Li et al. EINMMI Research (2015) 5:71
DOI 10.1186/s13550-015-0151-x

© EJNMMI Research

a SpringerOpen Journal

REVIEW Open Access

Targeting activated hepatic stellate cells

@ CrossMark

(@HSCs) for liver fibrosis imaging

Dan Li'’@®, Li He', Huizhuang Guo®, Hanwei Chen®” and Hong Shan'**"

Abstract

Following injurious stimuli, quiescent hepatic stellate cells (qHSCs) transdifferentiate into activated HSCs (aHSCs).
aHSCs play pivotal roles in the onset and progression of liver fibrosis. Therefore, molecular imaging of aHSCs in liver
fibrosis will facilitate early diagnosis, prognosis prediction, and instruction and evaluation of aHSC-targeted treatment.
To date, several receptors, such as integrin av3, mannose 6-phosphate/insulin-like growth factor Il receptor
(M6P/IGF-IIR), collagen type VI receptor (CVIR), platelet-derived growth factor receptor-3 (PDGFR-B), vimentin,
and desmin, have been identified as biomarkers of aHSCs. Corresponding ligands to these receptors have also
been developed. This review will discuss strategies for developing aHSC-targeted imaging in liver fibrosis.
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Introduction

Liver fibrosis is a major public health problem and
contributes to substantial morbidity and mortality. It-
erative injury, abnormal wound healing processes, and
redundant extracellular matrix (ECM) accumulation
lead to liver fibrosis. Liver fibrosis can be divided into
several stages according to the extent of fibrosis. Cir-
rhosis, an advanced stage of liver fibrosis, can cause
many severe complications including portal hyperten-
sion, hepatic insufficiency, blood disorders, and
hepatocellular carcinoma. Early diagnosis and precise
staging of liver fibrosis are very important in man-
aging the disease.

Although liver biopsy is regarded as the gold standard to
evaluate liver fibrosis, it has several disadvantages including
invasive nature, sampling error, inter/intra-observer vari-
ation in the pathological measurement, and the related
complications [1, 2]. Multiple serum markers have
been employed for liver fibrosis assessment but with
limited sensitivity and specificity. Besides conventional
imaging techniques, several new imaging techniques,
including ultrasound-based transient elastography
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(TE) [3, 4], magnetic resonance (MR) elastography
[5-7], acoustic radiation force impulse (ARFI) ultra-
sound imaging [8, 9], MR diffusion-weighted imaging
(DWI) [10-12], Tlp MR imaging [13-15], and MR
perfusion-weighted imaging (PWI) [16, 17], have been
applied to detect liver fibrosis. However, these tech-
niques are usually based on morphological alterations
of the liver and thus have difficulties to detect liver
fibrosis at the early initiation stage or reflect the ac-
tivity of liver fibrosis accurately. On the contrary, mo-
lecular imaging can provide the cellular or molecular
information of a diseased liver, which will facilitate
early diagnosis and accurate staging of liver fibrosis.
In this review, we summarize recent studies on acti-
vated hepatic stellate cell (aHSC)-targeted imaging in
liver fibrosis.

Biological and pathological function of hepatic stellate
cells

Hepatic stellate cells (HSCs) are situated in the space of
Disse, between hepatocytes and sinusoidal endothelial cells.
They constitute ~15 % of the total liver resident cells [18]
and account for ~1.5 % of the total liver volume. In normal
liver, HSCs are in the quiescent state and play important
roles in supporting liver development and regeneration,
vitamin A storage, immunoregulation, liver hemodynamic
homeostasis, etc. [19]. Following injurious stimuli, quies-
cent HSCs (qHSCs) transdifferentiate into aHSCs. HSC
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activation consists of two main phases: initiation and per-
petuation [19, 20]. During the initiation phase, HSCs have
gene and phenotype alteration to facilitate cellular response
to a range of cytokines. After entering the perpetuation
phase, HSCs are characterized by various changes in cell
behavior, such as increase in the absolute cell number,
ECM production, migration towards chemokines, contrac-
tion, loss of retinoid droplets, altered matrix degradation,
and inflammatory signaling. aHSC quantity is clearly associ-
ated with fibrosis severity [21, 22]. Moreover, resolution of
fibrosis is attributed to aHSC apoptosis [23], senescence
[24], or their reversion to the quiescent state. Based on their
important pathological role, aHSCs are essential targets for
the diagnostic imaging of liver fibrosis (Fig. 1). Molecular
imaging of aHSCs in liver fibrosis is expected to achieve the
following objectives: (1) early diagnosis (aHSC detection be-
fore the pathological changes in the liver), (2) prognosis
prediction (progression or regression), and (3) instruction
and evaluation of aHSC-targeted treatment.

