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Abstract

Drug repurposing has broad importance in planetary health for therapeutics innovation in infectious diseases
as well as common or rare chronic human diseases. Drug repurposing has also proved important to develop
interventions against the COVID-19 pandemic. We propose a new approach for drug repurposing involving
two-stage prediction and machine learning. First, diseases are clustered by gene expression on the premise
that similar patterns of altered gene expression imply critical pathways shared in different disease condi-
tions. Next, drug efficacy is assessed by the reversibility of abnormal gene expression, and results are
clustered to identify repurposing targets. To cluster similar diseases, gene expression data from 262 cases of
31 diseases and 268 controls were analyzed by Uniform Manifold Approximation and Projection for Di-
mension Reduction followed by k-means to optimize the number of clusters. For evaluation, we examined
disease-specific gene expression data for inclusion, body myositis, polymyositis, and dermatomyositis
(DM), and used LINCS L1000 characteristic direction signatures search engine (L1000CDS2) to obtain lists
of small-molecule compounds that reversed the expression patterns of these specifically altered genes as
candidates for drug repurposing. Finally, the functions of affected genes were analyzed by Gene Set En-
richment Analysis to examine consistency with expected drug efficacy. Consequently, we found disease-
specific gene expression, and importantly, identified 20 drugs such as BMS-387032, phorbol-12-myristate-
13-acetate, mitoxantrone, alvocidib, and vorinostat as candidates for repurposing. These were previously
noted to be effective against two of the three diseases, and have a high probability of being effective against
the other. That is, inclusion body myositis and DM. The two-stage prediction approach to drug repurposing
presented here offers innovation to inform future drug discovery and clinical trials in a variety of human
diseases.

Keywords: drug repurposing, big data, bioinformatics, machine learning, drug research and OMICS, drug
development

Introduction

Drug repurposing is a method of developing new targets
for existing drugs, that is, discovering new efficacy for a

previously approved drug, for which safety and pharmacoki-

netics have been demonstrated in humans. While de novo drug
development typically takes 6–9 years and costs 2–3 billion
dollars, drug repurposing will lead directly to preclinical
testing and clinical trials (Rapicavoli et al., 2022), thereby
significantly reducing the time, cost, and side effects, leading
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potentially to a higher success rate for introduction in clinical
practice because the compounds have already been tested for
safety and pharmacokinetics in humans (Jourdan et al., 2020).

Drug repurposing has broad importance in planetary health
for therapeutics innovation in infectious diseases as well as
common or rare chronic human diseases. Drug repurposing has
also proved important to develop interventions against the
COVID-19 pandemic. In recent years, drug repurposing has
reached 30% of new drugs and vaccines approved by the U.S.
Food and Drug Administration (FDA) (Kwon et al., 2019).
However, the main questions often arise from how to customize
or optimize the repurposing methods into efficient drug re-
purposing pipelines (Jin and Wong, 2014). Developing promis-
ing and affordable approaches for the effective treatment of
complex diseases is difficult without prior knowledge of the
complete drug-target network. This is now the greatest challenge
to advancing drug repurposing technology (Zeng et al., 2020).

The present study presents a unique two-stage approach to
drug repurposing that (1) harnessed machine learning (ML)
to identify significantly altered gene expression profiles
based on comparative data under diseased and normal con-
ditions, and (2) analyzed the data on gene expression changes
due to drug treatment, and (3) estimated the expected nor-
malization of expression changes caused by a disease. To
fully validate this approach, we analyzed Gene Ontology
(GO) for a group of disease-variant genes.

Conceptual background on the study

Screening of drugs for repurposing includes a variety of
methods, such as target-based, knowledge-based, signature-
based, pathway- or network-based, and mechanism-targeted
methods (Rapicavoli et al., 2022). The oldest case of drug
repurposing is sildenafil for erectile dysfunction, which is
usually considered accidental (Roundtable on Translating
Genomic-Based Research for Health et al., 2014). However,
serendipity-based discoveries cannot be expanded, and var-
ious methods have been used to enable systematic discovery
of the off-label effects of drugs.

