
Exploration of the DARTable Genome-
a Resource Enabling Data-Driven
NAMs for Developmental and
Reproductive Toxicity Prediction
Elzbieta I. Janowska-Sejda, Yeyejide Adeleye* and Richard A. Currie*

Product Safety Early-Stage Research, Syngenta International Research Centre, Bracknell, United Kingdom

The identification of developmental and reproductive toxicity (DART) is a critical component
of toxicological evaluations of chemical safety. Adverse Outcome Pathways (AOPs)
provide a framework to describe biological processes leading to a toxic effect and can
provide insights in understanding the mechanisms underlying toxicological endpoints and
aid the development of new approach methods (NAMs). Integrated approaches to testing
and assessment (IATA) can be developed based on AOP knowledge and can serve as
pragmatic approaches to chemical hazard characterization using NAMs. However, DART
effects remain difficult to predict given the diversity of biological mechanisms operating
during ontogenesis and consequently, the considerable number of potential molecular
initiating events (MIEs) that might trigger a DART Adverse Outcome (DART AO).
Consequently, two challenges that need to be overcome to create an AOP-based
DART IATA are having sufficient knowledge of relevant biology and using this
knowledge to determine the appropriate selection of cell systems that provide
sufficient coverage of that biology. The wealth of modern biological and bioinformatics
data can be used to provide this knowledge. Here we demonstrate the utility of
bioinformatics analyses to address these questions. We integrated known DART MIEs
with gene-developmental phenotype information to curate the hypothetical human
DARTable genome (HDG, ∼5 k genes) which represents the comprehensive set of
biomarkers for DART. Using network analysis of the human interactome, we show that
HDG genes have distinct connectivity compared to other genes. HDG genes have higher
node degree with lower neighborhood connectivity, betweenness centralities and average
shortest path length. Therefore, HDG is highly connected to itself and to the wider network
and not only to their local community. Also, by comparison with the Druggable Genomewe
show how the HDG can be prioritized to identify potential MIEs based on potential to
interact with small molecules. We demonstrate how the HDG in combination with gene
expression data can be used to select a panel of relevant cell lines (RD-1, OVCAR-3) for
inclusion in an IATA and conclude that bioinformatic analyses can provide the necessary
insights and serve as a resource for the development of a screening panel for a DART IATA.
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1 INTRODUCTION

The identification of developmental and reproductive toxicity
(DART) is a critical component of toxicological evaluations in the
safety assessment of new chemicals, agrochemicals, and
pharmaceuticals. Typically, this has required testing of
chemicals in vivo using vertebrate species (usually rats and
rabbits, but also sometimes mice, primates or latterly
zebrafish) as models of humans. As a scientific field,
toxicology is moving increasing towards using more modern
scientific tools and understanding by applying so called new
approach methods (NAMs). For instance, the concept of the
adverse outcome pathway (AOP) (Ankley et al., 2010) organizes
the required key events (KE) that underly adverse outcomes
(AOs). Briefly, processes starting from the molecular initiating
event (MIE) through additional KEs at the different levels of
biological organization (biochemical, cellular, tissue, organ) to
whole organism and population level responses are mapped to
determine an AOP which could aid the development of NAMs by
providing a focus on the relevant KEs that can be prioritized for
method development. Integrated approaches to testing and
assessment (IATAs) can be developed based on quantitative
knowledge of the key event relationships (KERs) within the
AOPs and so can serve as pragmatic science-based approaches
to chemical hazard characterization. Next generation risk
assessment frameworks have been proposed (Thomas et al.,
2019) that use tiered testing strategies and the quantitative and
mechanistic knowledge codified in AOPs as ways to identify
points of departure to be used in risk assessments.

However, DART effects remain difficult to predict given the
diversity of biological mechanisms operating during ontogenesis.
Consequently, there are many potential MIEs that might trigger a
DARTAO. To build an effective IATA predictive of DART effects
requires us to have a sufficiently complete understanding of the
AOPNetwork (AOPN) that result in DARTAOs. Identifying this
DART AOPN is a key building block that provides the knowledge
needed to create an IATA for use in next generation DART risk
assessments. The identification of the molecular initiating events
(MIEs) within this AOPN is therefore the first critical pieces of
information to be discovered. A second is to show that the
proposed tier 1 screens using omics and image based high-
content methods provide sufficient biological coverage to
detect these DART MIEs. If we knew this, then we could
create a DART IATA that uses broad in vitro tier 1 screens to
generate hypotheses for DART potential and then pragmatically
focus higher tier testing to explore these hypotheses by identifying
the target site exposure that is sufficient to quantitatively trigger
the MIE.

Detailed information on our current understanding of biology
and model systems is accessible through a wide variety of
bioinformatics data sources. Consequently, it has been
proposed that using appropriate bioinformatic analyses may
aid the development of DART IATAs (Baker et al., 2018).
Here we report how such an integrated bioinformatic analysis
of gene-phenotype, MIE, human protein interactome and cell line
mRNA expression data can provide solutions to aid DART IATA
building. We intend these data to act as a resource for the

community to aid in the design of experiments towards
building a tier 1 screen in a DART IATA. The first solution
aims to identify and suggest prioritization approaches for DART
MIEs protein targets. The second solution is an approach to
rationally select a panel of cell lines that could be used in an IATA
to provide adequate coverage of the biology. We hypothesize an
AOPN that results in developmental or reproductive defects in
mammals. At a minimum, this hypothetical DART-AOPN must
contain all gene products that an exogenous toxicant might bind
with to trigger an MIE. In addition, it must also contain all genes
and gene products that might have their abundance changed or
activity altered in response to an exogenous toxicant. This
comprehensive set of proteins that participate in MIEs or are
the transcriptomic/proteomic KE biomarkers of DART effects we
define for this paper as the hypothetical “human DARTable
genome” (HDG) by analogy to the “Druggable Genome,”
which is a comprehensive subset of genes that meet some
specific criteria for potential to be drug targets (Finan et al.,
2017). Baker et al. (2018) proposed a developmental toxicity
ontology that codified the relationships between disparate data
types that might be helpful in solving this problem. Indeed, it has
been shown that some gene knockouts (KOs) phenocopy adverse
events caused by chemicals (Deaton et al., 2019). Therefore, we
hypothesize that by mining the bioinformatic information on
developmental phenotypes caused by both chemicals and mouse
gene knockout we could identify other hypothetical MIEs for
DART effects. Furthermore, by analyzing the properties of these
genes we can prioritize the HDG to identify the likely MIEs for
DART. Once the HDG is identified, we demonstrate that it is
possible to use baseline gene expression data to rationally select a
panel of in vitro cell lines which provides adequate coverage of the
biological pathways and HDG.

