1949 2655

Homo sapiens 37 984 5472 6456
Escherichia coli 37 729 1830 2559
Mus musculus 37 0 5800 5800

Geobacillus
stearothermophilus 55 0 776 776

Picrophilus torridus 60 0 908 908
Thermus thermophilus 70 1081 904 1985

Total 3500 31,413 34,913

The data from the two sources were combined and duplicates were removed. There
were a total of 34,913 proteins. The Tm values ranged from 27.6 ◦C to 98.9 ◦C, thus covering
the natural distribution of Tm values. The distribution of the melting temperatures for
each organism is shown in Figure 1. The organisms were arranged into increasing order
based on their optimal growth temperature. The thermal stability of proteins is an intrinsic
property [17] and the distribution in organisms follows their growth temperature.
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Figure 1. Distribution of Tm values for proteins in each species. Proteins were binned and color-coded
as follows: <30 ◦C pale blue, between 30 and 40 ◦C red, between 40 and 50 ◦C gray, between 50 and
60 ◦C orange, between 60 and 70 ◦C blue, between 70 and 90 ◦C green, between 80 and 90 ◦C dark
blue, and over 90 ◦C brown.

The data set was randomly divided into training, testing, and blind test sets. The
distribution of proteins in each species in ProTstab, meltome atlas, and our data set are
shown in Table 2.

Table 2. Division of data sets for method training and testing.

ProTstab Meltome Atlas ProTstab2

Blind test set 299 3144 3443
Training set 3201 28,269 31,470

Total 3500 31,413 34,913

Previous study [14] indicated that in protein stability prediction there are not such
strong features as in variation pathogenicity prediction with PON-P2 [18] or PON-All [19].
To find the most relevant set of features, we collected a wide selection of parameters. The
majority of them were calculated with program protr (Supplementary Table S1). In addition,
parameters from other programs based on amino acid sequence and sequence context were
included. In total, we had 6935 features.

2.1. Choice of Algorithm

First, we trained seven regression predictors to choose the best-performing algorithm.
The algorithms included decision tree (DT), random forests (RF), support vector regression
(SVR), gradient boost regression tree (GBRT), extreme gradient boosting (XGBoost), light
gradient boosting machine (LightGBM), and multi-layer perceptron (MLP) regressor. All
the features were used for training the predictors, and the performances of the algorithms
in 10-fold cross-validation (CV) are presented in Table 3. LightGBM showed the best
performance for all the measures: Pearson correlation coefficient (PCC) of 0.75, root mean
square deviation (RMSD) 7.11, R2 0.56, mean squared error (MSE) 50.50, and mean absolute
error (MAE) of 5.27. GBRT, XGBoost, and MLP regressor were the next best algorithms.
The performance was the poorest for DT and SVR. LightGBM also had the fastest training
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time (673 s), about one-tenth of the time of the next fastest algorithm, SVR (5258 s), and
only about 3% of the slowest method, RF. LightGBM was chosen to train the final predictor.

Table 3. Performance of machine learning regression algorithms with all features in 10-fold
cross-validation.

DT RF SVR GBRT XGBoost LightGBM MLP

PCC 0.55 0.71 0.59 0.72 0.73 0.75 0.74
RMSE (◦C) 10.21 7.58 8.88 7.43 7.42 7.11 7.26

R2 0.09 0.50 0.31 0.52 0.52 0.56 0.54
MSE (◦C) 104.22 57.46 78.88 55.15 55.07 50.50 52.87
MAE (◦C) 7.45 5.60 6.68 5.51 5.49 5.27 5.35

Running time (s) 4076 23777 5258 27299 7977 673 7323

2.2. Feature Selection and Method Training

We performed extensive feature selection to find the most relevant features and to
limit the number of features to a minimum. We applied two feature selection approaches,
recursive feature elimination (RFE) and recursive feature elimination with cross-validation
(RFECV).

We used RFE to select features, for that purpose, we trained nine regression predictors
with the top 50, 100, 200, 300, 500, 1000, 2000, and 3000 features, or with all the 6935 features.
The optimal number was 1214 features for the RFECV-based predictor. The performances
in the 10-fold CV are shown in Table 4.