Phenotypic screening is a relatively more proactive and
controlled method (Ciallella and Reaume, 2017), but it is not
usually systematic and comprehensive enough, although it
can occasionally successfully identify lead compounds.
Since a disease usually emerges as a complex interaction
between multiple genetic variants (Hirschhorn and Daly,
2005), computer-based approaches must be used to achieve
systematic or comprehensive repurposing.

With the advent of high-throughput technologies for ex-
ploring biological systems, an impressive amount of data
awaits computational analysis and mining tools to be explored
and harnessed (Rapicavoli et al., 2022). Systems biology ap-
proaches to drug repurposing utilize pathophysiological map-
ping of diseases to identify targets that modify them, and
potential compounds that can hit those targets (Turanli et al.,
2018). In addition to computer simulations and target docking
using algorithmic solutions other than medicinal chemistry,
data mining based on gene expression provides clues to active
pharmaceutical ingredients that may be formulated into clini-
cally viable drugs (Chen et al., 2017).

The signature-based drug repurposing approach relies on
the use of genetic signatures derived from disease-wide data
such as microarrays, RNA-seq, which can identify unknown

off-targets or unknown disease mechanisms. Since the re-
quired information may be difficult to obtain from the ex-
isting literature, obtaining genetic signatures for these
diseases from publicly available genomic data becomes the
best option (Rapicavoli et al., 2022).

In this context, artificial intelligence (AI) tools such as ML
are powerful because they can identify patterns at scale. The
history of AI can be briefly described in terms of three para-
digms: good old-fashioned artificial intelligence (GOFAI)
(1950s-1960s), expert systems (late 1970s-1980s), and ML
(2010-present). GOFAI focused on the creation of general
logic systems and led to the development of fundamental
techniques such as heuristic searches. Expert systems nar-
rowed the focus from general intelligence to human experts in
specific fields, such as chemistry and medicine, and attempted
to replicate their knowledge and decision-making processes.
This led to the first major medical AI systems such as MYCIN
(Garvey, 2018). While these yielded some practical results,
none of these AI paradigms became ‘‘thinking machines.’’

However, the current ML paradigm has overcome some of
the hurdles associated with the real world, thanks to the ever-
increasing amount of human-generated data, the massive
increase in computing power, and the renaissance of neural
networks and other ML algorithms. These ‘‘learning’’
algorithms can be ‘‘trained’’ to infer patterns from human-
generated data, and therefore do not require explicit represen-
tation of knowledge by the programmer (Garvey, 2018).

Although AI is still in its infancy in drug development, AI
and ML algorithms have unprecedented potential to accel-
erate the discovery of effective new drugs. DSP-1181 is re-
portedly the first off-targets drug created using AI to enter
clinical trials. Exscientia, which developed it, noted that it
took <12 months from initial screening to the end of pre-
clinical testing, compared with 4 years using traditional
methods (Farghali et al., 2021). To date, many computational
methods for drug repurposing using ML techniques are con-
tinuously being proposed and improved as new problems arise.
Over the past several decades, computer tools, such as quan-
titative structure-activity relationship modeling, were devel-
oped to identify potential bioactive molecules quickly and
inexpensively from great numbers of candidate compounds.

As ML approaches evolve into deep learning approaches,
they become more powerful and efficient way to deal with the
massive amounts of data generated from modern drug dis-
covery approaches (Farghali et al., 2021). For example, to
address the challenge of how to derive drug repurposing from
drug-disease interactions, a methodological approach that
focuses primarily on drug properties has been established
(Napolitano et al., 2013). These ML approaches involving data
integration are established by integrating information from
different layers based on similarities such as chemical struc-
tures, molecular targets, and induced gene expression char-
acteristics, and they focus on predicting the therapeutic class of
United States Food and Drug Administration (FDA)-approved
compounds without considering data about the disease.