2 MATERIALS AND METHODS

2.1 Curation and Evaluation of the Human
DARTable Genome
The hypothetical HDG (∼5 k genes) was assembled by combining
three different gene sets. Firstly, we identified a set of 123 genes
(referred to as knownMIE genes) associated with high confidence
to DART endpoints. The MIEs were based mostly on the
extraction of specific target proteins described by Wu et al.
(2013). This list was then supplemented by a small number of
additional targets based on an internal review of findings seen in
pregnant preliminary dose setting studies that were conducted in
rats or rabbits with Syngenta proprietary research compounds
between 2005 and 2018 (personal communication). The criteria
for inclusion in this supplemental list were that at least two
chemicals with the same molecular target induced the same
pattern of major malformations and either 1) the available
evidence showed that the systemic blood concentration was
sufficient to modulate the activity of that target at the lowest
observed effect level for the developmental effects and/or 2) the
chemicals were from different chemical series. When gene
assignments were ambiguous, we expanded the gene list to
include all members of a gene family. Because many
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teratogens are also embryo lethal at high dose levels, the second
gene set was provided by the ∼1.6 k genes curated as pup/embryo
lethal in the Deciphering Mechanisms of Developmental
Disorders database (https:/dmdd.org.uk) (referred to as
Embryo Lethal Genes). Finally, we extracted the ∼4 k genes
that had been curated with the annotation “Developmental
Disorders” by searching Diseases and Function in the
Ingenuity Knowledge base (referred to as IPA Phenotype)
using the Ingenuity Pathway Analysis tool (IPA) (QIAGEN
Inc., https://www.qiagenbioinformatics.com/products/
ingenuitypathway-analysis). All three gene sets used to
compile the HDG in this paper were extracted using database
versions existing in 2018. Rodent gene identifiers were mapped to
the corresponding human orthologues using UniProt (UniProt
Consortium, 2021) and the complete list of the HDG can be
found in Supplementary File S1. The HDG was compared to the
Human Druggable Genome (Finan et al., 2017) and overlaps
between the genomes were visualized using Venny 2.1 (Oliveros,
2007).

The distribution of protein classes encoded by genes in the
HDG was determined by performing over/underrepresentation
analyses of Panther Superfamily Protein Classes (Mi, et al., 2020)
using a Benjamini-Hochberg false discovery rate (FDR) threshold
of p < 0.05. Differentially overrepresented (FDR corrected p <
0.05) Gene Ontology Biological Processes (GO-BPs) for the HGD
were determined in ShinyGO (Xijin Ge et al., 2020) and were
further clustered using MonaGO (Xin et al., 2020) to group
similar GO-BP terms based on Resnik (Resnik, 1999)
similarity (minimum of 2.7) between terms.

2.2 Network Analysis of the Human
DARTable Genome
The HDG was mapped on to the Human Protein-Protein
Interaction (HPPI) network from IntAct, downloaded on
August 2021, (Orchard et al., 2013), and was visualized and
analyzed using Cytoscape (Shannon et al., 2003). Duplicate
edges and self-loops were removed from the network. The
topological properties of each node within the human
interactome (node degree, clustering coefficient, average
shortest path length, betweenness centrality, closeness
centrality, eccentricity, neighborhood connectivity and
topological coefficient) were calculated and
Kolmogorov–Smirnov nonparametric statistical test was
performed to compare distributions of topological properties
between HDG and non-HDG. Then, the subsequent analyses
were performed on the largest connected component.

Communities (highly connected groups of nodes/genes
usually involved in similar functions) within the first and
largest connected component of the network were determined
by Louvain clustering, a greedy agglomerative algorithm
(Blondel, 2008), using NetworX Python. Each community was
evaluated to determine over/under representation of MIE and
DARTable nodes. Functional enrichment (GO-BP) for key
communities was evaluated (FDR <0.05) GO-BP using
ShinyGO (Xijin Ge et al., 2020) and each significant GO-BP
term was clustered based on shared number of genes.

The functional cartography (community structure) analysis
characterizes nodes according to their roles in each community
(Guimerà and Nunes Amaral, 2005). Here, the analysis was
performed for the communities detected via Louvain
algorithm within the main connected component (CC) of the
HPPI network. The cartography calculation depends on the
following two properties: within-community module
connectivity (z-normalized within community module degree)
and participation coefficient (proportion of links a node has to
members of other communities). Based on the region in a
parameter space of z-score and participation coefficient, nodes
were categorized as hubs and non-hubs and the five following
categories were identified within the main component of the
HPPI network: R1—ultra-peripheral node, R2—peripheral node,
R3—non-hub connector node, R5—provincial hub and
R6—connector hub (Supplementary File S4). The role of the
nodes was determined using R software (version 4.1.1) Rnetcarto
package. Following the identification of the nodes’ role within the
first connected component of the HPPI network, the association
of the node role (position) with DARTable effect was tested with
the aid of chi-square test.

2.3 Using the DARTable Genome to Identify
Relevant Cell Lines for Screening
A workflow was developed to query baseline RNAseq data of 934
human cancer cell lines from the Cancer Cell Line Encyclopedia
(CCLE) (Barretina et al., 2012). After quality control, counts per
gene were determined using FPKM (Fragments Per Kilobase of
transcript per Million mapped reads) and then quantile
normalized within biological replicates. Seven cell lines of
interest were selected from CCLE for evaluation based on
availability of historic L1000 data: human rhabdomyosarcoma
(RD), human liver cancer cell line (HepG2), human ovarian
carcinoma cell line (OVCAR-3), immortalized monocyte-like
cell line (THP-1), human breast cancer cell line (MCF7),
adenocarcinomic human alveolar basal epithelial cells (A549)
and human renal adenocarcinoma (ACHN).

To determine the optimal cell line selection for use in
chemical screening panel that would maximize coverage of
the HDG whilst minimizing the cost, a procedure to select the
most relevant cell line(s) was developed. Firstly, the 7 cell
lines were ranked by the number of HDG genes they express
that meet the selection criterion, which in this case, is
illustrated using expression above the per gene average
across all 7 cell lines. The top scoring cell line was then
selected for the panel and the remaining cell lines were
then re-ranked, based on how many HDG genes that met
the selection criteria were not already covered by the cell
line(s) already selected for the panel. Through such iterations,
the optimal panel was selected to provide maximum gene
coverage of the HDG using the minimum number of cell lines.
Finally, to explore the biological coverage of the HDG
provided by each cell line, HDG that were expressed in
each selected cell line at above average levels were
identified and evaluated for significantly (p < 0.05)
enriched pathways compared to the Human Genome or the
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HDG using IPA (QIAGEN Inc., https://www.qiagenbioinformatics.
com/products/ingenuitypathway-analysis).

