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Extracellular pH has the potential to affect various aspects of the pancreatic beta cell
function. To explain this effect, a number of mechanisms was proposed involving both
extracellular and intracellular targets and pathways. Here, we focus on reassessing the
influence of extracellular pH on glucose-dependent beta cell activation and collective
activity in physiological conditions. To this end we employed mouse pancreatic tissue
slices to perform high-temporally resolved functional imaging of cytosolic Ca2+

oscillations. We investigated the effect of either physiological H+ excess or depletion on
the activation properties as well as on the collective activity of beta cell in an islet. Our
results indicate that lowered pH invokes activation of a subset of beta cells in
substimulatory glucose concentrations, enhances the average activity of beta cells, and
alters the beta cell network properties in an islet. The enhanced average activity of beta
cells was determined indirectly utilizing cytosolic Ca2+ imaging, while direct measuring of
insulin secretion confirmed that this enhanced activity is accompanied by a higher insulin
release. Furthermore, reduced functional connectivity and higher functional segregation at
lower pH, both signs of a reduced intercellular communication, do not necessary result in
an impaired insulin release.

Keywords: insulin secretion, membrane excitability, potassium channels, beta cell network, collective activity,
calcium waves, pancreatic islets, pH-dependence
INTRODUCTION

Extracellular and intracellular [H+] is typically in a nanomolar range, which is significantly lower
than the concentrations of most other ions, small organic molecules, or even macromolecules like
proteins and lipids. Isolated cells in culture can acutely tolerate a wider range of extracellular pH
changes (pH 5-11). Cells in intact tissues are more sensitive to pH deviations and the pH of the
arterial blood is tightly regulated and maintained in a very narrow range between 7.36 and 7.44.
Larger local pH deviations can transiently occur in the interstitial fluids and venous blood; however,
most cells cannot tolerate long-term deviations larger than half a pH unit. Also in pancreas,
bicarbonate producing ductal cells could serve as a significant source of H+, modulating insulin
n.org June 2022 | Volume 13 | Article 9166881
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release in the process of digestion and postprandial nutrient
processing. Long-term pH changes are often associated with
pathophysiological conditions since certain diseases, including
diabetes mellitus, result in chronically lower interstitial pH (1).
Interestingly manipulations of both intracellular and
extracellular [H+] have been proposed as a potential
therapeutic approach to correct the secretory defects and
insulin resistance in type-2 diabetes mellitus (1, 2).

The first assessments of the effect of pH changes on the beta cell
activity have been performed more than half a century ago (3).
Initially, it was proposed that the observed increase in beta cell
excitability was a consequence of a direct effect of low pH to
reduce the membrane K+ permeability (Henquin, 1981). In the
following years, however, the evidence has accumulated that
extracellular pH primarily modulates the intracellular pH
dynamics via regulating the Na+/H+ and HCO3

-/Cl- antiporters
on the plasma membrane (4, 5). Intracellular pH changes were
described to subsequently influence a number of processes,
including glucose handling, homeostasis of cytosolic Ca2+

([Ca2+]c) and exocytotic insulin release (6), and contributed to
the time-dependent potentiation of insulin release (2, 6). These
early results showed that the effect of the reduced extracellular pH
depends strongly on the level of glucose stimulation used. At the
threshold extracellular glucose concentration (6.7 mM), insulin
secretion was increased at lower extracellular pH, which could be
explained with increased excitability due to lower K+ permeability.
On the other hand, at supraphysiological glucose concentrations,
the effects of lowered pH were either absent (11.1 mM glucose) or
even inhibitory (27.8 mM glucose) (6). To date these apparent
inconsistencies have not been resolved.