Table 4. Results for feature selection with RFE and RFECV in 10-fold cross-validation.

RFE RFECV

Number of
features 50 100 200 300 500 1000 2000 3000 6935

(all) 1214

PCC 0.750 0.757 0.758 0.758 0.757 0.755 0.748 0.752 0.749 0.755
RMSE (◦C) 7.083 7.021 6.991 6.992 7.001 7.027 7.114 7.062 7.104 7.032

R2 0.563 0.570 0.574 0.574 0.573 0.570 0.559 0.565 0.560 0.569
MSE (◦C) 50.189 49.304 48.887 48.906 49.028 49.396 50.614 49.878 50.485 49.469
MAE (◦C) 5.282 5.228 5.197 5.196 5.204 5.217 5.277 5.240 5.271 5.221

In total, five measures were used to chart the full performance of the predictors. Ten-
fold CV was used in all the tests. The results for predictors with 200 and 300 features
were the best and had almost identical performances, the differences were marginal. We
chose the predictor with 200 features as smaller number of features means that the space of
possible combinations can be better covered. We call this predictor ProTstab2.

The features used in ProTstab2 are listed in Supplementary Table S2 along with their
importance scores in RFE. The scores range from 88 for group 5 amino acid frequency to
5 for the composition of secondary structures of group 1. Most of the importance scores
have low scores, but together they contribute to reliable predictions. The selected features
originate from a wide range of types. Among the most common features are several quasi-
sequence order descriptors, various composition descriptors and scales-based descriptors.
There are also several amino acid, dipeptide and amino acid type features.

2.3. Performance of ProTstab2 Algorithm

The performance of ProTstab2 was tested on randomly selected blind test data, the
results are in Table 5. All the measures are clearly better in comparison to the original ProT-
stab: PCC is 0.803 vs. 0.736 indicating a substantial improvement. Error measures RMSE,
MSE and MAE are improved and show values 9.097 (9.636 for ProTstab), 82.752 (93.581)
and 6.934 (8.158), respectively. R2 measures how the true data fit to the model. ProTstab2
shows a good fit in the blind test data, 0.580 vs. −0.850 for ProTstab.
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Table 5. Comparison of the performances of ProTstab and ProTstab2 on blind test data set.

ProTstab ProTstab2

PCC 0.736 0.803
RMSE 9.636 9.097
MSE 93.581 82.752
MAE 8.158 6.934

R2 −0.850 0.580

Of the other methods for protein stability it was possible to compare only the method
of Ku and coworkers [7] and SCooP [13]. Ku et al. tool is not a regression predictor,
instead, it classifies proteins into three melting point categories (Tm < 55, 55 < Tm < 65,
and Tm > 65 ◦C). To compare to this tool, we submitted our blind test set cases to the web
service at http://tm.life.nthu.edu.tw (accessed on 6 September 2022). The classification
accuracy of the three categories is 83.8% (2884 proteins correct out of 3443) for ProTstab2
while the Ku et al. predictor had 15.5% correct (532 out of 3443).

SCooP was another program with which ProTstab2 performance could be compared.
Unlike ProTstab2, SCooP is structure-based, which restricts its use to only proteins for
which structures have been determined. We identified structures for proteins in our blind
test data set from Protein Data Bank [20] with Blast [21] and identified 500 proteins that
had sequences identities 95% or higher and which covered at least 90% of the length of
the protein sequences. These thresholds were used since sequences for PDB entries can
be slightly different in comparison to those in sequence databases and since many of the
structures are not for the complete proteins. As ProTstab2 has been trained for full-length
proteins we set the threshold for sequence coverage to 90%, which should include all the
domains in multidomain proteins.

Results in Table 6 show that ProTstab2 is clearly better than SCooP on all the used
measures. Error scores are significantly better for ProTstab2. The outcome is interesting as
one could think structures to be better starting point for these calculations. Apparently, the
used structural features are not discriminative enough for high accuracy.

Table 6. Comparison of the performances of ScooP and ProTstab2 for the 438 proteins in the blind
test set that SCooP was able to predict.