The method reclassifies specific drugs and purposefully
interprets the parts that do not match the original classifica-
tion as genuine reclassification opportunities, while showing
promising and highly accurate results by integrating different
information layers and maximizing their efficacy through the
dimensionality reduction-based computational procedures
classical multidimensional scaling and principal component
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analysis (PCA). However, this approach only starts from the
direction of drugs, and while it does address problems such as
the complexity, variability, and sparsity of data currently
available for diseases, the inability to explore specific dis-
eases with strong targeting also largely limits its use.

Another representative modified method, drug repurposing
in Alzheimer’s disease (DRIAD), combines the use of omics
datasets on drug-induced perturbation of neuronal cells with
the molecular changes that occur in the brains of individuals
suffering from different stages of Alzheimer’s disease (AD)
to generate a drug-associated gene list (Rodriguez et al.,
2021). DRIAD was used to effectively decouple gene set
enrichment and predictor performance by filtering the tran-
scriptomic space for genes associated with drugs before
model training and predictor evaluation. Simultaneous pre-
filtering to a limited set of features also addresses issues with
overfitting and enables a direct, unbiased quantification of the
association between the effects of a drug and AD progression.

However, DRIAD is performed to determine whether
drug-induced changes correlate with molecular markers of
disease severity by measuring what happens to nerve cells in
the human brain when they are treated with drugs, which has
some limitations for application in other diseases. Also, the
method is based on a specified list of drugs for further anal-
ysis of the genes they affect, which means that only the list of
drugs specific to the user can be screened, resulting in a local
optimum in the list, but still relying to some extent on the
user’s drug screening strategy.

The k-means method, a commonly used clustering method,
has good scalability with sample size increase. However, since
it relies on computing the distance between the clustering
centers given randomly and each sample, it requires a large
feature space in high dimension that can result in expensive
computation, large memory requirement, and poor clustering
performance (Hozumi et al., 2021). Since the gene expression
data are inherently highly dimensional, dimensionality re-
duction should be effective to avoid this problem, and finding a
group of diseases sharing a hidden core of abnormality. PCA is
often used for such purposes due to its intuitiveness and
mathematical simplicity, but as a linear algorithm, PCA per-
forms poorly on the features with nonlinear relationship.

Uniform Manifold Approximation and Projection for Di-
mension Reduction (UMAP), an ML algorithm, is a topo-
logical data analysis technique based on many-body theory,
which provides significant improvements in data localization
and preservation of local structure compared with PCA. Also,
in capturing similar word vector groups, UMAP has advan-
tages over T-distributed stochastic neighbor embedding for
large datasets, because it captures global and topological
structures, and the error between two topological spaces will
be minimized by optimizing the spectral layout of data in the
low-dimensional space (Hozumi et al., 2021; McInnes et al.,
2018). However, the method does not provide the boundary
of clusters that can often be unapparent. In practice, logical
clustering is mandatory for consistency and validity.

In the present study, we propose a five-step method for
clustering. First, UMAP is applied to downscale gene ex-
pression data from different diseases. Second, data are clas-
sified using the k-means method with Silhouette analysis to
determine k, the appropriate number of groupings. Third,
those genes with significantly deviated expression for each
disease were identified. Forth, L1000CDS2 knowledge base

is searched to identify chemical compounds revert impaired
gene expression. Finally, the obtained lists are compared
among the disease cluster to highlight possible drug re-
purposing. The result was examined with gene set enrichment
analysis (GSEA) to address possible mechanisms shared
across the group of diseases.

We use the data from microarrays to identify genes that
may be up-/downregulated in disease microarrays, then
searches the literature on drugs known to have opposite ef-
fects. By combining the gene expression responses of cell
lines caused by diseases with data on drug-induced changes
in gene expression, which not only solves the problem of
scarce genomic data for diseases and quantifies the associa-
tion between drug effects and diseases, but also generates a
list of candidate drugs for specific diseases and performs
analytical calculations by clustering. Therefore, compared
with other existing methods, this method is considered to
have wider applicability in practical applications and largely
alleviates the bias caused by subjective screening by users.