3 RESULTS

3.1 Curation of the Hypothetical Human
DARTable Genome and Comparison to the
Human Druggable Genome
To facilitate the creation of a data-driven DART IATA, we
hypothesize an AOPN that includes a comprehensive set of
MIEs that can result in any possible developmental or
reproductive toxicity in a human. In addition, this
hypothetical complete DART APON may also contain all
genes and gene products that might have their abundance
changed or activity altered in response to an exogenous
toxicant. We term this comprehensive set of MIEs and
transcriptional KE biomarkers as the hypothetical “human
DARTable genome” (HDG). The first step in developing this
complete DART AOPN is to identify the components of the
HDG. We curated a high confidence subset of the HDG based on
the known chemically induced DARTMIEs fromWu et al., 2013.
Further, we enhanced this set by adding a small number of
additional MIE targets based on an internal review of
unpublished findings seen in pregnant preliminary dose setting
studies that were conducted in rats or rabbits with Syngenta
proprietary research compounds between 2005 and 2018. We
supplemented this MIE information with a bioinformatic
selection of genes from IPA and DMDD.org that are known
to have mutant or knockout alleles that cause either

developmental phenotypes or to be embryonically lethal,
respectively, in mice. In this way we created a comprehensive
set of 5,402 genes known to be specifically important for
development and reproduction (see Supplementary File S1 for
the complete list). Figure 1A shows that the vast majority (97.7%)
of this HDG is provided by the bioinformatic data based on
phenotyping of mice mutants and knockouts.

As only 2.3% of the HDG was known to be a DART MIE, we
next explored the relationship between the HDG and proteins
with known, or potential, ability to bind with small molecule
synthetic chemicals. Taking the Druggable Genome (Finan et al.,
2017) as a proxy for these proteins, we determined the overlap
between the HDG and the Druggable Genome (Figure 1B). There
were 1705 (31.6%) members of the HDG that were also members
of the Druggable Genome. Clearly a significant proportion of the
HDG we identified may be binding partners for drug-like small
molecule ligands and so should be considered as potential MIEs
that could result in DART liability if their target site exposure is
sufficiently high during development.

Interestingly, from the perspective of the Druggable Genome
and the consequent DART safety risks for pharmaceuticals, this
overlap represents 39.3% (1705/4,342) of the Druggable
Genome. We next explored whether the small molecule
interacting proteins were more likely to also be members of
the HDG than biologic targets. The proportion of small
molecule-tractable druggable genome targets that overlapped
with the HDG rose to 45.5% (1,048/2,303) compared with only
36.2% (966/2,670) of the biological-tractable druggable
genomes. This proportion rose to 49% (309/631) of the
targets considered tractable to both small molecules and
biologicals.

FIGURE 1 |Curation and Analysis of DARTable Genome and Comparison to the Druggable Genome. (A) The overlap and differences between thememberships of
each component source of the hypothetical DARTable genome was determined. Count represents a unique gene symbol. (B) The overlap between the hypothetical
DARTable genome and the Druggable genomes from Finan et al., 2017 was determined.
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To further investigate members of the HDG and since 68% of
the HDG did not overlap with the Druggable Genome, we
explored which protein classes were represented in the HDG
using Panther (Table 1). We found that gene specific
transcriptional regulators, ligand gated ion channel and
intracellular signaling molecules were very significantly
overrepresented protein classes (p � 1.70E-10, 4.56E-05, 5.46E-
05 respectively) whilst defense/immunity genes encoding
defense/immunity proteins were significantly underrepresented
(p � 1.05E-12). Furthermore, we identified that structural
proteins in the extracellular matrix and cytoskeleton and
histone modifying enzymes were also overrepresented (p �
3.00E-4, 9.72E-4, 8,38E-03 respectively).

3.2 Functional Analysis of the Human
DARTable Genome
Significantly enriched GO-BP is shown in Figure 2 and in
Supplementary File S2. Due to the size and focus of HDG, ∼
2 k GO-BP were significantly overrepresented therefore ranking
GO-BP based on p-values, typically <0.05, would be meaningless.
To reduce the complexity and aid interpretation, significant GO-BP
were further clustered based on the Resnik similarity (>2.7) between
GO terms. Cell surface receptor signaling pathway had the highest
number of genes 1,288) and shared genes with almost all the GO-BP
(Figure 2). Several genes within this group are associated with Wnt
signaling and includes ligands (e.g.,WNT1,WNT2,WNT3,WNT5)
and receptors such as frizzled class receptors (FZD)1–10; receptors
and ligands for Transforming Growth Factor Beta (TGFB) signaling:
TGFBR and TGFB respectively and ligands (Fibroblast growth

factors: FGF) and receptors (FGFR) associated with Ras signaling.
Receptors (PTCH1, PTCH2 SMO), ligands (SHH and IHH) and
transcription factors (GLI1, GLI2 and GLI3) of the Sonic Hedgehog
(SHH) signaling pathway were also annotated with “cell surface
receptor signaling pathway.” Transcription factors regulating the
expression of genes associated with cell adhesion, proliferation,
migration, differentiation as MYC, JUN, ELK1 and several cAMP
responsive element binding proteins (CREB3L1) were significantly
overrepresented in the “positive regulation of gene expression”
cluster and 21% of genes overlap with cell surface receptor
signaling pathway (Figure 2 and Supplementary File S2).

Eight GO-BPs (embryo development, embryonic
morphogenesis, chordate embryonic development, in utero
embryonic development, development of primary sexual
characteristics, reproductive system development, embryonic
organ development, embryonic placenta development) were
clustered as “Embryo Development.” Genes within this
category overlap with genes in the cell surface receptor
signaling pathways (24%) and include members of the WNT
and TGFB signaling pathway (Supplementary File S2). Several
members of the homeobox family of transcription factors
(HOXA, HOXB, HOXC and HOXD), retinoic acid (RA)
receptors (RARA, RARB, RARG), the bone morphogenetic
protein families (BMP2, BMP4 and BMP7) and matrix
metalloproteinase (MMP) families (MMP14 and MMP) were
associated with “Embryo Development” (Figure 2 and
Supplementary File S2).

