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Multidrug-resistant (MDR) pathogens pose a well-recognized global health threat
that demands effective solutions; the situation is deemed a global priority by the
World Health Organization and the European Centre for Disease Prevention and
Control. Therefore, the development of new antimicrobial therapeutic strategies requires
immediate attention to avoid the ten million deaths predicted to occur by 2050 as a result
of MDR bacteria. The repurposing of drugs as therapeutic alternatives for infections
has recently gained renewed interest. As drugs approved by the United States Food
and Drug Administration, information about their pharmacological characteristics in
preclinical and clinical trials is available. Therefore, the time and economic costs required
to evaluate these drugs for other therapeutic applications, such as the treatment of
bacterial and fungal infections, are mitigated. The goal of this review is to provide
an overview of the scientific evidence on potential non-antimicrobial drugs targeting
bacteria and fungi. In particular, we aim to: (i) list the approved drugs identified in drug
screens as potential alternative treatments for infections caused by MDR pathogens; (ii)
review their mechanisms of action against bacteria and fungi; and (iii) summarize the
outcome of preclinical and clinical trials investigating approved drugs that target these
pathogens.

Keywords: repurposing drug, bacteria, fungi, antimicrobial resistance, infection

INTRODUCTION

Bacteria and fungi are highly efficient in acquiring antimicrobial resistance encoded by genomic
changes ranging in scale from point mutations, through the assembly of preexisting genetic
elements, to the horizontal import of genes from the environment (Kung et al., 2010; Cowen
et al., 2015; Yelin and Kishony, 2018). Compounding the problem of antimicrobial resistance
is the immediate threat of a reduction in the discovery and development of new antibiotics,
the dangers of which have recently been made clear by the World Health Organization
(WHO) (Tacconelli et al., 2018) and other European institutions (O’Neill, 2016; Årdal et al.,
2018). Consequently, a perfect storm is converging with regard to these infections: increasing
antimicrobial resistance with a decreased new drug development (O’Neill, 2016). This context
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is likely the best example of the purported “Post-Antibiotic
Era,” with relevance even in non-specialized media
(Bagley and Outterson, 2017). It is clear that effective solutions
are urgently needed as stressed by various institutions.

New policies and actions are necessary to avoid the
figures predicted for 2050 that attribute ten million deaths
worldwide to antimicrobial resistance (O’Neill, 2016). Such
efforts might include: a massive global public awareness
campaign; improvements in hygiene and prevention of the
spread of infection; increase global surveillance of drug resistance
and the appropriate antimicrobial consumption in humans and
animals; the promotion of novel rapid diagnostics to curtail the
unnecessary use of antimicrobial agents; and the promotion,
development, and use of vaccines and other alternatives to both
prevent and treat bacterial infections (O’Neill, 2016). Therefore,
the development of new antimicrobial therapeutic strategies
for use alone or together with one of the scarce but clinically
relevant antibiotics has become exigent. In this environment,
“repurposing” (defined as investigating new uses for existing
drugs) has gained renewed interest, as reflected by several recent
studies (Fischbach and Walsh, 2009; Brown, 2015; Rampioni
et al., 2017). The combination of these existing drugs with
antimicrobial agents currently in clinical use is also under
consideration.

A literature review was conducted to search for potential
non-antimicrobial candidate drugs that are not intentionally
used as antimicrobial agents but have one or more antimicrobial
properties. A variety of drug families have been considered
including: anthelmintics (Lim et al., 2013; Rajamuthiah
et al., 2015; Gooyit and Janda, 2016; Joffe et al., 2017);
anticancer drugs (Ueda et al., 2009; Butts et al., 2014; Yeo
et al., 2018); anti-inflammatory/immunomodulatory drugs
(Artini et al., 2014; Thangamani et al., 2015b; Ogundeji et al.,
2016); antipsychotic and antidepressant drugs (Lieberman
and Higgins, 2009; Andersson et al., 2016; Holbrook et al.,
2017); statins (Parihar et al., 2014; Thangamani et al., 2015a;
Ribeiro et al., 2017); and iron-storage drugs (Gi et al., 2014).
While these drugs are approved for their clinical indications,
promising antibacterial and antifungal activities have been
reported in preclinical and clinical studies. It is noteworthy
that repurposing drugs is a very promising approach with
several advantages. As drugs approved by the Federal Drug
Administration (FDA), information about their pharmacological
characteristics (both safety and pharmacokinetic) in preclinical
and clinical trials is widely available. Therefore, the time
and economic costs associated with the repurposing of
these drugs for other therapeutic applications such as
the treatment of bacterial and fungal infections will be
minimized.

In this review, we focus on the current state of knowledge
regarding the repurposing of drugs in terms of their modes
of action, antimicrobial efficacy and breadth of spectrum
against bacteria and fungi, as well as the advances to-date
in their development as antimicrobial agents for clinical use.
To this end, we introduce in Pubmed database different
key words such as repurposing drugs, antibacterial and/or
antifungal in order to find published literature about the

repurposing drugs for treatment of bacterial and fungal
infections.

POTENTIAL DRUGS FOR REPURPOSING
AGAINST INFECTIOUS AGENTS

The antibacterial and antifungal activities of repurposing drugs
and their modes of action are summarized in Table 1 and
Figure 1.

