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Editorial

Histidine supplementation ameliorates 
metabolic syndrome
A recent Chinese supplementation study, in 
which obese middle-aged women diagnosed 
with metabolic syndrome received 12 weeks 
of supplemental histidine (2 g, twice daily) or 
matching placebo, achieved remarkable find-
ings.1 Insulin sensitivity improved significantly 
in the histidine-supplemented subjects, and 
this may have been partially attributable to 
loss of body fat. Body mass index (BMI), waist 
circumference and body fat declined in the 
histidine-supplemented group relative to the 
placebo group; the average fat loss in the histi-
dine group was a robust 2.71 kg. Markers of 
systemic inflammation such as serum tumour 
necrosis factor-alpha (TNF-α) and inter-
leukin  (IL)-6, non-esterified fatty acids and 
oxidative stress also decreased in the histidine 
group. Subsequently, precisely parallel findings 
were reported in female rats rendered obese 
with a high-fat diet.2 

Brain histamine influences appetite and 
metabolic rate
These intriguing findings were not altogether 
unexpected, as earlier rodent studies had 
shown that supplemental histidine tends to 
inhibit food intake, via an impact on the hypo-
thalamus that is mediated by the neurotrans-
mitter histamine.3–6 Acting via H1 receptors 
in the ventromedial and paraventricular hypo-
thalamic nuclei, histamine suppresses feeding 
behaviour, promotes adipocyte lipolysis via 
sympathetic activation and raises metabolic 
rate.3 7 8 These effects are analogous to those 
of leptin on the brain, and indeed histamine 
has been shown to be a key mediator of leptin 
signalling in the hypothalamus.4 9 Leptin trig-
gers histamine release in the hypothalamus, 
and histamine in turn prevents the downreg-
ulation of leptin receptors which mediates 
leptin resistance. Crucially, whether adminis-
tered intraperitoneally or intraventricularly, 

histidine dose  dependently increases hypo-
thalamic levels of histamine as well as hypo-
thalamic activity of histidine decarboxylase, 
the enzyme which converts histidine to hista-
mine.10 Such administration also inhibits food 
consumption—an effect that is blocked in 
animals pretreated with an irreversible inhib-
itor of histidine decarboxylase.

Neuronal histamine release in the hypo-
thalamus is subject to feedback regulation 
by presynaptic H3 receptors. In rodent 
studies, antagonists and inverse agonists for 
these receptors have been shown to mark-
edly amplify hypothalamic histamine levels, 
suppress feeding, decrease body weight and 
enhance metabolic rate.11–15 Such agents may 
have clinical potential for managing obesity.

The clinical relevance of these find-
ings is further suggested by evidence that 
use of prescription antihistamines (H1 
blockers), or of antipsychotic drugs that also 
inhibit H1, is associated with an increased 
risk for obesity.8 16 Of related interest is a 
recent Chinese cross-sectional epidemi-
ology correlating dietary histidine inversely 
with BMI, waist circumference and various 
markers of metabolic syndrome, in both 
sexes; this finding remained valid whether 
daily histidine intake was expressed in abso-
lute terms, or after adjustment for protein 
and other dietary values.17 In a cross-sectional 
study enrolling female Japanese students, 
daily histidine intake, as well as the ratio to 
histidine to total dietary protein, correlated 
inversely with daily calorie intake after adjust-
ment for other dietary factors18; this finding 
evidently is consistent with the possibility 
that increased brain histidine uptake can 
aid appetite control in humans, as it does in 
rodents. Moreover, a cross-sectional epidemi-
ological study has found that 24 hours urinary 
excretion of histidine correlates inversely with 
BMI—likewise pointing to a possible role for 
histidine in control of energy balance.19

http://www.bcs.com
http://openheart.bmj.com/
http://orcid.org/0000-0002-3376-5822
http://crossmark.crossref.org/dialog/?doi=10.1136/openhrt-2017-000676&domain=pdf&date_stamp=2020-05-25