Organ morphogenesis, skeletal system, development, and
morphogenesis were clustered into one group, named “Organ
Morphogenesis,” which includes: development transcription

TABLE 1 | Proteins encoded by Genes in the Human DARTable Genome (HDG) by Protein Superfamily. Distribution of proteins encoded by genes in the HDG was
determined by performing over (+) or underrepresentation (−) analyses of Panther Super Family Protein Classes (Mi, et al., 2020) using a false discovery rate (FDR)
threshold of p < 0.05. Note that 1707 HDG genes were not classified by Panther.

Panther protein
class name

FDR corrected
p value

Over (+)/under
(−) representation

Number of
HDG genes

(5,389)

Number of
genes in

human genome
reference list

(20,595)

Expected number
of HGD
genes

Fold enrichment

Defense/immunity protein 1.05E-12 − 47 498 130 0.36
Gene-specific transcriptional regulator 1.70E-10 + 483 1,280 335 1.44
Transporter/ligand-gated ion channel 4.56E-05 + 45 67 18 2.57
Intercellular signal molecule 5.46E-05 + 155 377 99 1.57
Protein modifying enzyme 2.98E-04 + 460 1,410 369 1.25
Extracellular matrix structural protein 3.00E-04 + 44 74 19 2.27
Non-receptor serine/threonine protein kinase 3.06E-04 + 133 328 86 1.55
Nucleic acid metabolism protein 3.21E-04 + 314 914 239 1.31
Cytoskeletal protein 9.72E-04 + 190 521 136 1.39
Histone modifying enzyme 8.38E-03 + 33 61 16 2.07
Serine/threonine protein kinase receptor 1.91E-02 + 11 12 3 3.5
Metabolite interconversion enzyme 2.93E-02 + 549 1843 482 1.14
Intermediate filament 3.37E-01 + 8 15 4 2.04
Calcium binding protein 5.93E-01 − 20 100 26 0.76
Transmembrane signal receptor 6.56E-01 − 271 1,100 288 0.94
Membrane traffic protein 7.15E-01 − 99 413 108 0.92
Cell adhesion molecule 7.23E-01 + 59 203 53 1.11
Chaperone 7.37E-01 + 54 187 49 1.1
Cell junction protein 8.41E-01 + 18 62 16 1.11
Translational protein 9.85E-01 − 86 335 88 0.98
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FIGURE 2 | Gene Ontology Analysis of DARTable genome. Chord diagram (Xin et al., 2020) showing overrepresented (FDR corrected p < 0.05) GO-BP in the
Human DARTable Genome from (A). GO-BP and were clustered based on Resnick similarity between terms. Each element (orange) on the diagram represents a GO-BP
or clustered terms (Resnik similarity score>2.7) which are represented as red circles. The length of the element is proportional to the number of genes related to the GO-
BP or cluster of GO-BPs. The green edges parallel to the main chord diagram on the outside show possible clusters between terms. The edges inside the diagram
show shared genes between the GO-BPs and the width of the edges is proportional to the size of the overlap. In this example, GO-BP cell surface receptor signalling
pathway (bolded) shares genes with sensory organ development, chemical response to stimulus and response to organic substance compared to endocrine system
development. Percentage overlap between cell surface receptor signalling and other GO-BP can be found in Supplementary File S2.
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factors such as the GATA family (GATA1, GATA2, GATA3,
GATA4, GATA5, and GATA6), T-box transcription factors
(TBX1, TBX2, TBX3, TBX20, and TBX5), head and neural crest
derivatives expressed (HAND1 andHAND2) and fork head boxH1
(FOXH1).Members of theWNT, NOTCH and BMP family are also
included in “Organ Morphogenesis” and 25% of genes within this
category overlap with cell surface signaling pathways. The broad
category, “Neurogenesis” (1 k genes), includes 3 GO-BPs:
neurogenesis, central nervous system development and forebrain
development. In addition to signaling pathways identified in cell
surface receptor signaling pathways (overlap of 24%), receptors such
as neuropilin (NRP1 and NRP2) and members of the semaphorin
family (SEMEA3A, SEMA3F) were annotated with “Neurogenesis”
(Figure 2 and Supplementary File S2). Other organ or anatomical
specific GO-BPs such as immune system, sensory organ, urogenital,
cardiovascular, head and platelet development were also significantly
overrepresented.

Around 600 genes associated with “Reproductive Process” are
overrepresented in the HDG and 15% overlap with cell surface
signaling pathway. Genes encoding proteins involved in ovarian
steroidogenesis such as luteinizing hormone beta polypeptide
(LHB), luteinizing hormone/choriogonadotropin receptor
(LHCGR), follicle stimulating hormone beta subunit (FSHB),
follicle stimulating hormone receptor (FSHR) and CYPs
cytochrome P450 family members such as CYP1B1, CYP11A1,
CYP17A1, CYP19A1, and CYP2J2 were annotated with
“Reproductive Process.”

3.3 Network Analysis of the Human
DARTable Genome
A HPPI network used in this analysis consists of 20,922 nodes
and 29,4922 edges. Nearly 94%, 5,074 genes, of HDG were
mapped into HPPI including 112 (91%) MIE genes. 57 CCs
were identified within the network, whereas the main component
comprises of 99% of the total number of the nodes in the network
(20,793 nodes) and 5,069 HDG genes are also present in this
component. The nodes that are not connected (so-called orphan
nodes) were also identified within the network and 4 out of 19
orphan nodes are DARTable genes: MIOX, CRYGD, APOBEC2,
and LHCGR.

3.4 Comparison of Topological Properties of
DARTable and Non-DARTable Nodes in the
Network
We investigated if there were differences in network properties
between HDG compared to other nodes (non-DARTable nodes).
In this analysis we concentrate on all CCs of the HPPI network and
topological properties of each node were calculated. Then, we
defined 3 sets of nodes such as Set1: all nodes in HPPI, Set2:
only nodes that are non-DARTable genes (nodes that are not
part of HDG) and Set3: only nodes that are DARTable genes
(analogically, nodes that are part of HDG). For each set of nodes,
the average value of network parameters was calculated (Table 2).
While comparing the average values for each calculated network
parameter between Set2 and Set3 (Figure 3B; Table 2), we observed

much higher node degree values for DARTable nodes. This also
explains the slightly smaller value for the average shortest path length
parameter for DARTable nodes. On the other hand, slightly higher
value of clustering coefficient within non-DARTable nodes might
suggest that DARTable nodes are less likely to create tightly knit
groups, which is also visible while comparing neighborhood
connectivity values between the two sets. Furthermore,
distribution of each parameter was compared between Set2 and
Set3 by conducting non-parametric statistical test, namely the
Kolmogorov-Smirnov test (KS test). The KS test confirmed
significant difference (p < 2.2e -16) between Set2 and Set3 for
each tested network parameters.