Anthelmintic Drugs Repurposed Against
Bacteria and Fungi
Anthelmintic drugs constitute a large class of medications used
for the treatment of helminthiasis. Their activities aside from
their use against parasitic infections are being investigated
in other areas such as oncology (Dogra et al., 2018; Wang
et al., 2018). The activity of these drugs against Gram-positive
and Gram-negative bacteria, and fungi has been reported. The
salicylanilide family contains a number of the anthelmintic drugs
approved for the treatment of parasitic infections. The most
widely used members of this family include niclosamide for
humans (Chen et al., 2018) and oxyclozanide, rafoxanide, and
closantel for animals (Martin, 1997).

The mode of action of salicylanilides is not completely
understood, but they are thought to act as uncouplers of
oxidative phosphorylation, thereby impairing the motility of
parasites. Rajamuthiah et al. (2015) described the efficacy of
niclosamide and oxyclozanide against methicillin-, vancomycin-,
linezolid-, or daptomycin-resistant Staphylococcus aureus
isolates. They reported that niclosamide presented bacteriostatic
activity whereas oxyclozanide exhibited antibacterial action,
likely due to damage in the bacterial membrane. Together
with niclosamide and oxyclozanide, other members of the
salicylanilides family such as rafoxanide and closantel have
presented greater bactericidal activity against the logarithmic
and stationary phases of Clostridium difficile than vancomycin
(Gooyit and Janda, 2016). Avermectins, a broad-spectrum
class of anthelmintic drugs which include ivermectin,
selamectin, and moxidectin, demonstrated efficacy in vitro
against Mycobacterium tuberculosis and Mycobacterium ulcerans
with minimum inhibitory concentration (MIC) values ranging
from 1 to 8 mg/L and 4 to 8 mg/L, respectively (Lim et al., 2013;
Omansen et al., 2015). Moreover, ivermectin showed efficacy
against S. aureus clinical isolates including methicillin-resistant
strains (MRSA) (Ashraf et al., 2018). In vivo, ivermectin improves
LPS-induced survival in mice by reducing serum and murine
macrophage levels of TNF-α, IL-1β, and IL-6 and blocking the
NF-κB pathway (Zhang et al., 2008).

In Gram-negative bacteria, only niclosamide exhibited
antibacterial activity. This drug showed an anti-virulent effect
against Pseudomonas aeruginosa via the inhibition of quorum
sensing and virulence genes, reducing elastase and pyocyanin
levels (Imperi et al., 2013b). In Acinetobacter baumannii
and Klebsiella pneumoniae, niclosamide is able to increase
the proportion of negative charges on their cell walls, and
to potentiate the activity of colistin against colistin-resistant
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TABLE 1 | Direct antibacterial and antifungal activity of repurposed drugs.

Drugs Clinical indication Target bacteria Mechanisms of action Reference

Niclosamide∗ Helminthiasis P. aeruginosa Inhibition of quorum sensing and various virulence genes, and reduction of elastase and
pyocyanin levels

Imperi et al., 2013b

Oxyclozanide Helminthiasis S. aureus Bacterial membrane damage Rajamuthiah et al., 2015

Mebendazole Helminthiasis C. neoformans Morphological alterations by reducing capsular dimensions Joffe et al., 2017

Quinacrine Helminthiasis C. albicans Inhibition of filamentation Kulkarny et al., 2014

Floxuridine Colorectal cancer S. aureus Inhibition of the SaeRS two-component system, and inhibition of the transcription of other
virulence regulatory systems

Yeo et al., 2018

Streptozotocin Pancreatic islet cell cancer S. aureus Inhibition of the SaeRS two-component system, and inhibition of the transcription of other
virulence regulatory systems

Yeo et al., 2018

Toremifene Breast cancer S. mutans and
P. gingivalis

Membrane permeabilization and damage Gerits et al., 2017

C. neoformans Binding to the two essential EF-hand proteins calmodulin 1 (Cam1) and calmodulin-like protein
(Cml) and prevention of Cam1 from binding to its well-characterized substrate calcineurin

Butts et al., 2014

Tamoxifen Breast cancer C. neoformans Binding to the two essential EF-hand proteins calmodulin (Cam1) and calmodulin-like protein
(Cml) and prevention of Cam1 from binding to its well-characterized substrate calcineurin

Butts et al., 2014

Raloxifene Breast cancer P. aeruginosa Binding to PhzB2 which is involved in the production of pyocyanin, a pigment related with the
virulence of P. aeruginosa

Ho Sui et al., 2012

Clomiphene Fertility S. aureus Inhibition of undecaprenyl diphosphate synthase involved in the synthesis of teichoic acid wall Farha et al., 2015

Finasteride Benign prostatic hyperplasia C. albicans Inhibition of filamentation Routh et al., 2013

5-fluorouracil Solid tumors P. aeruginosa Inhibition of biofilm formation and quorum sensing Ueda et al., 2009

Doxorubicin Bladder, breast, stomach,
lung, ovarian, and thyroid
cancers

C. albicans Inhibition of filamentation Chavez-Dozal et al., 2014

Daunorubicin Acute myeloid leukemia,
acute lymphocytic leukemia,
chronic myelogenous
leukemia, and Kaposi’s
sarcoma

C. albicans Inhibition of filamentation Chavez-Dozal et al., 2014

Clofoctol Bacterial infection P. aeruginosa Inhibition of the pqs system, probably by targeting the transcriptional regulator PqsR D’Angelo et al., 2018

Azithromycin Bacterial infection P. aeruginosa Interaction with the ribosome, resulting in direct and/or indirect repression of specific subsets of
genes involved in virulence, quorum sensing, biofilm formation,

Imperi et al., 2014

5-fluorocytosine Fungal infection P. aeruginosa Inhibition of the production of pyoverdine, Prlp protease, and exotoxin A by downregulation of
the pvdS gene.