Targets with imaging

Integrin avf33

Integrins are heterodimeric glycoprotein receptors
formed by a and P subunits. To date, 18 types of a sub-
units and 8 types of [ subunits have been recognized in
mammals [25]. Different assemblies of the a and B sub-
units result in 24 distinct integrins [26], and each type of
integrin has a defined binding specificity and signal
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transduction pathway. Integrins are the major receptors
that mediate cellular adhesion and reaction to the ECM
and thus play essential roles in regulating cell migration,
growth, division, survival, differentiation, and apoptosis.
Dysfunction of integrins is found in various pathological
processes. Among the integrin family, integrin avf3 has
been most thoroughly studied. It is highly expressed in
both tumor cells [27] and activated endothelial cells
[28-30] and regulates tumor progression, metastasis,
and angiogenesis. Various ECM proteins like vitronectin,
fibrinogen, and fibronectin interact with the integrin
avPp3 via the arginine-glycine-aspartate (RGD) motif
[31]. Based on this discovery, diverse RGD derivatives
have been developed using many synthetic strategies in-
cluding RGD-flanking amino acid residues (RGD4C,
RGD10) [32, 33], cyclization (c(RGDyK, cRGDfK) [34, 35],
and N-methylation (cCRGDf-N(Me)V) [36]. Several nucleic
acid aptamers were also reported to specifically recognize
integrin avp3 [37-39]. Integrin avf3-targeted imaging
[40, 41] and therapy [42, 43] in tumor have been exten-
sively studied using these RGD ligands.