SCooP ProTstab2

PCC 0.443 0.715
RMSE 16.926 7.605
MSE 286.480 57.837
MAE 13.867 5.682

R2 −1.594 0.476

The results indicate that ProTstab2 has a clear improvement in comparison to ProTstab
and SCooP, both of which are superior to the method of Ku et al. The training data for ProT-
stab2 is about 10 times larger than for ProTstab, it represents many more species, and covers
a wide range of Tm values. Combined, these factors contribute to the excellent performance.

2.4. Application of ProTstab2 to Proteome-Wide Predictions and Comparison of Stabilities of
Human, Mouse, and Zebrafish Proteins

ProTstab2 is a fast method, and it can be used to predict the stability of proteins in
any organism. It can be applied also to large-scale studies. We predicted the stability of
all human, mice, and zebrafish proteins. In the case of humans, the recommended MANE
reference sequences were used [22]. The results can be downloaded from the ProTstab2
website. Proteins with experimental Tm values were excluded. The average predicted Tm
values were 50.5 for humans, 50.2 for mice, and 57.9 ◦C for zebrafish. These species were

http://tm.life.nthu.edu.tw
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chosen as they are widely used model systems. Once there is a list of all proteins of interest
(even the entire proteome in an organism) the method can quickly calculate the predictions.

To highlight the applicability of the method we compared the predicted Tm values
for a random selection of 6942 human–mouse ortholog sequence pairs. The orthologs
were obtained with biomart from EBI. The distribution of predicted Tm values is shown
in Figure 2A. The graph shows the stability along with increasing sequence similarity.
Interestingly, the sequence similarity does not correlate at all to the stability (Figure 2B).
Although the OGT of both human and mouse is 37 ◦C, the human proteins tend to be
slightly more stable. The results are similar to experimental Tm values in meltome atlas [17].
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Figure 2. Comparison of predicted stabilities of human and mouse proteins. A total of 6492 ortholo-
gous pairs were compared. (A) Distribution of predicted Tm values for human (red) and mouse (blue)
proteins. (B) Difference of the predicted stabilities. Human proteins are on average slightly more
stable than mouse proteins.

2.5. ProTstab2 Web Application

ProtStab2 is freely available as a web application at http://structure.bmc.lu.se/ProTstab2/
(accessed on 12 September 2022) and at http://8.133.174.28:8000/ProTstab2 (accessed on
12 September 2022). The program uses as input protein sequence(s). ProTstab2 pro-
vides complete report which is sent to the user by email when ready. The website con-
tains data sets used for training and testing, as well as the results for the predictions of
three proteomes.

3. Discussion

Computational tools are needed to predict protein melting temperatures since the data
are still largely scarce. Protein stability is of interest as it is integral to numerous properties
of proteins in the natural environment and biotechnological processes. Changes to stability
are common among disease-related variations [3]. We developed a novel predictor by
following a systematic approach [23].

Our previous predictor ProTstab was trained on 3520 proteins from four organism [14].
A new data set with about 48,000 protein Tm measurements [17] was combined with the
original data, to sum up to 34,913 unique records. The OGTs of the organisms range from
15 to 70 ◦C and the Tm values cover a range of 70 degrees. Thus, the training data are
representative and can facilitate the development of a reliable predictor. As stability of

http://structure.bmc.lu.se/ProTstab2/
http://8.133.174.28:8000/ProTstab2
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proteins is an intrinsic property [17], we collected a very large number of protein descriptors.
In total, there were 6395 features, see Supplementary Table S1.

We first tested seven artificial intelligence algorithms including DT, RF, SVR, GBRT,
XGBoost, LightGBM, and MLP regressor to find which one of them has the best performance
when all the features were used for training. To assess the performance of the algorithms,
we used five distinct measures. It is essential to use relevant measures and to cover different
aspects of performance, see [24,25]. LightGBM was the best algorithm based on all five
measures (Table 3). In addition, it was clearly the fastest algorithm to train.