Imperi et al., 2013a

Clotrimazole and miconazole Fungal infection P. aeruginosa Inhibition of the pqs activity through the possible inactivation of 2-alkyl-4-quinolones (AQ)
production or reception

D’Angelo et al., 2018

Gallium nitrate∗ Lymphoma and bladder
cancer

P. aeruginosa Effects on iron metabolism Antunes et al., 2012

Celecoxib Inflammation S. aureus, B.
anthracis, B.
subtilis, and
M. smegmatis

Inhibition of bacterial DNA, RNA, protein synthesis, and cell wall Thangamani et al., 2015b

Diflunisal Inflammation S. aureus Inhibition of ArgA, a regulator protein which inhibits alpha-type phenol soluble modulins toxins Hendrix et al., 2016

Glatiramer acetate Inflammation P. aeruginosa Disruption of biofilm formation Christiansen et al., 2017

(Continued)
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A. baumannii and K. pneumoniae (Ayerbe-Algaba et al.,
2018). Recently, the effectiveness of niclosamide against
Helicobacter pylori has been described, showing an MIC of
0.25 mg/L against the ATCC 49503 strain (Tharmalingam
et al., 2018). Furthermore, niclosamide has demonstrated an
immunomodulatory role by decreasing the secretion of IL-8 in a
gastric cancer cell line after H. pylori infection (Tharmalingam
et al., 2018). Niclosamide also showed therapeutic efficacy in
an experimental infection model of Galleria mellonella larvae
infected with P. aeruginosa and H. pylori (Imperi et al., 2013b;
Tharmalingam et al., 2018). The formulation of niclosamide
under nanosuspension showed lower toxicity in a rat lung
infection model involving P. aeruginosa; the results of this study
are potentially favorable for the further study of this formulation
(Costabile et al., 2015).

In the case of fungi, mebendazole inhibited the growth of
Cryptococcus neoformans and Cryptococcus gattii and affected
the formation of biofilm by C. neoformans (Joffe et al.,
2017). The combination of mebendazole with amphotericin
B increased the fungicidal activity of amphotericin B against
C. neoformans twofold (Joffe et al., 2017). Moreover, quinacrine,
in monotherapy, has been shown in vitro to be effective for
the prevention and treatment of Candida albicans biofilms,
accumulating in vacuoles and causing defects in endocytosis
(Kulkarny et al., 2014). In combination with caspofungin or
amphotericin B, quinacrine has demonstrated synergy against
C. albicans (Kulkarny et al., 2014).

These studies highlight the potential use of the anthelmintic
drugs as antimicrobial agents as monotherapy for infections
caused by Gram-positive and Gram-negative bacteria and fungi;
although in vivo studies in vertebrate experimental models should
be conducted.

Anticancer Drugs Repurposed Against
Bacteria and Fungi
The antibacterial activity of anticancer drugs has also been
reported (Soo et al., 2017). Most of them act against Gram-
positive pathogens.

The FDA-approved anticancer drugs floxuridine (mostly used
in colorectal cancer) and streptozotocin (used for pancreatic
islet cell cancer) have exhibited activity against S. aureus by
inhibiting the SaeRS two-component system (TCS) (Yeo et al.,
2018). SaeRS TCS is an important transcriptional regulator
of different virulence factors of S. aureus including adhesins,
toxins, and enzymes (Yeo et al., 2018). Floxuridine showed
direct antibacterial activity by inhibiting the growth of S. aureus
USA300 at a concentration of 0.0625 mg/L in vitro and increasing
the survival of mice by 60% in a murine model of blood infection
in vivo (Yeo et al., 2018). On the other hand, streptozotocin
did not affect staphylococcal growth in vitro but reduced the
mortality of mice to 10% in vivo (Yeo et al., 2018). Both
drugs not only cause significant changes in the transcription
of S. aureus genes, but also inhibit the transcription of other
virulence regulatory systems of S. aureus (Yeo et al., 2018).

Another group of anticancer drugs developed to combat
breast cancer is the selective estrogen receptor modulators
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FIGURE 1 | Antibacterial and antifungal mechanisms of action of repurposed drugs.