Materials and Methods

Transformation of gene expression data

From the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) (https://www.ncbi
.nlm.nih.gov/geo/), gene expression datasets were obtained
from 262 patients, and 268 healthy human samples associated
with 31 diseases that were analyzed on the Affymetrix Hu-
man Genome U133A array platform and submitted by Af-
fymetrix. The associated information is listed in Table 1. The
logarithm of the ratio of expression intensities from patients’
samples to the mean of the corresponding healthy controls
was calculated for each disease in turn to obtain log fold-
change (logFC) values for disease-specific gene sets (Ro-
binson and Oshlack, 2010). The obtained gene expression
data were treated as a matrix of 262 · 22,283 dimensions in
subsequent analyses (Supplementary Data S1).

Two different procedures were applied to normalize the
experimental data (Park et al., 2003). For data with binary
logarithm values, such as robust multiarray average (RMA)
and GC-RMA, mean values of healthy samples were simply
subtracted from those of diseased samples to yield the binary
logarithm of the ratio. For antilogarithms, such as normaliza-
tion by Affymetrix MicroArray Suite 5.0 (MAS5) algorithm,
binary logarithms of values were calculated before subtraction.

Clustering of disease data and selection of target
diseases using UMAP and k-means methods

UMAP was used to reduce the hyper dimensionality to two
dimensions. UMAP analyzes topological data based on
manifold theory, which is characterized by its ability to
clearly separate clusters through dimensionality reduction
(McInnes et al., 2018). In this study, the final parameters used
were n_neighbors = 8, min_dist = 1, n_epochs = 500, metric =
correlation, and set_op_mix_radio = 0.3, to allow a clearer
classification of the different disorders to adjust the param-
eter values.

The resulting two-dimensional data were clustered using
the k-means method that based on Euclidean distance to vi-
sualize target diseases among clearly classified groups. Since
the basic idea of the k-means method is to select the centers of
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k clusters based on a given k-value, and then assign the
sample points to be classified to the clusters according to the
nearest neighbor principle for calculation, selecting a k-value
will have a decisive impact on data clustering. We chose the
Silhouette method for the determination of k-value. The
Silhouette value measures how similar a point is to its own
cluster compared to others, so in which a high Silhouette
value is desirable and indicates that the point is placed in the
correct cluster (Khyati, 2019).

Disease groups in the same cluster obtained by the k-means
method are expected to have similarities in cellular signaling and
gene expression and are candidates for off-target drug effects.

Classification of disease-specific gene expression

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) in
NCBI GEO is a web-based interactive tool that can be used to
compare multiple groups in the GEO series. j logFC j > 1 and
p-value <0.05 are usually considered statistically significant
(Zhang et al., 2020), so genes exhibiting significantly altered
expression in a specific disease were identified on it based on
the latter specifications.

Searching for small-molecule compounds

Using L1000CDS2 (https://maayanlab.cloud/L1000CDS2/
#/index), we identified compounds that reversed the changes

in gene expression patterns for each disease while searching
for drugs (Duan et al., 2016). Using the scatter plots of L1000
perturbation gene signatures and the results of chemical
perturbations, genes directly affected by each identified drug
were matched and organized.

GSEA and function prediction for gene sets

In preparation for GSEA, we collated raw genetic data for
target diseases and inserted a ‘‘Description’’ (value = na) col-
umn for each disease to obtain three collated data tables. GSEA
was performed using the ‘‘Human_AFFY_HG_U133_
MSigDB.v7.4.chip’’ chip platform, and GO information was
extracted for normalized p-value below 0.05 and false dis-
covery rate (FDR) below 0.25 (Thomas et al., 2011). Finally,
disease-specific expressed genes were classified using GO
terms and their functions were compared.