3.5 Community Structure Detection and
Analysis of the Network
As the majority of the HDG is represented by the largest CC of
HPPI network, this analysis concentrates on the main CC of
Human Interactome (Figure 3A). In total 18 communities
(modules) were identified. The resultant communities were
found to have an uneven community-size distribution
(Figure 3C). DARTable nodes are present in a larger part of
communities, whereas MIE nodes are represented by half of the
communities detected. Of interest here are communities 1, 5 and
15, where we observe a substantial overrepresentation of
DARTable and MIE nodes (communities 5 and 15) and
underrepresentation of MIE nodes (Community 1). This is
especially visible in community 15, where MIE nodes are
significantly enriched (Figure 2C). To further explore the roles
of these communities we performed GO over-representation
analysis (Table 3, Supplementary File S3). Significant GO-BP
terms in Community 1 are broadly associated with transcription,
keratinization, and embryo development, whereas Community 5
is enriched with intracellular signaling, cell migration and the cell
cycle, and Community 15 is largely represented by
transmembrane and ion transport, chemical homeostasis,
GPCR signaling and purine nucleotide metabolic process.

Whilst comparing the node associated with DARTable
phenotype to the node role in the network, we identified
DARTable nodes to be highly represented by non-hub connector
nodes (R3) with half of its links within the community and
connector hub nodes (R6) with many links to other communities
and at least of half of its links within-community (Supplementary
File S4). Furthermore, chi-square test of association confirmed
previous finding that DARTable nodes are more likely to form
tight groups with many links to other communities. The null
hypothesis stating that there is no association between the node
position in the network and its DARTable properties was rejected
(χ2 � 1,236.99, critical value � 7.82, p < 0.00001).

3.6 Using the DARTable Genome to
Rationally Identify the Relevant Cell Lines
for a DART Safety Panel
The ideal DART safety screening panel would provide sufficiently
complete coverage of all the known and potential MIEs in the HDG.
Sufficiency of coverage would have to be defined based on the
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purpose. But it is conceivable that project de-risking during the
research and development phases of new chemical invention may
balance lower coverage to improve the cost-effectiveness for
screening many compounds. Whereas the use as part of a weight
of evidence to support regulatory DART risk assessments may
require complete coverage of the HDG. To explore the rational
selection of cell lines for coverage of the HDG, we investigated the
basal expression of seven human cancer cell lines that have been
used to generate transcriptomics signatures.We explored howmany
HDG genes were expressed at the maximum level and at greater
than the per gene average expression level across the cell lines. Of the
selected cell lines, a high proportion of the HDG was expressed at
greater than the average expression level in at least 1 cell line (5,032
or 93.2%). Figure 4A shows the percentage of the HDG that each
cell line expresses. There is considerable variation between cell lines
from 31%with above average expression in A549 cells to 46% in RD
cells at greater than the per gene average expression level. To explore
the redundancy between the cell lines, Figure 4B shows the
percentage of the HDG that are expressed across multiple cell
lines. Interestingly in this panel of seven lines, 19% of the HDG
is expressed at greater than per gene average in only a single cell type.
Nevertheless 81% of the HDG was expressed in two or more cell
lines (Figure 4B) and so the rational selection of a DART safety
screening panel will require the selection of the optimal subset of the
cell lines to meet the risk assessment need.

To build an optimal panel we iteratively selected the cell line
that adds the largest number of new HDG genes above the per
gene average expression. Selecting just 2 cell lines (RD and
then OVCAR-3) covers 67% of the HDG (Figure 4C).
Interestingly choosing this pair significantly increases
coverage compared to two commonly used cell types
(MCF7 and HepG2 combined only covers 51% of HDG)
demonstrating that this selection method can improve
relevant biological coverage. Continuing to select more cell
lines in subsequent iterations adds a decreasing percentage of
additional HDG genes per cell line. Consequently, more
complete coverage comes at an increasing cost per
additional HDG gene added. Assuming the cost scales with
each cell line added, by iteration six, each additional gene will
cost 14.5 times more than the first set (Figure 4C).
Nevertheless, this extra cost should be weighed against the
potential for increased sensitivity for the bulk of the HDG due
to the redundancy of expression between cell lines (Figure 4B).

Table 4 shows that at iteration three the top 2 cell lines add
similar number of genes (THP-1, MCF7 add an additional 650,
630 genes respectively) and the remaining three lines add
approximately the same number (∼530). Criteria other than
just adding the largest number of HDG gene members may be
more appropriate than just adding the numerically largest
contribution. To explore the utility of selecting based on
increased biological coverage we evaluated three gene lists for
pathway enrichment analysis: DARTable genes that were
expressed above average in RD and/or OVCAR-3 and
DARTable genes that were not significantly enriched in either
cell lines. Pathways associated with developmental defects such as
altered differentiation, cell proliferation and motility, and
developmental signaling such as WNT were significantly
enriched in both RD and OVCAR-3, when compared to the
human genome, suggesting the DARTable genome captures the
key process for DART (Figure 5). Notably, the FXR/RXR
(retinoid X receptor) pathway was not enriched in either
OVCAR-3 or RD (Figure 5A). As a proportion of the HDG,
signaling pathways such as HIPPO were enriched in OVCAR3
and RD; the FXR/RXR pathway and other immune response
pathways were not significantly enriched (Figure 4B). To
determine if the 6 pathways underrepresented (as a proportion
of the HDG) in RD or OVCAR3 were enriched in the other 5 cell
lines, DARTable genes that were expressed above average in
MCF7, HEPG2, THP-1, ACHN and A549 were selected for
pathway enrichment analysis (Figure 5C). The FXR/RXR
activation, acute phase signaling response and antioxidant
action of vitamin C were significantly enriched [−log(p) 12.9,
5.70 and 1.31 respectively] in the HepG2 cell line (Figure 5C).
The p38 MAPK signaling pathway was significantly enriched in
the THP-1 cell line only (−logp 1.8). Dendritic cell and
phagosome maturation pathways were not significantly
overrepresented in any cell line; however, these pathways were
significantly overrepresented when genes from 5 cell lines were
combined (Figure 5B).