Studies in liver fibrosis show that integrin avp3 is upreg-
ulated on aHSCs [44—46] and promotes HSCs survival and
proliferation [44]. In contrast, the expression level of in-
tegrin avP3 is low in qHSCs, hepatocytes, and other non-
parenchymal cells [47]. Therefore, integrin avp33 can serve
as a novel target for molecular imaging of HSCs. Cyclic
pentapeptides cRGDyK [34] and cRGDfK [35] are the
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Fig. 1 Schematic diagram of activated hepatic stellate cell (aHSCs)-targeted imaging in liver fibrosis. a In normal liver, HSCs are in the quiescent
state, i.e, quiescent HSCs (gHSCs). b Following fibrotic stimuli, gHSCs transdifferentiate into activated HSCs (aHSCs). Receptors that are specifically
upregulated on aHSCs are potential targets for molecular imaging of liver fibrosis. ¢ Magnified image that demonstrates imaging probes’ specific
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most exploited for integrin avp3 targeting. Cellular experi-
ments demonstrated that cRGDfK was uptaken by aHSCs
instead of qHSCs or hepatocytes [45]. *°I-cRGDfK-based
historadioautography assay of rat hepatic sections showed
that the hepatic relative densitometry was positively corre-
lated with the severity of liver fibrosis [47]. Nuclear im-
aging, a highly sensitive technology, is widely used in both
pre-clinical and clinical studies. *™Tc is one of the most
popular radionuclides because of its desirable nuclear
properties (¢1,=6.02 h, Ey=140.51 keV, Iy=89.06 %),
facile availability, and low cost. Li et al. [47] systemically
investigated the potential of **™Tc-labeled cRGDfK for
single-photon emission computed tomography (SPECT)
imaging of HSC activity in fibrotic livers. **™Tc-cRGDfK
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was administrated through intravenous (i.v.) injection to
assess the hepatic expression of integrin avp3 in fibrotic
(thioacetamide, TAA treatment) and control rats. At
45 min post injection (p.i.), the mean radioactivity ratio of
the liver to heart (MRAR) could distinguish among rats
with normal, mild fibrotic (TAA treatment for 3 weeks),
or advanced fibrotic (TAA treatment for 9 weeks) liver
(Fig. 2). 9MTe cRGDfK uptake in fibrotic liver was
blocked successfully through co-administration of cold
c¢RGDIK, which confirmed the specificity of liver uptake.
Small peptides are predominantly cleared via the kidney.
Besides, integrin avf3 is expressed on renal glomerular
endothelial cells and, to a lesser extent, on tubular endo-
thelial cells [48, 49]. Therefore, kidney uptake of 99mTe.
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Fig. 2 Radionuclide images of the integrin av33 expression in the livers of the normal control and liver fibrosis rats. Mild and advanced fibroses
were respectively induced in rats by thioacetamide (TAA) treatment for 3 and 9 weeks. Each animal was administered 6 uCi of " Tc-cRGDfK by
way of the penile vein. a The representative radionuclide images were obtained at 15, 30, and 45 min after administration. b The region
of interest (ROI) in the liver and heart was discriminated, and the radioactivity (counts/pixel) ratio of the liver to heart was calculated and
compared. Data represent means +SD (n=3 per group). *P < 0.05 versus the control group, #P < 0.05 versus mild fibrosis. Reproduced
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cRGDSK was high. In this condition, radiotoxicity to the
kidneys needs to be considered.

To improve integrin avp3-targeted imaging, the bind-
ing avidity for integrin avp3 has been maximized
through the use of dimeric or multimeric cyclic RGD
peptides [48, 50-52]. **™Tc-3PRGD2 (3PRGD2 = PEG4-
E[PEG4-c(RGDfK)]2; PEG4 = 15-amino-4,7,10,13-tetra-
oxapentadecanoic acid) is one promising radiotracer
[53-55]. The addition of PEG4 linkers increases the
distance between the two RGD motifs and thus facili-
tates simultaneous binding to the neighboring integrin
avp3 [53]. 99mTe 3PRGD, shows fast excretion kinetics
from the liver and kidneys [53, 54], which will lead to
better lesion-to-background contrast. Moreover, **™Tc-
3PRGD, can be readily produced in high yield and pur-
ity from a kit formulation [54, 55]. In clinical trials,
%MTc-3PRGD2 imaging is sensitive for cancer detec-
tion [55, 56]. Zhang et al. further used 99mTe 3PRGD2
for a liver fibrosis study [57]. At 30 min p.i., the MRAR
in rats with advanced liver fibrosis (1.98 + 0.08) was sig-
nificantly higher than that in control rats (1.50 £ 0.12).
Also, the liver t,, in the fibrosis group (27.07 +
10.69 min) was significantly longer than that in the
control group (12.67 £4.10 min). However, the re-
searchers did not study whether **™Tc-3PRGD2 could
be used for fibrosis staging. In both of the above two
studies [47, 57], clinical SPECT machines were used for
imaging; thus, the MRAR was relatively low and should
be improved to attain precise diagnosis. Since **™Tc-
3PRGD2 has the potential for clinical translation,
clinical trials in patients with liver fibrosis are also
expected.