Results

Dimensionality reduction with UMAP and clustering
with k-means

For the datasets for cases and controls obtained from the
NCBI GEO, by transforming gene expression data to analyze
similarity between different diseases using clustering, and by
comparing diseases classified in the same group to obtain a

Table 1. Datasets for Cases

GEO ID Disease Tissue

GSE475 Chronic obstructive pulmonary disease Diaphragm muscle
GSE593 Uterine fibroid Myometrial
GSE1297 Alzheimer’s disease Hippocampal
GSE128470 Dermatomyositis Muscle
GSE1751 Huntington’s disease Blood
GSE1789 Down syndrome Heart
GSE2712 Clear cell sarcoma of the kidney Kidney
GSE3365 Crohn’s disease PBMC
GSE3365 Ulcerative colitis PBMC
GSE5090 Polycystic ovary syndrome Omental adipose tissue
GSE5667 Atopic dermatitis Skin
GSE5808 Acute measles Peripheral blood
GSE7429 Osteoporosis Circulating B cell in blood
GSE9750 Cervical cancer Cervical epithelium
GSE9877 Sickle cell disease BOEC
GSE13785 Exercise-induced bronchoconstriction Airways cell
GSE15568 Cystic fibrosis Rectal mucosal epithelia
GSE25724 Type 2 diabetes Islet
GSE47018 Polycythemia vera CD34+ cell
GSE55235 Rheumatoid arthritis Synovial
GSE75415 Pediatric adrenocortical tumor Adrenal gland
GSE110223 Colorectal cancer Colon
GSE115810 Endometrial cancer Endometrium
GSE124646 Breast cancer Breast
GSE128470 Polymyositis Muscle
GSE128470 Inclusion body myositis Muscle
GSE6613 Parkinson’s disease Blood
GSE35487 IgA nephropathy Kidney tubular epithelial cell
GSE41649 Allergic asthma Bronchial
GSE43290 Meningioma Meningeal
GSE55235 Osteoarthritis Synovial

BOEC, blood outgrowth endonuclear cells; GEO, Gene Expression Omnibus; IgA, immunoglobulin A; PBMC, peripheral blood
mononuclear cells.
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list of alternative drugs, we further processed the combined
data and used UMAP and k-means methods for analysis.

UMAP was applied to the transformed expression data to
reduce the hyper dimensionality of gene expression levels into
two-dimension (Fig. 1a). Then, they were grouped by applying
the k-means method to obtain similar changes in expression of
gene sets, expecting they reflect similar changes in cytological
conditions. The Silhouette Score reaches its global maximum at
the optimal value (k-value = 19, Fig. 1b) as represented by the
peak in the figure. The visualized groupings resulting from
UMAP are shown in Figure 1c.

Target diseases were selected from the results of clustering
by the k-means method, through which 31 diseases were
clustered into several clearly classified groups. Figure 1c
shows that inclusion body myositis (IBM), polymyositis (PM),

and dermatomyositis (DM), which were classified into the
same yellow cluster located on the upper right according to the
results of the k-means method, shared similarity with each
other; hence, they were chosen for the following analyses:

Target diseases and samples:

� IBM: GSM3676259-GSM3676284 (26 sets)
� PM: GSM3676317-GSM3676323 (7 sets)
� DM: GSM3676247-GSM3676258 (13 sets)
� Healthy: GSM3676285-GSM3676296 (12 sets)

Identification of disease-specific significant changes
in gene expression by GEO2R

GEO2R was used to identify genes whose expression
levels were specifically increased or decreased in the three

FIG. 1. Clustering of disease data. (a) UMAP analysis of disease-specific gene expression. Different colors represent
different diseases, and positions reflect their degree of association. (b) Determination of k-value by Silhouette analysis. The
peak of the results of Silhouette analysis provides the optimal k-value (19 in this case). The horizontal axis indicates the
number of clusters (k-value) and the vertical axis indicates the degree of deviation of a cluster from its adjacent cluster at
that time. The optimal k-value is reflected by the highest point. (c) Clustering by the k-means method. Clustering is shown
by distinct colors and numbers were determined by Silhouette analysis. UMAP, Uniform Manifold Approximation and
Projection for Dimension Reduction.
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target diseases. Figure 2 shows the significance levels and
p-values on the ordinate versus the fold change on the ab-
scissa. Genes satisfying the conditions j logFC j > 1 and
p-value <0.05 (Supplementary Tables S1 and S2) were used
for further analysis to identify common gene expression
patterns (Supplementary Tables S3–S5).