(SERMs). Tamoxifen has been reported to exhibit activity against
S. aureus (Corriden et al., 2015) and its analog toremifene showed
efficacy against oral infection caused by Streptococcus mutans
(Gerits et al., 2017). Toremifene also has been shown to reduce
biofilm formation by S. mutans due to a possible increase in
membrane permeabilization and therefore, membrane damage
(Gerits et al., 2017). Clomiphene, another SERM in preclinical
development for the treatment of fertility, has demonstrated
efficacy against S. aureus and Bacillus subtilis in vitro, with an
MIC value of 8 mg/L, and incubation of B. subtilis with this
concentration of clomiphene changed its morphology (Farha
et al., 2015). The mode of action of clomiphene is through
the inhibition of undecaprenyl diphosphate synthase (UPPS), an
enzyme involved in the synthesis of the teichoic acid wall of
S. aureus (Farha et al., 2015). Due to this action on the bacterial
wall, clomiphene exhibits synergy with β-lactams in restoring
MRSA susceptibility (Farha et al., 2015).

Other anticancer drugs were tested as adjunctive therapies
against M. tuberculosis infection. One such drug, denileukin
diftitox, is currently used for the treatment of cutaneous T-cell
lymphoma (Gupta et al., 2017). Treatment with denileukin
diftitox slightly reduced the lung bacterial count in mice aerosol-
infected with M. tuberculosis (Gupta et al., 2017). The addition
of this drug to standard tuberculosis treatments, composed of
rifampin, isoniazid, and pyrazinamide, similarly reduced the
bacterial burden (Gupta et al., 2017).

Different studies have been also performed on Gram-negative
bacteria to evaluate the antibacterial effect of anticancer drugs.
A potent anticancer drug indicated for the treatment of different
types of solid tumors called 5-fluorouracil, as well as gallium
nitrate, an anticancer drug for the treatment of lymphoma and
bladder cancer, have been extensively studied (Banin et al., 2008;
Bonchi et al., 2014; Minandri et al., 2014; Rangel-Vega et al.,

2015). 5-fluorouracil has been used against a collection of 5,850
mutants of the P. aeruginosa PA14 strain, revealing positive
activity via the regulation of a large number of genes involved
in quorum sensing and biofilm formation (Ueda et al., 2009;
Rangel-Vega et al., 2015). Also, gallium nitrate has demonstrated
in vitro an inhibitory effect on bacterial growth in a collection
of 58 multidrug-resistant (MDR) A. baumannii strains, and
in P. aeruginosa at concentrations >3.13 µM (Kaneko et al.,
2007; Antunes et al., 2012; Frangipani et al., 2014); although
the presence of pyoverdine and proteases in human serum
reduce the efficacy of gallium nitrate against P. aeruginosa by
increasing its MIC (Bonchi et al., 2015). At non-bactericidal
concentrations, gallium nitrate can affect the production of
virulence factors of P. aeruginosa (Kaneko et al., 2007; García-
Contreras et al., 2014). In G. mellonella, the administration of
this drug alone or in combination with colistin, at concentrations
mimicking the human therapeutic dose of gallium nitrate
used for cancer patients (28 µM), significantly increased the
survival of larvae after infection by A. baumannii (Antunes
et al., 2012). Moreover, in murine models of acute and chronic
lung infections by P. aeruginosa and A. baumannii, gallium
nitrate has reduced lung injury and bacterial loads in tissues
(Kaneko et al., 2007; de Léséleuc et al., 2012). Regarding SERM
drugs, toremifene has shown efficacy against oral infection
caused by Porphyromonas gingivalis (Gerits et al., 2017), and
raloxifene attenuated in vitro and in Caenorhabditis elegans
model the virulence of P. aeruginosa by binding to PhzB2
which is involved in the production of pyocyanin, a pigment
related with the virulence of this pathogen (Ho Sui et al.,
2012).

In the case of fungi, the activity of anticancer drugs has
also been investigated. Floxuridine, at twice its half maximal
inhibitory concentration (IC50) value, has exhibited fungicidal
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activity against Exserohilum rostratum reducing the hyphae-
derived CFU (colony-forming unit) of this fungus (Sun et al.,
2013). The SERM compounds such as tamoxifen and toremifene
have also shown fungicidal activity against C. neoformans. They
also display a number of pharmacological properties desirable for
anticryptococcal drugs, including synergistic fungicidal activity
with fluconazole and/or amphotericin B in vitro and in vivo,
oral bioavailability, and activity within macrophages (Butts et al.,
2014). They bind directly to the two essential EF-hand proteins
calmodulin 1 (Cam1) and calmodulin-like protein 1 (Cml1)
of C. neoformans, preventing Cam1 from binding to its well-
characterized substrate calcineurin (Cna1), thereby blocking
Cna1 activation (Butts et al., 2014). In whole cells, toremifene and
tamoxifen are known to block the calcineurin-dependent nuclear
localization of the transcription factor Crz1 (Butts et al., 2014).
Together, both drugs have inhibited the growth of C. neoformans
within macrophages, a niche not accessible to current antifungal
drugs (Butts et al., 2014). In murine-disseminated cryptococcosis,
tamoxifen in combination with fluconazole decreased the brain
burden by∼1 log10 CFU/g (Butts et al., 2014). Against C. albicans
and Candida glabrata, toremifene has enhanced the antibiofilm
activity of amphotericin B and caspofungin [fractional inhibitory
concentration index (FICI) < 0.5 both in vitro and in vivo worm
infection models (Delattin et al., 2014)].