Magnetic resonance (MR) imaging produces images
using magnetic fields and radio waves. It is absent of radi-
ation and excellent at providing both anatomic and func-
tional information. Both T1-positive (e.g., gadolinium
chelates) and T2-negative (e.g., superparamagnetic iron
oxide nanoparticles) contrast agents are used for MR im-
aging to boost up imaging sensitivity. Wang et al. conju-
gated cRGDyC with ultrasmall superparamagnetic iron
oxide (USPIO) for aHSC-targeted MR imaging [46]. The
preparation of the cRGDyC-USPIO probe includes three
steps: synthesis of USPIO coated with oleic acid; surface
coating with 1,2-distearoyl-sn-glycero-3-phosphoethanola-
mine-N-[carboxy(polyethylene glycol)-2000 (DSPE-PEG)]
and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[maleimide(polyethylene glycol)-2000 (DSPE-PEG-Mal)];
and cRGDyC conjugation to the nanoparticles. cRGDyC-
USPIO was 13 + 3 nm in diameter. After administration of
c¢RGDyC-USPIO or USPIO, MR imaging was performed
in control rats and rats with early-staged liver fibrosis
(CCl4 treatment for 3 weeks) using a clinical 1.5 Tesla (T)
scanner. At 4 h p.i., liver T2 relaxation times of fibrosis
rats treated with cRGDyC-USPIO decreased significantly
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compared to those of normal rats with cRGDyC-USPIO,
normal with USPIO, and fibrosis with USPIO (Fig. 3). Tis-
sue assay confirmed that cRGDyC-USPIO could specific-
ally target aHSCs. Iron oxide-based T2 imaging not only
has the advantage of high sensitivity but also has two
major disadvantages: negative contrast effects and artifacts
caused by magnetic susceptibility [58]. On the contrary,
paramagnetic material-based T1 imaging exerts a bright
signal enhancement and has superior spatial resolution
[59]. T1-T2 dual-modal MR imaging can combine the
strength of each modality and thus offer more accurate
information [60]. aHSC-targeted T1-T2 dual-modal MR
imaging studies are expected in the future.

Vimentin and desmin

Both vimentin and desmin belong to the type III inter-
mediate filament protein family and play important roles
in maintaining the stability of cellular structure. Besides
being distributed in the cytoplasm, these proteins are also
recruited to the cell surface in pathological conditions
[61-64]. During HSC activation, the expression of both
vimentin and desmin is strongly upregulated [65]. N-acet-
ylglucosamine (GlcNAc) was identified as a specific glyco-
side ligand to vimentin and desmin and bound to the rod
II domain of these proteins on plasma membrane surfaces
[64]. Further study showed that GIcNAc-bearing polymers
could bind to freshly isolated HSCs and suppressed cellu-
lar activation during in vitro culture [66]. In another study,
GlcNAc was conjugated to indocyanine green (ICG) and
polyethyleneimine (PEI)/TGFP1 siRNA (PEI-D-GIcNAc-
ICG/siRNA) for liver fibrosis imaging and therapy [67].
Optical imaging was carried out to monitor the distribu-
tion of the complexes (Fig. 4). At 1 day p.i,, the complexes
were retained in fibrotic livers, whereas they had been
cleared out in normal livers. Moreover, more PEI-D-
GIcNACc-ICG/siRNA  was  distributed in fibrotic livers
compared to the control complex that was absent of
GlcNAc ligand. Tissue analysis showed that 79 % of the
PEI-D-GIcNAc-ICG/siRNA complex targeted to HSCs. In
comparison, only 32 % of the control complex targeted to
HSCs. These results imply that GlcNAc could be a valid
ligand for aHSC targeting. However, in the above study,
imaging was performed at late time points (1 day). To
facilitate clinical application, GIcNAc-based imaging is
expected to be optimized for liver fibrosis detection at
early time points after probe injection. In addition, the lin-
ear heptapeptide VNTANST was identified as a specific
ligand that recognized vimentin on the cell surface [68].