Open Heart

2 DiNicolantonio JJ, et al. Open Heart 2018;5:e000676. doi:10.1136/openhrt-2017-000676

Brain histamine regulates gluconeogenesis
The amplification of brain histamine activity achievable 
with supplemental histidine, in addition to controlling 
appetite, also provokes a brain signal to the liver that 
decreases the expression of gluconeogenic enzymes—
most notably glucose-6-phosphatase—and thereby 
reduces hepatic glucose output.20 A neural signal to 
Kupffer cells boosts their secretion of IL-6; this acts on 
hepatocytes to induce activating tyrosine phosphorylation 
of Stat3, which in turn transcriptionally represses gluco-
neogenic enzyme expression.20 21 Intracerebral insulin 
works in a complementary and analogous manner to 
restrain hepatic glucose output.22 23 These considerations 
suggest that supplemental histidine could aid glycaemic 
control in diabetics by downregulating hepatic glucose 
output—in addition to favourable effects on periph-
eral insulin sensitivity reflecting histidine’s antiobesity/
anti-inflammatory actions. It is notable that, in the clin-
ical study evaluating supplemental histidine in women 
with metabolic syndrome, fasting glucose fell from 
5.9 mM at baseline to 5.1 mM after supplementation.1 
And in mice rendered diabetic by streptozotocin admin-
istration (a model of type 1 diabetes), plasma glucose 
averaged 14.3 mM in those who had received histidine 
in water at 1 g/L for 4 weeks, as opposed to 20.6 mM 
in those receiving regular water.24 (Plasma glucose in 
healthy control mice was 6.3 mM.) A reduction in hepatic 
glucose output seems likely to be largely responsible for 
this effect.

Anti-inflammatory effects
Supplemental histidine also appears to have anti-inflam-
matory effects on tissues that are not mediated centrally 
and independent of its impact on weight control, as 
suggested by rodent and cell-culture studies.2 24–27 Histi-
dine, as well as its derivative carnosine, can exert antiox-
idant effects that reflect its ability to scavenge free radi-
cals, quench singlet oxygen and chelate free transition 
metals.28–30 However, it should be noted that histidine 
availability is not rate  limiting for carnosine synthesis.31 
Recent prospective epidemiology has found that higher 
serum histidine levels predict lower risk for coronary 
disease in the subsequent years.32 The impact of dietary 
histidine on progression of atherosclerosis in rodents has 
not yet been studied.

Interaction with branched-chain amino acids (BCAAs)
Transport of histidine into the brain may depend not 
only on plasma histidine level but also onneutral amino 
acids—including the branched-chain amino acids 
(BCAAs)—that can compete for access to the neutral 
amino acid transporter that mediates their transport 
through the blood–brain barrier.33 34 Hence, the rate 
of brain histidine uptake via this transporter should be 
proportionate to the plasma ratio of histidine to the sum 
of other neutral amino acids; this sum is determined 

primarily by BCAA levels. This observation may be perti-
nent to cross-sectional studies concluding that plasma 
levels of BCAAs are elevated in those with type 2 diabetes, 
metabolic syndrome and/or obesity.35–40 Moreover, 
several prospective studies have found that plasma 
levels of BCAAs likewise correlated positively with type 2 
diabetes risk.41–43 Whereas elevated BCAAs might plau-
sibly be an effect of metabolic syndrome,44 it is also plau-
sible that such elevations could promote weight gain and 
impair glycaemic control by impeding histidine’s trans-
port into the brain. Indeed, a recent Mendelian rando-
misation analysis concludes that elevated plasma levels of 
BCAA are likely to be true mediators of increased risk for 
type 2 diabetes.45 This phenomenon would be analogous 
to the well-known ability of high plasma levels of neutral 
amino acids to impede brain serotonin production from 
tryptophan.46

With respect to dietary intakes of BCAAs, a recent anal-
ysis of three large prospective cohort studies has concluded 
that calorie-adjusted intakes of BCAAs correlate posi-
tively with risk for onset of type 2 diabetes.47 Although 
this correlation continued to hold after correction for 
a range of covariates, it was substantially attenuated, 
though not eliminated, by adjustment for BMI—consis-
tent with the possibility that elevated BCAA intake was 
interfering with histidine-dependent central mechanisms 
for regulating appetite and glycaemic control. However, 
a smaller Japanese prospective study reached the oppo-
site conclusion—that higher dietary intakes of BCAAs 
predicted lower risk for diabetes.48 Arguably, the true 
dietary determinant of risk might be the ratio of histidine 
to BCAAs or total neutral amino acids; in this case, such 
a ratio, in the diet or in plasma, might better predict risk 
than either histidine or BCAAs per se.

Cautions
Supplemental histidine may have the potential to 
increase histamine production by gastric enterochro-
maffin cells and by mast cells. Indeed, one rat study has 
found that stomach levels of histamine are increased 
as histidine intake increases beyond normal dietary 
levels.49 Hence, in susceptible individuals, supple-
mental histidine could conceivably increase risk for 
peptic ulcers by boosting gastric acid secretion. If this 
proves to be the case, supplemental histidine might be 
contraindicated in those prone to such ulcers or should 
be administered in conjunction with H2 receptor antag-
onists. The possibility that histidine supplementation 
could amplify symptoms in those prone to allergies by 
increasing histamine production in mast cells should 
also be considered. Moreover, it should be emphasised 
that there has so far been little clinical experience with 
histidine supplementation, and further controlled 
studies are needed to determine whether such supple-
mentation can genuinely benefit human body composi-
tion and metabolic syndrome.
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