Exploration of small-molecule compounds that recover
gene expression patterns altered by disease

Using data for genes with variable expression, we searched
for small-molecule compounds that reversed the expression
pattern changes for each disease using L1000CDS2. The
obtained compounds corresponding to each disease are listed
in Supplementary Table S6.

When these compounds were compared according to the
L1000CDS2 results, common drugs were identified (Fig. 3,
Table 2 and Supplementary Table S7). We found 10 drugs
that corresponded to IBM and PM, 10 drugs that corre-
sponded to PM and DM, and 14 drugs that corresponded to all
three diseases.

These drugs are small-molecule inhibitors and other inter-
fering agents that reverse the changes in gene-specific expres-
sion patterns. Genes regulated by each drug were collated, the
number of times the drug appeared was calculated in a sum set
of results for drugs that appeared more than once, and areas
where two diseases had something in common were sorted
(Supplementary Tables S8 and S9). The following L1000 per-
turbation gene signatures scatter plots were generated:

IBM: https://maayanlab.cloud/clustergrammer/l1000cds2/
61082faed99ec600506a634e

PM: https://maayanlab.cloud/clustergrammer/l1000cds2/
612306c0d99ec600506a6a88

DM: https://maayanlab.cloud/clustergrammer/l1000cds2/
6123071fd99ec600506a6a8a

Biological processes significantly affected
by the diseases

The three target disease datasets were formatted and
GSEA was performed to compare the functions of the ex-

pressed genes. The GO results for the top 20 functions with
Nominal p-value <0.05 and FDR <0.25 are shown in Sup-
plementary Table S10. Genes obtained from GSEA were
classified by function using GO terms (Supplementary
Table S11).

Discussion

In this study, we took advantage of the large-scale iden-
tification and integration of different levels of information
and biological insights that ML offers. The efficiency and
accuracy of drug candidate calculations were superior to
those of previous studies, effectively improving the likeli-
hood of successful drug repurposing, since all drugs were
derived from agents effective against other diseases that
clustered together in the same group.

To examine the efficacy of dimensionality reduction by
UMAP, we directly clustered the 262 · 22,283 dimensions
gene expression data using the k-means method as shown in
Supplementary Table S12. The result failed to show effective

FIG. 2. Discovery of differentially expressed genes. (a) The differentially expressed genes for IBM. (b) The differentially
expressed genes for PM. (c) The differentially expressed genes for DM. The vertical axis reflects the intentionality of the
statistic (-log10[p-value]) and the horizontal axis reflects the magnitude of the change (log2[fold-change]). Red and blue
colors indicate positive and negative directions of significant expression changes, and gray indicates changes below the
significance level. DM, dermatomyositis; IBM, inclusion body myositis; PM, polymyositis.

FIG. 3. Number of small-molecule compounds for each
disease. Numbers in overlapping regions are compounds
shared between the disorders.
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clustering as suggested by Hozumi et al. (2021), although
some of the groups appeared to be clustered appropriately as
Osteoarthritis were clustered into the same group (no. 7).

In addition, for the k-value calculation in the k-means
method, we first considered using the elbow method, but due
to the complexity of the data, a clear inflection point could not
be determined. Therefore, we instead used the Silhouette
method, which has a wider range of applicability. It combines
both cohesion and separation to evaluate the impact on the
clustering results produced by different algorithms, or dif-
ferent ways of running the algorithm, based on the same
original data. This yielded 20 small-molecule compounds for
only one disease, for which applicability to other diseases
was unconfirmed, 10 with unconfirmed efficacy only for DM,
and 10 with unconfirmed efficacy only for IBM.

Of the 421 genes directly affected by the 10 compounds that
were validated for IBM and PM using L1000CDS2 but not
validated for DM, 224 were common to the disease-specific
gene expression data for DM obtained using GEO2R. Of the
407 genes directly affected by the 10 compounds whose effi-
cacy was unconfirmed only for IBM, 307 were common to the
disease-specific genes for IBM obtained using GEO2R.