Targets without imaging (future work)

Mannose 6-phosphate/insulin-like growth factor Il receptor
(M6P/IGF-IIR)

Mannose 6-phosphate/insulin-like growth factor II
receptor (M6P/IGF-IIR) is a 300-kDa single-chain
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Fig. 3 MR images of the avf33 integrin expression in the livers of the normal control and liver fibrosis rats. a MR imaging studies in normal rats (NR)
and injured rat (IR, with early-staged liver fibrosis, CCl4 treatment for 3 weeks) after administration of USPIO or cRGDyC-USPIO. b The reduction of T2
relaxation times after the administration of USPIO or cRGDyC-USPIO in the normal and injured rat groups. Reproduced with permission from ref. [46]

transmembrane glycoprotein. Fifteen repeating do-
mains constitute its large extracytoplasmic region.
M6P/IGE-IIR binds to three types of ligands: IGF-II,
the M6P-bearing proteins, and retinoic acid. One
molecule of M6P/IGF-IIR binds one molecule of
IGF-II and two molecules of M6P [69, 70]. IGF-II
and M6P have their respective binding sites, but
there is a mutual inhibition between these two ligands
[71]. M6P/IGF-IIR carries out various functions, including
lysosomal protein sorting and growth regulation. In nor-
mal liver, qHSCs express few M6P/IGE-IIR. But the recep-
tor is upregulated on the plasma membrane of aHSCs
during liver fibrosis [72, 73]. At the cell membrane,
MG6P/IGE-IIR can bind to transforming growth factor-f3
(TGF-B) complex via M6P, convert latent TGF-p into
active TGE-f [72, 74], and thus promote fibrogenesis.
In 1999, Beljaars et al. took the lead to demonstrate
that human serum albumin (HSA) modified with M6P
could be taken up by aHSCs in fibrotic livers [75]. When
28 molecules of M6P were coupled to 1 molecule of
HSA (M6P,g-HSA), the hepatic accumulation increased

to 59.2+ 9.2 % in fibrotic rats and M6P,g-HSA was pref-
erentially uptaken by aHSC. This drug carrier (M6P-
HSA) has been used to cargo therapeutic compounds to
aHSCs in liver fibrosis [76—79], leading to enhanced
drug efficacy and minimized drug toxicity. To date,
M6P/IGE-IIR-targeted aHSC imaging has not been re-
ported and thus is expected in the future. Besides, alter-
nation of phosphate group in M6P with phosphonate,
carboxylate, or malonate groups leads to improved bind-
ing affinity and stability [80—83]. These analogs could be
used to facilitate aHSC targeting.

Collagen type VI receptor (CVIR)

Collagen type VI (CVI) is a heterotrimeric glycoprotein
composed of three different a chains, a1(VI), a2(VI), and
a3(VI) [75]. a3(VI) chains can be substituted by a4(VI),
a5(VI), and a6(VI) chains [84]. In cytoplasm, CVI mono-
mers are assembled into dimmers and subsequently into
tetramers. End-to-end alignment of secreted tetramers
forms microfibrils in ECM [85]. CVI stimulates cell
growth, promotes cell survival, and modulates matrix
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homeostasis through interaction with cells and other
matrix molecules [86]. HSCs are the major cells that pro-
duce CVI in the liver [87]. CVI is mainly distributed in the
portal areas of normal livers. When liver fibrosis occurs,
the accumulation of this type of collagen is enhanced, par-
ticularly in the fibrous septa [88, 89]. CVI can bind to
many types of receptors including integrins alfl, a2p1,
and alfl [90-92] and neuron/glia-type 2 (NG2) [93-95].
There are several RGD sequences in CVI, but the cyclic
octapeptide C*GRGDSPC* selectively antagonizes the
binding of CVI to cells [96]. The specific type of CVI
receptor (CVIR) that mediates the attachment of this
peptide to cells has not been defined.