Despite the fact that the described physiological effects of H+

load have been mostly ascribed to changes in the intracellular
pH, pancreatic beta cells express several ion channels that can
directly sense extracellular pH dynamics, and their direct
modulation could influence the beta cell excitability as well.
Two H+-sensitive two-pore-domain K+ channels, TASK1 and
TALK1, have been recently shown to contribute to the
polarization of the beta cell membrane potentials and thus
suggesting their role in beta cell excitability and insulin release
(7, 8).The importance of TALK1 channel is further emphasized
by the abundancy of its transcripts in beta cells in both mice and
humans (9, 10). The KCNK16 mutation causing TALK-1 gain of
function results in the inhibition of glucose-stimulated
membrane potential depolarization and reduced endoplasmic
reticulum Ca2+ storage, leading to a form of maturity-onset
diabetes of the young (11). In addition to the pH dependent
modulation of the aforementioned K+ channels, other pH
sensitive mechanisms have been described. Ovarian cancer G
protein-coupled receptor 1 (OGR1) was described as an insulin
secretion enhancer under acidic conditions through intracellular
Ca2+ mobilization (12, 13).

We, along with other groups, have demonstrated ample
communication within a collective of beta cells in a pancreatic
islet. Both direct, short-range interactions through gap junctions
and paracrine long-range signaling have been reported (14, 15).
This intercellular communication was captured in several
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classical deterministic and recent stochastic models (16)
reporting its role in the collective sensing and functional
response of the islets. Furthermore, collective response of beta
cells to glucose is disturbed in the islets from diabetic
organisms (17).

The main aim of this study was to assess the effects of changes
in extracellular pH on glucose-dependent beta cell collective
activity in mouse pancreatic islet within the native environment
of the acute pancreatic tissue slice. Our results show that the
collective beta cell activation, activity, and network properties
could be directly influenced by the local or global changes in the
extracellular pH.
MATERIALS AND METHODS

Ethics Statement
The study was conducted in strict accordance with all national
and European recommendations pertaining to care and work
with experimental animals, and all efforts were made to minimize
the suffering of animals. The protocol was approved by the
Federal Ministry of Education, Science and Research of the
Republic of Austria (permit number: 2020-0.258.669) and by
the Veterinary Administration of the Republic of Slovenia
(permit number: U34401-35/2018-2).

Tissue Slice Preparation and Dye Loading
10-30 week old outbred NMRI mice of either sex were kept on a
12:12 hours light: dark schedule in individually ventilated cages
(Allentown LLC, USA) and used for the preparation of acute
pancreatic tissue slices, as described previously (18–20). In brief,
after CO2 euthanasia of mice, we accessed the abdominal cavity
via laparotomy and injected 1.9% low-melting-point agarose
(Lonza, USA) dissolved in extracellular solution (ECS,
consisting of (in mM) 125 NaCl, 26 NaHCO3, 6 glucose, 6
lactic acid, 3 myo-inositol, 2.5 KCl, 2 Na-pyruvate, 2 CaCl2, 1.25
NaH2PO4, 1 MgCl2, 0.25 ascorbic acid) at 40°C into the distally
clamped proximal common bile duct. Immediately after
injection, we cooled the agarose infused pancreas with ice-cold
ECS. After organ extraction, we prepared tissue slices with a
thickness of 140 µm using a vibratome (VT 1000 S, Leica
Microsystems, Germany) and collected them in HEPES-
buffered ECS (HB-ECS, consisting of (in mM) 125 NaCl, 10
NaHCO3, 10 HEPES, 6 glucose, 6 lactic acid, 3 myo-inositol, 2.5
KCl, 2 Na-pyruvate, 2 CaCl2, 1.25 NaH2PO4, 1 MgCl2, 0.25
ascorbic acid; titrated to pH=7.4 using 1 M NaOH). To introduce
the fluorescent Ca2+ indicator, we incubated the slices for
60 minutes at RT in HB-ECS (6 µM Calbryte 520-AM
(AAT Bioquest, Interchim, Montluçon, France), 0.03%
Pluronic F-127 (w/v), and 0.12% dimethylsulphoxide (v/v)).
All chemicals were obtained from Sigma-Aldrich (St. Louis,
Missouri, USA).