Next, we trained a predictor with LightGBM and tested two feature selection ap-
proaches, RFE and RFECV (Table 4). RFECV optimizes the number of features, in this
case, it was 1217 features. For RFE the stop criterion has to be given, we tested 9 selections
ranging from 50 to the full set of 6935 features. The results for 200 and 300 features showed
the best performance and better scores than a method trained based on RFECV-selected
features. The most important features represent various types of protein descriptors
(Supplementary Table S2).

The LightGBM algorithm is powerful, but it can be overfitted. To avoid this, we chose
for the final method 200 RFE selected features. The smaller number of features can better
cover the feature space. ProTstab2 is not overfitted as evident from the performance on the
blind test data, the scores are comparable to those in 10-fold CV (Tables 4 and 5).

The PCC is 0.803 for ProTstab2 and the error measures are also good on the blind test
data. The performance is clearly better than for the original ProTstab as well as another
method that we could compare, SCooP. ProTstab2 is fast and reliable, it can be applied to
proteins from any organism and run on large sets of proteins. We tested it on the proteomes
of humans, mice, and zebrafish. A comparison of human–mouse orthologs indicated that
sequence conservation did not correlate to stability differences.

The tool is freely available and allows the submission of sequence information in
different formats.

4. Materials and Methods
4.1. Data Sets

The data were collected from two sources: ProTstab [14] and meltome atlas [17]. After
deleting entries that contained ambiguous amino acids, we had 3500 records in four species
from ProTstab, and 31,413 records from the meltome atlas for thirteen species. The final
data set contained 34,913 records. Within this data set, we randomly divided the records
into training and blind test sets. The data sets are available on the predictor website.

4.2. Features

In total, 6395 features were collected to describe protein properties. A total of 34,913 pro-
tein sequences were obtained from UniProtKB [26] and used to calculate the features.

The majority of the features were obtained with protr [27], an R package for generating
various numerical representation schemes based on amino acid sequences. The package
calculates eight descriptor groups composed of 22 types of commonly used descriptors.
We obtained altogether 6295 features with protr.

A total of 140 features were extracted by RECON [28], which uses an algorithm based
on Bader’s quantum theory of atoms in molecules. It provides molecular charge density-
based electronic properties. RECON is available at http://reccr.chem.rpi.edu/Software/
Protein-Recon/Protein-Recon-index.html (last accessed on 12 September 2022). This site
does not work anymore, however, none of the features were selected for the final predictor.

Nineteen features were obtained with ProtDCal [29] which uses a hierarchical strat-
egy. ProtParam [30] computes various physical and chemical parameters for protein
sequences. The parameters include molecular weight, theoretical pI, amino acid com-
position, atomic composition, extinction coefficient, estimated half-life, instability index,
aliphatic index, and grand average of hydropathy (GRAVY). A total of 28 features were
obtained with ProtParam.

http://reccr.chem.rpi.edu/Software/Protein-Recon/Protein-Recon-index.html
http://reccr.chem.rpi.edu/Software/Protein-Recon/Protein-Recon-index.html
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Amino acid group counts and frequencies. Amino acids were divided into 6 groups
according to their physicochemical properties as follows: hydrophobic (V, I, L, F, M, W, Y,
C), negatively charged (D, E), positively charged (R, K, H), conformational (G, P), polar
(N, Q, S) and others (A, T) [31]. The numbers of amino acids in the 6 groups and their
frequencies were calculated from the amino acid sequence, so there are 12 features in total.

Dipeptide counts. A total of 441 dipeptide counts were calculated in a window of
21 amino acids.

4.3. Algorithms

We started by choosing the best-performing algorithm among different methods.
DT is a non-parametric supervised learning method that has been used both for

classification and regression. The method creates a model that predicts the value of a target
variable based on simple decision rules inferred from the data features. Random forests
(RFs) [32] is an extended bagging technique. The algorithm divides the training data into
several partitions and builds a decision tree predictor for each partition. Finally, all the
decision trees are merged into one predictor. RFs are resistant to overfitting.

SVR [33] is a widely used ML algorithm. SVR maps data into a high dimensional space
and uses a kernel function. Training and testing of SVR with large data sets are very time-
consuming. Therefore, we used linear support vector regression, which is similar to SVR
with parameter kernel = “linear”, but is implemented according to liblinear [34] instead of
libsvm [35]. This approach is more flexible in choosing penalties and loss functions and is
therefore more suited to training predictors with large numbers of samples.