HSA modified with 10 C*GRGDSPC* moieties (pCVI-
HSA) was demonstrated as a carrier specifically targeting
aHSCs [97]. Cellular experiments showed that aHSCs
uptook much more pCVI-HSA compared to qHSCs.
This implies that CVIR is upregulated on aHSCs. In fi-
brotic livers, aHSCs were the principal cells that bound
the carrier. The cyclization of C*GRGDSPC* is accom-
plished via disulfide bond generation between two adja-
cent cysteine residues. A further modification was made
to the peptide by substituting lysine for cysteine which
resulted in C*GRGDSPK* [98, 99]. The modified peptide
is cyclized through an amide linkage between the cysteine

and lysine residues and thus is more stable. This pep-
tide was conjugated to liposomes for aHSC-targeted
drug delivery in liver fibrosis [98, 99]. aHSC-targeted
imaging based on this kind of peptide is anticipated
in the future studies.

Platelet-derived growth factor receptor-B (PDGFR-f3)

The platelet-derived growth factor (PDGF) is one of the
most extensively investigated growth factors. In liver fibro-
sis, PDGF contributes to several behavior changes of HSCs
in the process of activation, including proliferation, migra-
tion towards chemokines, and loss of retinoid droplets
[100]. The PDGF family contains five dimeric members
(PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and PDGEF-
DD) derived from four distinct polypeptide chains (PDGE-
A, PDGF-B, PDGF-C, PDGF-D) [100, 101]. PDGF-A and
PDGEF-B are secreted in an active form, whereas PDGF-C
and PDGF-D demand extracellular proteolytic activation
after being secreted. PDGF members exert their actions
through binding to two different receptors, PDGF receptor
PDGFR-a and PDGFR-B. PDGFR-a binds to PDGF-AA,
PDGF-AB, PDGEF-BB, and PDGF-CC, while PDGFR-$
binds to PDGF-BB and PDGF-DD [101]. In qHSCs, there
is a constitutive expression of PDGFR-a, whereas PDGFR-f
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expression is not detected [102]. The expression level of
PDGER-p is significantly increased on aHSC [102, 103].
Arginine-27 and isoleucine-30 in the PDGEF-B chain are
crucial for receptor binding [104]. Based on this work,
Beljaars et al. designed a cyclic peptide (C*SRNLIDC*) that
recognized PDGF receptors [105]. A targeted drug carrier
was further produced through covalently linking 15
C*SRNLIDC* moieties to 1 HSA moiety (pPB-HSA) [105].
In vitro studies demonstrated that the cellular uptake of
pPB-HSA in aHSCs was significantly higher than that in
qHSCs. After iv. injection, the majority of pPB-HSA was
localized in aHSCs of fibrotic livers. C*SRNLIDC* has been
applied to aHSC-targeted liver fibrosis therapy using HSA
or liposomes as drug delivery vehicles [106—108]. The linear
tridecapeptide ANFLVWEIVRKKP [109] and cyclic PDGF-
BB”*"®" (R*KIEIVRKKC*) [110, 111] have also been identi-
fied as a PDGF-BB analog that recognized PDGF receptors.
Although the PDGF-B chain is a ligand to both types of
PDGER, its asparagine-117 and leucine-119 are principally
critical for PDGFR-P binding [112]. Therefore, it is possible
to design PDGF-BB analogs which exclusively bind to
PDGEFR-p. Besides, a PDGFR-[-specific RNA aptamer was
reported recently [113]. Application of the above ligands to
aHSC-targeted imaging remains to be investigated.