Stimulation Protocol and Calcium Imaging
Individual tissue slice was transferred to an imaging chamber
equipped with a perfusion system containing HB-ECS at 34°C
June 2022 | Volume 13 | Article 916688
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and exposed to a square glucose stimulation pulse (8 mM) lasting
for several tens of minutes. To study islet activation the pH of the
HB-ECS was set to 7.4, 7.1 or 7.7 and islets were placed in a non-
stimulatory glucose concentration (6 mM) at one of the pH
levels, following stimulation with 8 mM glucose solution of the
same pH (Figure 1). To study the pH-dependence of the plateau
phase of the beta cell activity as well as the beta cell network
properties, the pH of the extracellular solution was switched in
the order 7.4 - 7.1 - 7.7 (sequence 1) or 7.4 - 7.7 - 7.1 (sequence 2)
during the 1-hour exposure to stimulatory glucose of 8 mM
(Figure 2). In the control experiments pH 7.4 was maintained
throughout the duration of the experiment (Figures 2J–L). The
imaging was performed on a Leica TCS SP5 upright confocal
system (20x HCX APO L water immersion objective, NA 1.0).
The acquisition frequency was set to 2 Hz and the resolution to
512x512. Calbryte 520 was excited by an argon 488 nm laser line
and emitted light was detected by Leica HyD hybrid detector in
the range of 500-700 nm (all from Leica Microsystems,
Germany), as described previously (19).
Frontiers in Endocrinology | www.frontiersin.org 3
Glucose-Stimulated Insulin Secretion
In Vitro
For acute insulin release in response to glucose, primary BL6J
mouse islets were isolated (21) and pre-incubated (1 h) in HB-
ESC buffer containing 6 mM glucose and pH 7.4 at 37°C. Islets
were then incubated in HB-ESC with 6 mM glucose for 5 min
(basal) after which the solution was collected and replaced with
stimulatory glucose in HB-ESC 8 mM glucose with pH set to 7.4
or 7.1. Solution was collected and replaced sequentially after 5, 10
and 20 min of incubation. Insulin was determined using Insulin
Ultra-Sensitive assay kit from Cisbio (Bagnols-sur-Ceze, France).
Secreted insulin was normalized to the basal insulin secretion at 6
mM glucose after 5 min and shown as a fold change.

Data Analysis
Analysis was conducted as described previously (22). In brief, we
followed the analysis pipeline to first automatically detect regions
of interest (ROIs) and sampled information about the time
profile of [Ca2+]c changes, their spatial coordinates, and
A
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E
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FIGURE 1 | pH-dependency of activation of beta cells in islets in fresh pancreatic slices. (A) Time course of the [Ca2+]c oscillations in a selection of beta cells
exposed to pH 7.1 for 10 min followed by stimulatory glucose concentration (8 mM). Dark blue arrows indicate the delay time from introduction of stimulatory
glucose to activation and red arrow indicates the time of delays from activation of first cell to the activation of every other cell. (B) As panel A at pH 7.4 (C) As panel
A at pH 7.7. (D) Pooled data showing the fraction of active cells in time. The acidification induces a left shift of activation curve. Semi-transparent lines show results
of the individual experiments, bold lines are the averages for each experimental condition. (E) Quantification of pooled data of delays from introduction of stimulatory
glucose to activation. (F) Quantification of pooled data of delays from activation of first cell to the activation of every other cell. n=5 islets for each condition. Box plots
are showing upper and lower quartile; line median; whiskers 5-95%. ***p < 0.001.
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FIGURE 2 | | Spatiotemporal characterization of beta cell plateau activity. (A, F, J) Time course of the [Ca2+]c oscillations, exposed to 8 mM glucose stimulation
protocol with pH manipulations during the stable plateau phase. (B, G, K) Hexbin plot of all detected [Ca2+]c oscillations presented as the time of the peak vs. the
halfwidth of [Ca2+]c oscillation duration. The sections in the color-coded rectangles were used for the further statistical analysis (orange=pH 7.1, green=pH 7.4 and
purple=pH 7.7). (C, H, L) Quantification of frequency of the [Ca2+]c oscillations expressed as number of events per minute per ROI. (D, I, M) Quantification of the
[Ca2+]c oscillations halfwidths. (E) In vitro insulin secretion from 50 isolated islets monitored over 75 min. Data is normalized to the basal insulin secretion at 6 mM
glucose (5 min incubation), and presented as mean, the error bars represent standard deviation of the mean. Experiments from the individual islets are connected
with a line. (**p < 0.01, ***p < 0.001).
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neighboring ROIs, as well as about movie statistics, recording
frequency, and pixel size. In the next step we distilled all the
significant changes (events with z-score > 4) of [Ca2+]c at all
realistic time scales within each ROI. The events were
characterized by the start time, their maximal height, and the
width at half of their peak amplitude. The activity was calculated
as a sum of all areas under the curve (AUC) of all the events
detected per active ROI (ROI with more than 10 events detected),
per minute. A potential non-negative nature of some of the
variables (AUC, halfwidth, event rate) has been accounted for as
we performed the analyses on log-transformed values.