4 DISCUSSION

It is desirable to be able to rationally design an IATA for the
prediction of DART. However, the complexity of the biological
processes used to build an organism represents a daunting

TABLE 2 | Topological properties of nodes in the network. Table 2 shows the average calculated topological properties of each node in the network. Three sets of nodes
were determined: Set1: all nodes in HPPI, Set2: only nodes that are non-DARTable genes (nodes that are not part of HDG) and Set3: only nodes that are DARTable
genes (analogically, nodes that are part of HDG). Value in brackets indicates number of nodes in each set.

Network parameters Set1: HPPI all nodes
(20,922)

Set2: HPPI Non-DARTable nodes
(15,848)

Set3: HPPI DARTable
nodes (5,074)

Average Shortest Path Length 3.3308 3.3901 3.1454
Betweenness Centrality 0.0009 0.0011 0.0002
Closeness Centrality 0.3069 0.3025 0.3207
Clustering Coefficient 0.0939 0.0965 0.0858
Degree 28.1925 22.6400 45.5351
Eccentricity 10.5788 10.6139 10.4693
Neighborhood Connectivity 186.9262 198.9715 149.3040
Topological Coefficient 0.1239 0.1328 0.0960
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FIGURE 3 |Network analysis of the DARTable genome. (A). Network analysis: Using the human protein interactome information we created a network with 20,922
nodes and 294,922 edges, consisting of 57 connected components. The HDGmapped to 5,074 nodes in this network. The high confidenceMIE subset mapped to 112
nodes. We extracted the largest connected component of the HPPI for further analysis. This retained 20,793 nodes and 294,847 edges from the full HPPI and contained
5,069 HDG nodes, including all 112 that map to the full HPPI. We performed Louvain clustering to identify 18 communities within this largest connected community
and mapped the HDG and the knownMIE subset to these communities. (B). We calculated the average topological properties for the entire HPPI network, the non-HDG

(Continued )
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prospect for NAM developers and hopes for regulatory use.
Although some mechanisms of DART have been identified
(Wu et al., 2013), it is not certain that they provide adequate
coverage of all the possible relevant biological mechanisms. The
use of bioinformatics to maximize available biochemical data to
enable the development and evaluation of NAMs, usually via the
curation of AOPs, has been proposed (Carusi et al., 2018). One of
the main challenges in developing NAMs for complex endpoints
such as DART is understanding and mapping the molecular
mechanisms underlining the toxicological endpoint of interest.
Here we have determined the HDG using established DART
MIEs, KO Lethal Genes and KO Developmental Phenotype
Genes. This curated list of ∼5 k potential molecular targets in
the HDG is a key resource to aid the research and development of
NAMS for DART by maximizing the use of publicly available
data and permitting maximal coverage based on our current
understanding and information on developmental biology.

We defined the HDG as the set of genes the products of which
may be MIEs or KE biomarkers in the AOPN that results in
DART. Functional enrichment and network analysis of the HDG
enables us to map out and understand the processes and
pathways that interact to facilitate normal embryonic
development, cellular organization, cell proliferation, organ,
and tissue function and to determine when these processes are
disrupted in DART. We identified known signaling processes/

pathways and transcription factors that are key (sometimes in
cross talk) to normal embryonic development and adult tissue
homeostasis which as WNT, TGFB, FGF, RA, and SHH (Lavery
et al., 2008; Liu et al., 2012; Tanaka et al., 2014; Steinhart and
Angers, 2018; El Shahawy et al., 2019) and genetic disruption of
these pathways can lead to developmental defects such as,
autosomal recessive disorder Tetra-Amelia (loss of limbs)
(Luo et al., 2007). In addition to genetic development
defects, members of SHH, TGFB and RA signaling pathways
have been proposed as potential biomarkers for embryotoxicity
(Sipes et al., 2011; Piersma, et al., 2017). Broadly, activation of
these pathways via ligand binding to receptors leads to the
activation of transcription factors that regulate the expression of
key genes associated with cell proliferation, tissue patterning,
cell adhesion, organ size, differentiation. For example,
activation of the WNT pathway via ligand binding to
receptors such as FZD leads to activation of transcription
factor such as beta catenin (via messenger proteins) to
regulate the expression of key genes associated with
proliferation, differentiation, transformation, and adhesion
(Steinhart and Angers, 2018). On an organism/organ level,
the WNT pathway is associated with embryonic development
(Steinhart and Angers, 2018), neural cell differentiation from
stem cells (Kondo et al., 2011; Piersma et al., 2017) and early-
stage promotion of cardiogenesis (Bruneau, 2013).

FIGURE 3 | and the HDG subset of nodes (Sets 1,2 and 3, respectively–see Table 2 for more details). (B) shows the topological properties of both the HDG and non-
HDG relative to the complete network where topological properties in red indicate an increase compared to the whole network and those in blue a decrease. (C). Part C
shows the percentage of the entire HPPI, the HDG and its MIE subset that maps to each of these communities. The inset heatmap shows the over- and under-
representation of the HDG subsets relative to the HPPI.

TABLE 3 | Functional annotation analysis of community clusters identified from network analysis. Communities 1, 5 and 15, were identified as key clusters within the Human
Protein-Protein Interactome that was overrepresented with DARTable and MIE genes (Figure 3). Genes from each community was evaluated for GO-BP
overrepresentation (FDR<0.05). Key over-represented GB-BP are reported in the table and the gene lists can be found in Supplementary File S3. The Count is the number
of genes in the Community annotated with the GO-BP, % is the percentage of input genes annotated with the term compared to the annotated genes with the term. Fold
enrichment is the ratio between the background frequency of total genes annotated to that term to the input gene list for the term.

Community Term FDR Count % Fold enrichment

Community 1 Regulation of transcription, DNA-templated 3.31E-48 742 27.6 1.61
Keratinization 1.13E-05 23 0.9 3.61
Cell fate commitment 4.27E-03 55 2.0 1.77
Embryo development 1.26E-02 162 6.0 1.33

Community 5 Intracellular signal transduction 5.35E-75 740 26.2 1.85
Phosphorylation 2.27E-69 642 22.7 1.91
Cell cycle 1.41E-42 463 16.4 1.84
Cell projection organization 5.20E-39 378 13.4 1.93
Cell migration 3.97E-26 319 11.3 1.79
Cilium organization 7.05E-17 89 3.2 2.60