Future prospects

Several factors should be considered when designing im-
aging probes for aHSCs. First, the liver is regarded as
the second most complex organ. Other cell types of the
liver, such as Kupffer cells, sinusoidal endothelial cells,
and hepatocytes, may nonspecifically uptake the probes.
High molecular weight proteins, like serum albumin, are
mainly metabolized by the liver. Although serum
albumin-based carriers (M6P,;-BSA, pCVI-HSA, pPB-
HSA) preferentially targeted HSCs in fibrotic livers, they
were uptaken by endothelial cells [75, 97] or hepatocytes
[105] in normal livers. Therefore, the accumulation level
of these carriers in both fibrotic and normal livers was
similar [75, 97, 105]. This characteristic makes these
carriers suitable for HSC-targeted drug delivery rather
than imaging. Low molecular weight ligands (such as
peptides, aptamers), which are cleared mainly through
the kidneys, will be more appropriate for this kind of
imaging. Besides, the addition of PEG to probes could
decrease the nonspecific uptake by Kupffer cells [46].
Second, novel MR techniques including MR elastogra-
phy [5-7], MR DWI [10-12], T1p MR imaging [13-15],
and MR PWI [16, 17] have emerged for detecting liver
fibrosis. A combination of these techniques with aHSC-
targeted MR imaging could provide abundant disease
information on anatomical, functional, and molecular
levels. Nuclear imaging techniques, including SPECT
and positron emission tomography (PET), are often used
for tumor imaging [114]. They not only have high
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sensitivity but also cause radio damage. Therefore, the
pros and cons should be weighed before applying these
techniques to liver fibrosis diagnosis. Third, ultrasound
imaging has the advantages of high soft tissue contrast,
low cost, and no radiation. Various kinds of bubbles
have been developed as ultrasound contrast agents
[115]. Among them, nano-sized bubbles, which can ex-
travasate from blood vessels, are more suitable for
imaging of extravascular cells. Thus, aHSC-targeted
ultrasound imaging could potentially be accomplished
through conjugating specific ligands to nanobubbles.
Four, recent studies imply the bidirectional crosstalk be-
tween aHSCs and tumor cells [116, 117]. Tumor-derived
factors activate HSCs, and in turn, aHSCs promote
phenotypic changes, proliferation, and invasion of tumor

Table 1 aHSCs biomarkers and corresponding ligands
(*aHSC-targeted imaging studies)

Biomarker Ligand Reference
Integrin avB3 cRGDfK [35, 45, 47%, 57%]
cRGDyC [46%]
RGD4C (ACDCRGDCFCG) [32]
RGD10 (DGARYCRGDCFDG) [33]
cRGDf-N(Me)V [36]
Apt-avB3-1 [37]

(5'-GGGAGACAAGAAUAAACGC
UCAAUUCAACGCUGUGAAGGG
CUUAUACGAGCGGAUUACCCU
UCGACAGGAGGCUCACAAAAGGC-3')

Apt-avP3-2 [38]
(5-UUCAACGCUGUGAAGGGCU
UAUACGAGCGGAUUACCC-3)

Apt-av3-3 [39]

(5" AGTTCGZZZZAAGAAAZZAG
CACACCGZZGACZZGZZZAGZG
GCGGACCA-3)

Z: 5-N-(benzylcarbox-yamide)-2"-
deoxyuridine

Vimentin and  N-acetylglucosamine (GIcNAc)

[
desmin VNTANST [68]
M6P/IGF-IIR M6P [75]
Phosphonate, carboxylate, or malonate  [80-83]
analogs of M6P
CVIR C*GRGDSPC* [96, 97]
C*GRGDSPK* [98, 99]
PDGFR- C*SRNLIDC* [105]
ANFLVWEIVRKKP [109]
PDGF-BB’*®! [110, 1111
(R*KIEIVRKKC*)
Apt-PDGFR-3 [113]

(5-UGUCGUGGGGCAUCGAGUA
AAUGCAAUUCGACA-3)
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cells. Therefore, aHSC-targeted imaging in liver cancers
could help better understand the pathophysiology of the
tumor microenvironment and further instruct therapy.

Conclusions

HSC activation plays pivotal roles in the onset and pro-
gression of liver fibrosis. Receptors, such as integrin
avp3, M6P/IGF-IIR, CVIR, PDGFR-B, vimentin, and
desmin, have been identified as biomarkers of aHSCs.
Corresponding ligands to these receptors have also been
developed (summarized in Table 1). Many studies fo-
cused on aHSC-targeted drug delivery for the treatment
of liver fibrosis through taking advantage of these li-
gands. However, to our knowledge, only a few studies
targeted aHSCs for in vivo imaging. To facilitate clinical
translation, further studies are expected to optimize im-
aging probes for aHSCs.
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