The activation times, the start of [Ca2+] increases after
switching from basal to stimulatory concentration, were
selected manually (23). Statistics were calculated using
SigmaPlot version 14 (SSPS Software). Statistical differences
between groups were tested using ANOVA on Ranks followed
by posthoc Dunn’s method, and the difference between two
groups was tested using the Mann-Whitney U test or Student’s
t-test depending on the normality of the data distribution. A
more elaborate statistics, namely a mixed effects linear regression
was performed where we were not only interested in the p-value
but also the numerical relationship between the variables
(Figures 2C, H, L).

Network Analysis
To quantify the collective activity of the beta cell population in
each islet we constructed functional connectivity networks, such
that nodes represented individual beta cells within the tissue
slices and connections between them were created based on the
temporal similarity of the measured [Ca2+]c dynamics.
Specifically, two cells were considered functionally connected if
their activity profiles exceeded a preset degree of coordinated
activity, as described elsewhere (Pearson correlation, r>0.8)

(24–27). The resulting functional networks were diagnosed
with conventional network metrics. More specifically, we
assessed the coherence of beta cell activity through the average
node degree, whereby a higher average node degree indicates a
better aligned and more coherent [Ca2+]c dynamics. Moreover,
to quantify the degree of functional segregation, we computed the
average clustering coefficient. This metrics reflects the level of
clique-like structures within cell assemblies. Intuitively, a clique
in a functional beta cell network represents a cohesive group of
well synchronized cells, or members of a clique are more
connected between each other, than to nodes outside their
clique. The clustering coefficient can serve as an indicator how
well particular adjacent regions within the islets are
interconnected. A high value of the clustering coefficient
implies a high local efficiency of information transfer as well as
a good resilience to node dysfunction. For further details, see
(27, 28).

To assess the nature of intercellular Ca2+ waves, we extracted
first the fast component of [Ca2+]c oscillations with a digital
band-pass filter (cut-off frequencies 0.04 and 2 Hz). Afterwards,
the traces were binarized so that the values from the onset to the
end of individual oscillations were 1, and values between the
oscillations were 0. The binarized signals were then used to
extract individual Ca2+ waves by means of a space-time cluster
Frontiers in Endocrinology | www.frontiersin.org 5
algorithm, as described previously (29, 30). In brief, the physical
positions of individual cells and their binary traces were
translated to a time-space cube and all the cells that were
simultaneously active within that cube were considered to
belong to the same wave. In other words, we traced the course
of the intercellular wave and if proximate cells became activated
within a short time period, the given activation sequence was
considered as one Ca2+ wave with a given size. Accordingly, the
size encompasses the information about the number of cells
involved and the duration of the wave. To compare wave sizes
from different islets quantitatively, we normalized the detected
wave sizes with the number of cells in the given islet.
RESULTS

Beta cell network within an islet was activated using a square
pulse elevation from a substimulatory concentration of 6 mM to
a glucose concentration above the physiological stimulatory
threshold in the in vivo conditions for the NMRI mice
(8 mM). A pH-dependence of the response of beta cell
network to the stimulus protocol, which consisted of two
subsequent phases, an activation and a plateau phase
(Figures 1, 2), was assessed and analyzed (22, 31) by either
doubling (pH 7.1 = 80 nM) the physiological extracellular [H+]
of pH 7.4 (40 nM) or halving it (pH 7.7 = 20 nM).