Other anticancer drug such as finasteride, a 5-α-reductase
inhibitor commonly used for the treatment of benign prostatic
hyperplasia, was highly effective in both the prevention and
destruction of C. albicans biofilm formation at doses greater
than 16 and 128 mg/L, respectively (Chavez-Dozal et al.,
2014). In combination with 2 mg/L fluconazole, 2 mg/L,
finasteride exhibited synergistic activity in the prevention of
biofilm formation by C. albicans (Chavez-Dozal et al., 2014).
Similar effects were observed in the presence of doxorubicin and
daunorubicin that inhibited the morphogenesis of C. albicans
(Routh et al., 2013).

Anticancer drugs not only target bacteria and fungi
but can also regulate the host response. Floxuridine and
streptozotocin have presented a protective effect on the host by
reducing S. aureus-mediated killing in human neutrophils (Yeo
et al., 2018). Moreover, tamoxifen can stimulate chemotaxis,
phagocytosis, and neutrophil extracellular trap (NET) formation
through the modulation of the ceramide pathway upon infection
with S. aureus (Corriden et al., 2015). Unlike tamoxifen, its
analog raloxifene has been shown to reduce NET formation
in human neutrophils, thus resulting in cell death of S. aureus
(Flores et al., 2016). In addition, denileukin diftitox has been
reported to bind to the IL-2 receptor in T lymphocytes, thereby
introducing diphtheria toxin inside these cells to suppress them.
The decrease in this type of T cell hinders the replication of
M. tuberculosis (Gupta et al., 2017). It is noteworthy to mention
that toxicity of anticancer drugs is important in terms of their
establishment as antibacterial drugs. Tamoxifen has been used
for over 30 years to treat breast cancer. The doses of tamoxifen
used in animals (250 mg/kg) (Corriden et al., 2015) and in
humans (20–40 mg) are generally tolerated. For clomiphene,
acute oral LD50 in mice and rats were 1,700 and 5,750 mg/kg,
respectively (Drug Bank, 2018). The toxic dose of clomiphene

in humans is unknown but toxic effects accompanying acute
overdosage were not observed (Drug Bank, 2018). In the case of
gallium nitrate, the treatment of hypercalcemia was performed
with continuous intravenous infusion (200 mg/m2/day during 5
days) being generally well tolerated (Warrell et al., 1988). On the
other hand, higher doses (300 mg/m2/day during 5–7 days) were
used in cancer and side effects such as diarrhea and renal toxicity
were observed (Chitambar, 2010).

Anti-inflammatory and
Immunomodulatory Drugs Repurposed
Against Bacteria and Fungi
As is the case with anticancer drugs, anti-inflammatory and
immunomodulatory drugs have demonstrated more antibacterial
activity against Gram-positive than Gram-negative bacteria and
fungi.

Celecoxib, a non-steroidal anti-inflammatory drug (NSAID),
showed antibacterial activity against several pathogens including
S. aureus, Bacillus anthracis, B. subtilis, and M. smegmatis
(Thangamani et al., 2015b). Celecoxib has demonstrated
non-specific targeting by inhibiting bacterial DNA and
RNA replication, protein synthesis, and cell wall formation
(Thangamani et al., 2015b), as well as reducing the levels of
IL-6, TNF-α, IL-1β, and MCP-1 (monocyte-chemoattractant
protein-1) in skin lesions caused by S. aureus infection
(Thangamani et al., 2015b). Moreover, this drug has exhibited
synergy with several topical and systemic antimicrobials used
against S. aureus, with the exception of linezolid (Thangamani
et al., 2015b).

Other NSAIDs, such diflunisal in combination with
diclofenac, ibuprofen and verapamil have shown antibacterial
activity against S. aureus and M. tuberculosis (Dutta et al., 2007;
Vilaplana et al., 2013; Gupta et al., 2015; Hendrix et al., 2016). It
was reported that diflunisal did not affect the bacterial growth
of S. aureus in vitro, but did inhibit their toxicity in murine and
human osteoblasts in vivo (Hendrix et al., 2016). Confirmed
data have been observed in mice treated with diflunisal,
which have presented less cortical bone marrow destruction,
although a reduction in the bacterial load was not observed
(Hendrix et al., 2016). Even though bacterial growth was not
compromised, diflunisal inhibited accessory gene regulator A
(AgrA), a regulator protein which inhibits alpha-type phenol
soluble modulins (PSMs) and may contribute to a reduction
in S. aureus virulence (Hendrix et al., 2016). In the case of
verapamil, it has potentiated the activity of bedaquiline, a novel
drug used to treat MDR tuberculosis, against M. tuberculosis
(Dutta et al., 2007; Gupta et al., 2015). Moreover, treatment with
ibuprofen significantly decreased the bacterial load and increased
mice survival in an experimental model of active tuberculosis
(Vilaplana et al., 2013).