Next, we obtained BRD-IDs and PubChem Names for 20
small-molecule compounds with unconfirmed efficacy for
only one of the three diseases using side effect prediction
based on the L1000 data (http://maayanlab.net/SEP-L1000/
index.html). PubChem names were obtained and their effi-
cacy as drugs was investigated in several databases (Sup-
plementary Table S13). Of the 10 compounds that were only
validated for IBM and PM, AT-7519, CGP-60474, BMS-
387032, and alvocidib inhibit cyclin-dependent kinases; mi-
toxantrone inhibits DNA cleavage by topoisomerase II;
dFdCTP, a conversion product of gemcitabine, competes
with deoxycytidine triphosphate (dCTP) to inhibit DNA
replication (Chabner et al., 2011); SB-218078 inhibits
checkpoint kinase 1 (Chk1); and CHR-2797 converted into a
pharmacologically active acid product named CHR-79888
inside cells that inhibits the M1 family aminopeptidases; all
of these compounds ultimately induce apoptosis.

Wortmannin is a cell-permeable Phosphatidylinositol 3-
kinase (PI3K) inhibitor. Phorbol-12-myristate-13-acetate is a
potent tumor promoter that is often used in biomedical research
to activate the signal transduction enzyme protein kinase C, and
is linked to gene transcription, cell proliferation, differentiation,
programmed cell death, and immune pathways.

Of the 10 compounds that were only validated for PM and
DM, BRD-K19181733 is a receptor antagonist that inhibits
and attenuates dopaminergic effects. Perhexiline maleate is a
potent inhibitor of carnitine palmitoyltransferase 1. Selu-
metinib and 7878890 are highly selective methyl ethyl ketone
inhibitors. WZ-4-145 is a selective inhibitor of epidermal
growth factor receptor tyrosine kinase activity, which inhibits
cell growth and proliferation. Wiskostatin and BRD-
A90643929 inhibit protein synthesis and function. RO-28-
1675 is a potent allosteric glucokinase activator. CD-1530
markedly enhances catalytic activity, increases glucose me-
tabolism, and lowers blood glucose levels. The mechanism of
action of cyclosporin-a is not clear, but it is thought to bind to
cytophilin and inhibit calcineurin.

When we contrasted the functions of genes that were
specifically altered in one of the target diseases identified by
GSEA with the effects of drugs that were found to be effec-
tive only in the other two diseases according to L1000CDS2,
many overlaps were found, and most were related to immune
responses. Since IBM and DM are both autoimmune in-
flammatory muscle diseases (Nishino, 2020), it is likely that
the reactions inhibited by the 10 validated compounds need to
be suppressed for treatment.

The two-stage prediction approach to drug repurposing
presented here offers innovation to inform future drug dis-
covery and clinical trials in a variety of human diseases. We
predict that drugs shown to be effective for only two diseases
may also be effective for other diseases, IBM and DM, for
which no efficacy was reported previously.

It should be noted, however, that the clustering of gene
expression might reflect shared tissue of origin instead of
disease mechanism in common. The fact that body myositis
(IBM), PM, and DM clustered together could be due to tissue
origin (muscle) rather than common disease etiology or
mechanism, or both. Nonetheless, we believe that our pro-
posed method would be useful for drug repurposing because
the method focuses of the genes with altered expression under
the condition of disorders, which is canceled by the treat-
ment. Further study shall give more concrete perspectives.

Table 2. Breakdown of Common Drugs

IBM PM DM

PX12 B B B
Salermide B B B
NCGC00185684-02 B B B
NVP-TAE684 B B B
AMSACRINE B B B
Ingenol 3, 20-dibenzoate B B B
THIOTHIXENE B B B
BRD-K32896438 B B B
BRD-A34205397 B B B
Wortmannin B B B
SB 218078 B B B
RESERPINE B B B
CHR 2797 B B B
NCGC00188536-01 B B B
AT-7519 B B —
PMA B B —
CGP-60474 B B —
BMS-387032 B B —
Mitoxantrone B B —
Alvocidib B B —
NSC 3852 B B —
Gemcitabine B B —
NTNCB hydrochloride B B —
Vorinostat B B —
PERHEXILINE MALEATE — B B
BRD-K57080016 — B B
Ro 28-1675? — B B
BRD-K25737009 — B B
7878890 — B B
WZ-4-145 — B B
BRD-K19181733 — B B
Wiskostatin — B B
BRD-A90643929 — B B
Cyclosporine — B B

Dark and light yellow shades represent compounds shared by
three and only two diseases, respectively.