GBRT [36] can be used in many linear or non-linear prediction applications. The
algorithm starts by building a decision tree model, then it gradually adds new decision
trees to it to predict the residual value. Finally, the algorithm merges all the decision
trees into one predictor. GBRT can process various types of data naturally, and it can
deal robustly with outlier values because of its loss function. However, GBRT cannot be
parallelized; therefore, it is slow to train.

XGBoost [37] is an optimized distributed gradient boosting library. XGBoost uses a
parallel tree boosting (also known as gradient boosting decision tree (GBDT)) and gradient
boosting machine (GBM).

LightGBM [38] is a gradient boosting framework that uses tree-based learning algo-
rithms. It is a variant of GBDT model and utilizes gradient-based one-side sampling (GOSS)
and exclusive feature bundling (EFB) to reduce the time complexity.

MLP regressor [39,40] optimizes the squared loss using the limited-memory Broyden,
Fletcher, Goldfarb, and Shanno (LBFGS) algorithm or stochastic gradient descent (SGD). In
our implementation, the hidden layer nodes were set to (20, 20, 20) and as the activation
function was used Relu. Relu can solve exploding and vanishing gradient problems and
keep the convergence rate in a steady state. LBFGS was used for the optimization.

All the algorithms were implemented in Python and run with default parameters.
Scripts were written on Python 3.6. DT, RF, and SVR MLP were implemented in the
standard scikit-learn (version 0.19.2). LGBM was implemented in the standard LightGBM
(version 2.3.1 https://github.com/microsoft/LightGBM, accessed on 12 September 2022)
and XGBoost was implemented in the standard xgboost (version 1.5.2 https://github.com/
dmlc/xgboost, accessed on 12 September 2022).

4.4. Feature Selection

We tested two feature selection applications. Given an external estimator that assigns
weights to features, the RFE [41] selects features recursively. Initially, the estimator is
trained on the features and the importance of each feature is obtained and then the least
important features are pruned. The procedure is recursively repeated until the desired
number of features is reached.

https://github.com/microsoft/LightGBM
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
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RFECV performs RFE in a cross-validation loop to find the optimal number of features
using RFE to evaluate the importance of the features. We used 3-fold cross-validation (CV)
to select the optimal number of features.

4.5. Performance Assessment

The performances of the methods in regression were assessed with five measures.
The PCC measures linear correlation between two sets of data. It is the covariance of
two variables, divided by the product of their standard deviations, i.e., it is a normalized
measurement of the covariance. PCC scores range from −1 to 1. It is calculated as

PCC =
cov(X, Y)

σXσY
=

(E[(X− µX)(Y− µY)])

σXσY
, (1)

where cov is the covariance, σX is the standard deviation of X, σY is the standard deviation
of Y, µX is the mean of X, µY is the mean of Y, and E is the expectation.

The root mean square error (RMSE) is the measure of the differences between predicted
and observed values:

RMSE =

√
∑N

i=1(yi − xi)
2

N
. (2)

The predicted value is yi, the experimental value is xi.
The mean absolute error (MAE) indicates the error between paired values for predic-

tions and observations:

MAE =
∑N

i=1|yi − xi|
N

, (3)

where yi is the prediction and xi is the true value.
The mean squared error (MSE) measures the average of the squares of the errors, i.e.,

the average squared difference between the estimated values and the actual values

MSE =
1
N ∑N

i=1(yi − xi)
2. (4)

A vector of N predictions is generated from a sample of N data points on all variables,
and xi is the vector of observed values of the variable being predicted, with yi being the
predicted values.

R2 is the proportion of the variance in the dependent variable that is predictable from
the independent variable(s). In regression, R2 estimates how close the data are to the fitted
regression line. The better the regression model, the closer the value is to 1.

R2 = 1− SSres

SStot
= 1− ∑i(yi − xi)

2

∑i(yi − y)2 (5)

SStot is the total sum of squares, SSres is the sum of squares of residuals. yi is the true
value and xi is the prediction.
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