For Gram-negative bacteria, celecoxib and betamethasone
in combination with antibiotics have demonstrated activity
against different bacterial species (Artini et al., 2014;
Thangamani et al., 2015b). Celecoxib has presented
synergy with colistin against A. baumannii, P. aeruginosa,
Escherichia coli, K. pneumoniae and Salmonella enterica serovar
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Typhimurium (Thangamani et al., 2015b), and betamethasone
has demonstrated synergy with ceftazidime, erythromycin,
and ofloxacin against P. aeruginosa and some strains of E. coli
(Artini et al., 2014). Diclofenac, in turn, was found to exhibit
efficacy both in vitro and in vivo against S. enterica serovar
Typhimurium (Dutta et al., 2007). In the case of glatiramer
acetate, a drug used in the treatment of multiple sclerosis, activity
against A. baumannii, P. aeruginosa, and E. coli reference strains,
and against A. baumannii and P. aeruginosa clinical isolates
from bacteremia and chronic respiratory infections in cystic
fibrosis patients has been observed by disruption of the biofilm
formation (Christiansen et al., 2017).

Like anticancer drugs, some anti-inflammatory and
immunosuppressive drugs such as aspirin, ibuprofen, and
tacrolimus have shown antifungal activity against C. neoformans,
C. gattii, and E. rostratum, respectively (Sun et al., 2013; Ogundeji
et al., 2016). The treatment of cryptococcal cells with aspirin and
ibuprofen has led to the induction of stress via activation of the
high-osmolarity glycerol (HOG) pathway in C. neoformans and
C. gattii, and to their death through the activation of reactive
oxygen species (ROS)-mediated membrane damage (Ogundeji
et al., 2016). The MICs of these drugs did not negatively affect
growth or impair macrophage function; rather, they enhanced
the ability of these immune cells to phagocytose cryptococcal
cells (Ogundeji et al., 2016). Moreover, treatment with tacrolimus
at twice its IC50 value significantly reduced the hyphae-derived
CFU of E. rostratum (Sun et al., 2013).

Antipsychotic and Antidepressant Drugs
Repurposed Against Bacteria and Fungi
Trifluoperazine, an antipsychotic drug, has showed therapeutic
efficacy in a murine model of C. difficile infection, presenting
higher survival rates than those treated with vancomycin;
a decrease in inflammation and edema was also observed
compared with the infected group (Andersson et al., 2016).
Furthermore, together with amoxapine, trifluoperazine in
combination with vancomycin protected 80% and 100% of mice,
respectively, from severe oral infection caused by C. difficile
(Andersson et al., 2016). Rani Basu et al. (2005) reported
that the combination of two different non-antimicrobial drugs,
prochlorperazine and methdilazine, may present antibacterial
activity against S. aureus.

For Gram-negative bacteria, pimozide, used for the treatment
of severe Tourette’s syndrome and schizophrenia, has reduced
in vitro the internalization of S. enterica serovar Typhimurium
and E. coli by phagocytic cells (Lieberman and Higgins, 2009).
Moreover, pimozide reduced the bacterial uptake and vacuolar
escape of Listeria monocytogenes in bone marrow-derived
macrophages, as well as the invasion and cell-to-cell spread of the
bacteria during the infection of non-phagocytic cells (Lieberman
and Higgins, 2009). In addition, the drugs trifluoperazine and
amoxapine were shown to be active against Yersinia pestis
after screening of a library of 780 FDA-approved drugs to
identify molecules which reduce Y. pestis cytotoxicity in murine
macrophages (Andersson et al., 2016). These two compounds
exhibited therapeutic efficacy in a murine model of pneumonic

plague by Y. pestis; although the treatment was less effective when
administration of the drug was delayed (Andersson et al., 2017).
However, their efficacy was improved when both compounds
were administered in combination with levofloxacin (Andersson
et al., 2017). In addition to this study, amoxapine was reported to
present therapeutic efficacy in an experimental murine model of
respiratory infection caused by K. pneumoniae (Andersson et al.,
2017). Finally, azathioprine, an antidepressant drug used for the
treatment of Crohn’s disease, has exhibited anti-biofilm activity
against P. aeruginosa and E. coli through the inhibition of WspR
(Antoniani et al., 2013). WspR is a diguanylate cyclase involved
in the regulation of a signal molecule called cyclic-di-GMP (c-
di-GMP) known as a regulator of the bacterial biofilm formation
(Antoniani et al., 2013).

In the case of fungi, the antipsychotic drug bromperidol
has exhibited synergy with various azoles against C. albicans,
C. glabrata, and Aspergillus terreus (Holbrook et al., 2017).
Bromperidol has demonstrated synergy with posaconazole
and voriconazole, and partial synergy with itraconazole and
ketoconazole against C. albicans, C. glabrata, and A. terreus, as
demonstrated by checkerboard and time-kill assays (Holbrook
et al., 2017). Moreover, bromperidol in combination with
posaconazole and voriconazole, increased the disruption of
biofilm formation by sessile cells of C. albicans induced by both
azoles. Their sessile MICs were reduced from >32 to 0.5 mg/L
(Holbrook et al., 2017).