Community 15 Transmembrane transport 1.80E-74 503 15.0 2.19
Ion transport 5.09E-72 532 15.9 2.10
Chemical homeostasis 6.68E-35 348 10.4 1.91
Lipid metabolic process 1.48E-27 392 11.7 1.70
Inorganic ion transmembrane transport 2.55E-27 250 7.5 1.99
Sphingolipid biosynthetic process 5.63E-16 56 1.7 3.29
Protein exit from endoplasmic reticulum 6.42E-10 28 0.8 3.93
GPCR signaling pathway, coupled to cyclic nucleotide second messenger 2.31E-07 68 2.0 2.03
Cyclic purine nucleotide metabolic process 1.46E-06 54 1.6 2.13
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In addition to cell signaling pathways, genes encoding
transcription factors were also significantly overrepresented in
the HDG and was corroborated by the network community
analysis. Several transcription factors linked to activation of
WNT, NOTCH, TGFB pathways were significantly
overrepresented in the HDG. For example, the HOX family of
transcription factors are expressed and regulated in embryonic
development in mice and deletion of the HoxA cluster is
embryonically lethal in mice (Kmita et al., 2005). Other
transcription factor families such as GATA which is involved
in regulating erythroid development in fetus (Crispino and
Horwitz, 2017) and TBX (1–5) which are expressed in
multiple tissues during embryogenesis have been associated
with ear defects and craniofacial abnormalities in humans
(Arnold et al., 2006) were present in the HDG.

Interestingly, network analysis revealed notable differences
between the DARTable and non-DARTable nodes within the
network. DARTable genes are more highly connected with a
lower neighborhood connectivity than the other genes in the
network and they exist in regions within the network. The
betweenness centralities and average shortest path length are
lower, making them highly connected to each other and to the
wider network but not only to their local community. Conversely,
proteins that are not part of HDG are characterized by lower
degree and their role is associated to their own modules in the
network. Similar findings were observed in the previous study
(Piñero et al., 2018) for Proteins Associated to Drug Toxicity.
This suggests that DARTable genes appear to be coordinators and
regulators of biological processes and could connect different
modules within the network which would be key characteristics of
transcription factors and cell signaling.

We propose that the HDG could be a key resource in better
understanding the underlying biology of DART and could shed
new light on new avenues for investigative toxicology, NAM
development, and target prioritization. Here we demonstrate two

FIGURE 4 |Cell line selection to cover the HDG. (A). The number of HDG
members each cell line contributes individually when the threshold is above
the average per gene expression (blue) or has maximal expression (red). (B).
Percentage of HDGmembers that are expressed above the average per
gene expression in the indicated number of different cell lines in the panel. (C).
When a cell line is iteratively added to the panel based on adding the largest
number of new HDG members with above average per gene expression then
the % new HDG members added (bars) and the running cumulative % HDG
(line) increase as shown. Cell lines selected and the numbers added are in
Table 4. Bars are colour coded to illustrate the increasing relative cost of each
new HDG member added compared to the cost in iteration 1, which was set
at 1.

TABLE 4 | Using the DARTable Genome to Identify the Relevant Cell lines. Seven
cell lines were ranked by the number of HDG genes they express that meet the
selection criterion. The top scoring cell line was then selected for the panel and the
remaining cell lines were then re-ranked, based on howmany HDG genes that met
the selection criteria were not already covered by the cell line(s) already
selected for the panel. For each cell line in each iteration, we show the number
of additional HDG with above per average gene expression that cell line would
add and the cell lines ranking in parentheses.

Cell line Iteration

1 2 3 4 5 6

RD 2,330 (1)
OVCAR-3 2,100 (2) 1,197 (1)
THP-1 1966 (3) 1,022 (3) 650 (1)
A549 1,562 (6) 918 (4) 531 (�3) 388 (1)
Hep G2 1,210 (7) 736 (6) 531 (�3) 369 (3) 248 (1)
MCF7 1785 (4) 1,128 (2) 630 (2) 386 (2) 229 (2) 148 (1)
ACHN 1,699 (5) 902 (5) 529 (5) 361 (4) 159 (3) 106 (2)
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FIGURE 5 | Pathway Analysis: Using the DARTable Genome to identify the relevant cell lines. (A,B): Pathways significantly overrepresented for DARTable genes
expressed above average in the top 2 cell lines (RD and OVCAR-3). DARTable genes expressed in RD (red) and OVCAR-3 (blue) and DARTable genes that were not in
expressed in either cell lines were used as inputs (black). Pathways significantly enriched [p < 0.05 or –log(p) > 1.3], indicated by vertical black line, were identified after
comparison to either the human genome (A) or the DARTable genome (B). (C) Enrichment analysis of the 5 pathways that were not represented in the top 2 cell
lines (RD and OVCAR-3). Enrichment analysis was performed using data from the other cell lines: A549, ACHN, HepG2, MCF7 and THP-1 pathways significantly
enriched [p < 0.05 or –log(p) > 1.3], indicated by vertical black line, were identified after comparison to the DARTable genome.
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potential uses of the HDG: screening tool development and MIE
characterization and development.

During the development of an in vitro screening tool, the
selection of the most appropriate cell line(s) to recapitulate the in
vivo biology is a significant challenge of using non-animal
approaches for risk assessment. Complex endpoints like DART
further complicate the challenge of integrating responses across
multiple tissues and organs. Whilst organotypic models may
address these issues, there are difficulties surrounding ease of
use, cost, and lack of throughput. Increasingly the use of rapid
high content in vitro assays, for example transcriptomics using
technologies such as L1000 and TempoSeq or cell painting (Lamb
et al., 2006; Bray et al., 2016), are being used to aid the
identification of MIEs. However, the available data suggests
that a prerequisite for being able to detect an MIE signature in
such experiments is the baseline expression of the target gene in
the cell line (Baillif et al., 2020). Data-driven approaches for
unbiased cell line selection have been proposed (Thul et al., 2017)
where cell lines can be clustered based on their transcriptional
profiles and representative cell lines from each cluster are selected
to ensure biological coverage and diversity of response. However,
this approach does not necessarily ensure that the key processes
of interested are represented. Here, by using a combination of
prior knowledge of the potential molecular drivers of the adverse
outcome (the HDG) and basal transcriptional profiles, we
determined the minimum number of cell lines to select for
subsequent studies that are optimized for biological coverage
of DART. We initially identified that 2 cell lines, RD, and
OVCAR-3, covered 67% of the DARTable genome and
subsequent addition of more cell lines would improve the
coverage of DARTable genes. However, this comes with a
penalty of diminishing returns, as the cost of adding each
subsequent cell line increases linearly whilst adding an ever-
smaller proportion of the HDG. Using the HDG, we prioritized
HepG2 as the additional cell line because the RXR signaling
pathway, disruption of which can cause developmental defects,
was not enriched in OVCAR-3 or RD but in was in HepG2 which
is included in the panel. This approach could be used for any list
of genes/pathways/processes that are key to the toxicological
endpoints to aid cell line selection.