DM, dermatomyositis; IBM, inclusion body myositis; PM,
polymyositis; PMA, phorbol-12-myristate-13-acetate.

NEW TWO-STAGE DRUG REPURPOSING APPROACH 345

http://maayanlab.net/SEP-L1000/index.html
http://maayanlab.net/SEP-L1000/index.html


Authors’ Contributions

Y.C. designed the study, performed data analysis, and
wrote the article. M.S. contributed the conceptual design. F.I.
contributed writing the article. T.E. and N.O. contributed to
the research question and edited the article. All authors have
made a significant intellectual contribution, read, and ap-
proved the article.

Acknowledgments

The authors thank the anonymous reviewers as well as the
editor for their valuable and constructive suggestions to im-
prove the article.

Author Disclosure Statement

The authors declare they have no conflicting financial
interests.

Funding Information

No funding was received for this article.

Supplementary Material

Supplementary Data SD1
Supplementary Table S1
Supplementary Table S2
Supplementary Table S3
Supplementary Table S4
Supplementary Table S5
Supplementary Table S6
Supplementary Table S7
Supplementary Table S8
Supplementary Table S9
Supplementary Table S10
Supplementary Table S11
Supplementary Table S12
Supplementary Table S13

References

Chabner BA, Amrein PC, Druker BJ, et al. (2011). Antineoplastic
agents. In: Goodman & Gilman’s The Pharmacological Basis
of Therapeutics, 12th ed. Brunton LL, and Parker KL, eds. New
York: McGraw-Hill Education Press, 1315–1403.

Chen B, Ma L, Paik H, et al. (2017). Reversal of cancer gene
expression correlates with drug efficacy and reveals thera-
peutic targets. Nat Commun 8, 16022.

Ciallella JR, and Reaume AG. (2017). In vivo phenotypic
screening: Clinical proof of concept for a drug repositioning
approach. Drug Discov Today Technol 23, 45–52.

Duan Q, Reid SP, Clark NR, et al. (2016). L1000CDS2: LINCS
L1000 characteristic direction signatures search engine. NPJ
Syst Biol Appl 2, 16015.
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Abbreviations Used

AD ¼ Alzheimer’s disease
AI ¼ artificial intelligence

BOEC ¼ blood outgrowth endothelial cells
Chk1 ¼ checkpoint kinase 1
CPT1 ¼ carnitine palmitoyltransferase 1
dCTP ¼ deoxycytidine triphosphate

DM ¼ dermatomyositis
DRIAD ¼ drug repurposing in Alzheimer’s disease

FDA ¼ U.S. Food and Drug Administration
FDR ¼ false discovery rate
GEO ¼ Gene Expression Omnibus

GO ¼ Gene Ontology
GOFAI ¼ good old fashioned artificial intelligence
GSEA ¼ gene set enrichment analysis

IBM ¼ inclusion body myositis

IgA ¼ immunoglobulin A

logFC ¼ log fold-change

MAS5 ¼ Affymetrix MicroArray Suite 5.0

ML ¼ machine learning

NCBI ¼ National Center for Biotechnology Information

PBMC ¼ peripheral blood mononuclear cells

PCA ¼ principal component analysis

PI3K ¼ permeable Phosphatidylinositol 3-kinase

PM ¼ polymyositis

PMA ¼ phorbol-12-myristate-13-acetate

RMA ¼ robust multiarray average

UMAP ¼ Uniform Manifold Approximation and Projection
for Dimension Reduction
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