Other Drugs Repurposed Against
Bacteria and Fungi
Other drugs with different modes of action and clinical
indications have been evaluated as antibacterial agents.
Auranofin, which is used for the treatment of rheumatoid
arthritis, has shown in monotherapy greater activity against a
wide range of Gram-positive bacteria including S. pneumoniae,
S. aureus, Enterococcus faecium, E. faecalis, and Streptococcus
agalactiae when compared with vancomycin or linezolid
(Aguinagalde et al., 2015; Thangamani et al., 2016a,b). In vivo,
auranofin and its analogs have demonstrated therapeutic
efficacy in different experimental models such as MRSA
septicemic infection, MRSA skin infection, MRSA implant
infection model (a model involving mesh-associated biofilm),
and MRSA intramuscular infection model (Aguinagalde et al.,
2015; Thangamani et al., 2016a,b). Interestingly, auranofin has
demonstrated synergy with the commonly used antibiotics
such as ciprofloxacin, linezolid, and gentamicin against
MRSA (Thangamani et al., 2016b). In order to improve the
activity of auranofin, different analogs were synthetized and
display improved antibacterial activity against S. aureus and
S. pneumoniae causing bacteremia in murine model (Aguinagalde
et al., 2015). The mode of action of auranofin against S. aureus
has been deciphered using the macromolecular biosynthesis
assay which showed that auranofin acts on the inhibition of
DNA replication and protein synthesis, downregulating the toxin
production (Thangamani et al., 2016a).

Ebselen; despite the fact that it is not an FDA-approved drug,
it is being investigated in clinical trials for the treatment of
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bipolar disorder and ischemic stroke, has also been evaluated.
Two studies have suggested that this compound exhibited
antibacterial activity against C. difficile in vitro and in vivo by
targeting glucosyltransferase domain (GTD) of C. difficile toxins
(Peng et al., 2018), and against MRSA and vancomycin-resistant
S. aureus (VRSA) with MIC values <1 mg/L (Thangamani et al.,
2015c). Moreover, ebselen has also reduced the biofilm formation
by S. aureus (Gi et al., 2014). Synergy between this drug and
fusidic acid, retapamulin, mupirocin, and daptomycin against
S. aureus strains was confirmed using a Bliss model (Thangamani
et al., 2015c).

Besides these two drugs, the antihistaminic compounds
terfenadine and its analogs were also investigated as potential
antibacterial drugs. Terfenadine has showed reasonable activity
against S. aureus (Perlmutter et al., 2014). In order to improve
their activity, 84 derivatives were synthesized that have presented
greater MIC values against S. aureus (1 mg/L) as well as activity
against E. faecium, E. faecalis, and M. tuberculosis (Perlmutter
et al., 2014).

In the case of statins, simvastatin, used in the treatment of
atherosclerotic cardiovascular disease and hypercholesterolemia,
has exhibited antibacterial activity in monotherapy against
M. tuberculosis (Parihar et al., 2014; Skerry et al., 2014). It
marginally reduced the bacterial load 4 and 8 weeks after
infection with M. tuberculosis by aerosol exposure; presumably
by reducing cholesterol synthesis due to the inhibition of HMG-
CoA reductase within the phagosomal membrane. This process
has consequently enhanced the maturation of phagosomes,
known to provide better defense against M. tuberculosis,
and by inducing the autophagy of M. tuberculosis-infected
macrophages (Parihar et al., 2014). The addition of simvastatin
to the first-line tuberculosis therapy (rifampicin + isoniazid
+ pyrazinamide) may help to reduce mycobacterial infection
and tissue damage in M. tuberculosis-infected mice (Skerry
et al., 2014). Similarly, atorvastatin, another statin drug, has also
demonstrated synergistic activity with rifampin in vitro against
M. tuberculosis and in a murine model of Mycobacterium leprae
infection (Lobato et al., 2014).

Regarding Gram-negative bacteria, auranofin exhibited
synergy with polymyxin B against A. baumannii, P. aeruginosa,
K. pneumoniae and S. enterica serovar Typhimurium
(Thangamani et al., 2016a).

Ebselen has also presented antibacterial effect against
A. baumannii and E. coli by reducing their bacterial growth
at MICs of 32 µM and <128 µM, respectively. This bacterial
reduction growth was due to the inhibition of TonB-mediated
physiology, which is involved in iron acquisition from host
sources (Nairn et al., 2017). Furthermore, ebselen exhibited
anti-virulence activity against P. aeruginosa by targeting c-di-
GMP signaling pathway, which regulates motility and biofilm
formation (Gi et al., 2014; Lieberman et al., 2014).

In the case of statins, the combination of simvastatin with sub-
inhibitory concentrations of colistin presented synergistic effect
against a collection of A. baumannii, E. coli, K. pneumoniae,
P. aeruginosa, and S. enterica serovar Typhimurium reducing the
MIC of simvastatin from >256 mg/L to a range between 8 and
32 mg/L (Thangamani et al., 2015a). In addition, screening of an

FDA-approved drug library has identified pentetic acid, an iron
chelator, as an inhibitor of elastase, an important exoprotease
as well as a reducer of biofilm formation by P. aeruginosa
(Gi et al., 2014). When applied to P. aeruginosa infections
in human lung tissue, pentetic acid increased the viability of
human lung epithelial A549 cells post-infection (Gi et al., 2014).
Interestingly, pentetic acid has also demonstrated therapeutic
efficacy in a murine experimental model of respiratory infection
by P. aeruginosa by increasing 42% the mice survival 5 days
post-infection (Gi et al., 2014).

Moreover, calcitriol, a bioactive form of vitamin D3 used
to treat hypocalcemic conditions and renal osteodystrophy, has
been described as an enhancer of bactericidal activity against
P. aeruginosa, due to its capacity to modulate the activity of
monocytes and macrophages by increasing their bacterial killing
(Nouari et al., 2015).