Our cell line selection approach focused on baseline
expression to build a panel with appropriate biological
coverage. However, the increasing availability of large datasets
of gene expression data in multiple cell lines after genetic
manipulation or chemical treatment (Subramanian et al.,
2017) raises an intriguing possible avenue for future
extensions of this work that address the question: is it possible
to reduce the cell line coverage requirements (or conversely,
increase the biological coverage per cell line) by identifying
treatments that induce HDG members that are not basally
expressed in that cell line? It is possible that modifications of
the approach we describe here, when applied to the large number
of possible cell line/treatment combinations, will permit us to
identify greater biological coverage from a smaller number of
cell lines.

Although we can be confident that the ∼5 k genes in the HDG
are associated with DART phenotypes, it is not clear how many

are potential MIEs. How can we determine what makes a member
of the HDG a good candidate to be an MIE, as opposed to a
biomarker of the activation of an MIE? We approached this in
two ways: by exploring the potential to be a “receptor” for a
xenobiotic, and by exploring the correct biological properties to
trigger downstream consequences.

To participate in anMIE, by definition, a gene product must be
able to bind to a xenobiotic. Consequently, we used the Druggable
Genome as a surrogate for proteins that are likely have binding
pockets that permit binding of small molecule xenobiotics and
then alter their function. We showed that 31% of the HDG was
also in the wider Druggable Genome as described by Finan et al.,
2017. This information suggests that a significant fraction of the
hypothetical HDG may not act as an MIE to a chemical stimulus
because they are members of protein classes that are not known to
be “ligand-able” by the known chemotypes that have been
evaluated to date. Consequently, building a DART screening
panel that focuses on the 1705 HDG genes targets that overlap
with the Druggable Genome might be an appropriate pragmatic
starting point. Furthermore, these targets are more likely to have
knownmodel chemicals that bind to them, published data in high
content drug screens, and have published toxicology and
pharmacokinetic data that in combination will be required to
determine whether a potential MIE is in fact quantitatively able to
be an MIE.

An interesting corollary to our analysis is that a considerable
minority of the Druggable Genome may have a theoretical DART
safety liability. This proportion is higher for the small molecule
Druggable Genome than it is for the biological druggable genome
as defined by Finan et al., 2017. Obviously, in clinical practice for
this to be realized depends on the safety margin being inadequate
to prevent DART effects. Nevertheless, this does suggest that a
shift to novel targets accessible via biological drugs are less likely
to have DART liability than the small molecules targets used
extensively to date. It will be interesting to see whether this
prediction of improved DART safety is born out as new
modalities of pharmaceuticals are developed.

Having identified the HDG we then explored whether the
HDG and its established MIE subset had privileged properties or
locations in the HPPI as this may also aid prioritization for
inclusion in a testing panel. Our community analysis showed that
known MIEs are over-represented in Communities 5 and 15, and
so the HDG components of these communities might be more
likely to represent MIEs than those in other communities.
Interestingly community 15 represents potentially new areas
for research or NAM development in contrast, DARTable
genes and MIEs in Communities 1 and 5 represent the
signaling pathways, transcription factors described previously.
Community 15, which was highly enriched for MIE nodes within
the network, is overrepresented for proteins involved in substance
transport and include the two main types of transporters: solute
carriers (SLC), which passively transport ions across the
membrane and the ATP-Binding Cassette (ABC) transporters
that actively move molecules using energy from ATP (Roth et al.,
2012; Walker et al., 2017). Both types of transporters are highly
conserved in various species (Roth et al., 2012; Bloise et al., 2016),
are potential therapeutic targets (Schumann et al., 2020) and
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implicated in multidrug resistance (Fletcher et al., 2016).
However, they have been demonstrated to be essential for the
establishment of a healthy pregnancy and are involved in
transporting key substances such as steroid hormones,
glucocorticoids, progesterone, fatty acids, and phospholipids
across the placenta (Bloise et al., 2016; Walker, et al., 2017).
ABCB1 (present in the HDG) is highly abundant in the placenta
and offers fetal protection against toxicity. SLCO2A1 (which is in
the HDG) is specifically involved in prostaglandin transport and
is expressed in the placenta. SLCO1A2 and SLCO4A1 are not in
the HDG but are in the human interactome and are involved on
thyroid hormone transport (Walker et al., 2017). Whilst these
transporters are in the HDG, they were annotated as either
embryo lethal genes or as a developmental phenotype and not
as MIEs suggesting that these proteins could be potential MIEs or
could represent the link between the MIEs and the disease
phenotype.

In conclusion, we have shown how bioinformatic data
integration and analysis can be used to identify candidate
genes that might be able to cause DART in humans: the
HDG. Furthermore, our analysis has illustrated some ways in
which the HDG can be a useful resource for NAM development,
and so contribute to building a DART IATA. Firstly, for the
prioritization and identification of MIEs within the DART
AOPN, and secondly for the identification of cell lines that
may be suitable screening tools to explore that AOPN within a
DART IATA. And thirdly, by providing insights into relatively
under-explored areas with potential for DART effects, such as the
transporters proteins important for growth and development. We
expect that this resource can become a common basis for further
collaborative work that will enhance its utility by incorporation of
other data. For example, the integration of additional
cheminformatics data may allow further prioritization of
MIEs. In the future a better understanding of the ligand-able
proteome may be created by advances in proteome-wide
structural biology and improvements in chemical docking
algorithms, which would aid MIE identification. The
incorporation of high content omics or imaging data can
provide the experimental validation of the ability of the
selected cell lines to detect the HDG MIEs. Indeed, as our
original motivation was to create an optimized panel for
DART screening, we will be exploring whether this panel is

indeed capable of detecting the HDG MIEs. However, as there
are a large number of genes (and therefore model chemicals) that
need testing, we anticipate that more rapid progress would be
made through a collective collaborative effort. Finally, this
analysis serves as an exemplar that could be extended to
detect MIE activation in other human “Toxomes” that are
predictive of other toxicological endpoints such as human
cancer (perhaps starting with known human cancer driver
genes as seeds) and target organ toxicities. As there are many
projects working on these topics across multiple industry sectors,
additional collaboration to explore these topics by using as much
of the accessible relevant human bioinformatic information to
design future human relevant NAMs for use in IATAs.
Consequently, as we continue to develop these approaches, we
invite and would welcome other interested parties to contact us to
further explore potential opportunities for collaboration.
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