Other drugs that have presented anti-virulence effect against
P. aeruginosa have been reported. For example 5-fluorocytosine,
an antifungal drug, has been shown to reduce in vitro the
production of virulence factors by P. aeruginosa such as
pyoverdine, PrpL protease, and exotoxin A by downregulating
pvdS gene expression (Imperi et al., 2013a), and to suppress
in vivo the pathogenicity of P. aeruginosa in a murine model
of lung infection (Imperi et al., 2013a). Other antifungal drugs
such as clotrimazole and miconazole were identified as inhibitors
of 2-heptyl-3-hydroxy-4 quinolone (PQS) quorum sensing (QS)
system. This system is based on signal 2-alkyl-4-quinolones (AQ):
PQS and 2-heptyl-4-hydroxyquinolone (HHQ) which can bind
and activate the regulator PqsR and controls the expression
of P. aeruginosa virulence factors. D’Angelo et al. (2018) have
shown that probably both drugs modify PqsR function by
competing with PQS and HHQ for the PqsR ligand-binding site.
Finally, clofoctol and azithromycin, drugs originally developed
as antibiotics against Gram-positive and Gram-negative bacteria,
respectively, were found to have also anti-virulence properties
against P. aeruginosa (Imperi et al., 2014; D’Angelo et al., 2018).

In the case of fungi, atorvastatin has demonstrated different
effects on the host and the yeast by: (i) reducing the ergosterol
content in the cell membrane and altering the properties
of the polysaccharide capsule of C. gattii; (ii) increasing the
production of ROS by macrophages; and (iii) reducing yeast
phagocytosis and the intracellular proliferation rate (Ribeiro
et al., 2017). Atorvastatin in combination with fluconazole was
also tested as an adjuvant to control fungal infections. This
combination demonstrated synergy in vitro against one strain
of C. gattii. In vivo, atorvastatin plus fluconazole increased the
survival of mice and reduced the burden of C. gattii in the
lungs and brain (Ribeiro et al., 2017). Moreover, preclinical
antimalarial drugs such as MMV665943 have been shown to
inhibit and delay growth at submicromolar concentrations and
exhibit fungicidal activity at concentrations greater than 1.56 µM
against C. albicans, C. neoformans, C. gattii and Lomentospora
prolificans. More specifically, this compound at concentrations
greater than 1.56 µM affects the polysaccharide capsule thickness
of C. neoformans (Jung et al., 2018).

Regarding the immune response modulation, ebselen and
auranofin reduced the production of inflammatory cytokines

Frontiers in Microbiology | www.frontiersin.org 8 January 2019 | Volume 10 | Article 41

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00041 February 21, 2022 Time: 14:13 # 9

Miró-Canturri et al. Drug Repurposing to Treat Infections

such as TNF-α, IL-6, IL-1β, and MCP-1 in skin lesions infected by
S. aureus (Thangamani et al., 2016a, 2015c). Similarly, calcitriol
has shown a modulatory effect on monocytes and macrophages
against P. aeruginosa infection by increasing their bacterial killing
(Nouari et al., 2015). The mechanism of action of calcitriol on the
immune system is unknown; although its downregulating effect
on IL-1β, IL-6, and IL-8 has been observed (Xue et al., 2002).
In the case of statin, simvastatin has been reported to modulate
the production of proinflammatory cytokines (IL-8 and CCL20)
and Kruppel-like factors (an emerging group of immune system
regulators) in P. aeruginosa respiratory infections (Hennessy
et al., 2014).

CLINICAL APPLICATION OF
REPURPOSED DRUGS AGAINST
INFECTIOUS AGENTS

Even though repurposed drugs showed promising preclinical
data, to our knowledge only three clinical studies have been
performed or are currently underway.

A randomized study on the role of aspirin in tuberculous
meningitis suggested that aspirin in combination with
corticosteroids reduced the incidence of strokes and mortality
(Misra et al., 2010). A similar study on the role of aspirin as an
adjunct with steroids for the treatment of HIV-negative adults
with tuberculous meningitis in Vietnam is still ongoing, now in
Phase II trial (clinical trials identifier: NCT02237365). Another
Phase III trial (ClinicalTrials.gov Identifier: NCT02060006)
is being conducted to evaluate the feasibility and efficacy of
using meloxicam, a cheap and widely available NSAID, as a
preventive intervention for tuberculous-immune reconstituted
inflammatory syndrome; results from this study have yet to be
published (Maitra et al., 2016).

CONCLUSION AND PERSPECTIVES

In the last decade, substantial progress has been made in the
development of repurposed drugs for the treatment of bacterial
and fungal infections. Several compounds have yielded promising
data but developmental efforts remain in the preclinical stage.
Additional relevant issues should be take into account in the
preclinical development of repurposing drugs including possible
need for new formulations to increase their bioavailability
and ADMET tests if the administration route is changed,
possible negative effect of the primary drug activity (especially
for anticancer and antipsychotic drugs), and challenges for
intellectual property rights. Moreover, further clinical studies
are needed to address the urgent demand for new treatments
targeting infections caused by bacteria and fungi.
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