pH-Dependence of Glucose-Dependent
Beta Cell Activation
The spatiotemporal activation properties of individual beta cell
in an optical section of an islet were examined following stepwise
glucose increases at either pH 7.1, 7.4 or 7.7 (Figures 1A–C,
respectively). Beta cells responded to the increased glucose
concentration with a characteristic delay in the onset of
[Ca2+]c increase (activation delay), which at 8 mM glucose and
pH 7.4 as well as at pH 7.7, lasts for about 400 s (Figure 1). When
slices were exposed to pH 7.1 this delay shortened significantly,
moreover, we observed a premature activation of ~10% of beta
cells in an islet already at 6 mM glucose (Figures 1A, D, E), left-
shifting the overall time-dependence of beta cell activation. The
median beta cell activation delay at 7.1 was around 200 s
(Figure 1D). The delay after first cell activation varied
significantly between the three conditions and was the longest
and most variable in pH 7.1 due to earlier activation of small
clusters of beta cells (Figures 1C, F). As can be appreciated in
Figure 1D, the overall activation of beta cells during stimulation
had a staircase-like appearance, suggesting that clusters of beta
cells rather than single cell activated at a certain time.

pH Influences the Frequency of the [Ca2+]c
Oscillations and Average Beta Cell
Activity in an Islet
The response of an islet to 8 mM glucose exhibited a biphasic
response, consisting of an initial transient, asynchronous [Ca2+]c
oscillations, followed by a synchronous plateau phase with
relatively regular [Ca2+]c oscillations, presented as clearly
distinguishable events (Figures 2A, F, J). Once the
June 2022 | Volume 13 | Article 916688

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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responsiveness of the beta cells in the control pH was established
and a stable plateau [Ca2+]c oscillations was observed, the pH
conditions were manipulated. To assess the possible dominant
and long-lasting effects of a certain pH condition we tested the
pH in either sequence 1 or sequence 2 (Figures 2B, G, K).
Elevating [H+] in either sequence (Figures 2B, C, G, H, orange
circles) increased the frequency of [Ca2+]c oscillations. The
increase in oscillation frequency at lower pH was significant in
comparison to control pH (Figure 2, green circles), 18% in
sequence 1 and 42% in sequence 2, while at pH 7.7 no significant
changes in oscillation frequency was observed (Figure 2, blue
circles). The average activity of beta cells in an islet, during
sequence 1 increased in pH 7.1 by 25% and in pH 7.7 it decreased
by 20% (Figure 2D). During the sequence 2 the change in
average islet activity did not change at pH 7.7 and at pH 7.1 it
increased by 31% (Figure 2I). In control experiments, constant
pH at 7.4, indicated that prolonged time of activity did not
influence neither the frequency of [Ca2+]c oscillations nor the
average islet activity (Figures 2K–M).

Functional Beta Cell Networks, Ca2+
Waves and pH
Next, we checked whether changes in extracellular pH affect the
functional network properties, as has been shown to be the case
with glucose stimulation, where an increase in stimulatory
glucose results in a greater coordination of the cellular activity
within an islet (31). The most glucose-sensitive network
parameters established in our previous work were the average
node degree and the average clustering coefficient. (20), which
indicate the overall coherence and the local synchronicity of
[Ca2+]c activity, respectively. Using the approach described in
Markovič et al. (20), we constructed functional networks of beta
cells from recordings for both sequence 1 and sequence 2. In
Figures 3A–C, F–H we show representative networks extracted
at different pH levels, separately for both sequences.
Interestingly, despite the fact that under more acidic
conditions there is a greater overall activity of beta cells, the
underlying functional networks are sparser and more segregated.
This observation is quantitatively evidenced by a lower average
node degree and a reduced average clustering coefficient
(Figures 3D, E, I, J). Notably, the network analysis of both
sequence protocols showed that in comparison to acidification,
alkalinization had a smaller effect on network parameters and
can be still dominated by the prior exposure to pH
7.1 (Figure 3D).

To investigate the principles of pH-dependent functional
connectivity patterns in more detail, we additionally
investigated the spatiotemporal organization of intercellular
Ca2+ waves. We extracted and binarized the fast [Ca2+]c
oscillations, identified individual waves, and computed their
sizes, as described in Materials and methods. In Figure 4A we
show two typical recordings performed under pH 7.1 and 7.4 in
the form of raster plots of binarized calcium activity of all cells
within the islets. Additionally, in Figures 4B–E we visualize the
spatiotemporal behavior for shorter intervals as space-time plots
and the corresponding raster plots, in which individual Ca2+
Frontiers in Endocrinology | www.frontiersin.org 6
waves are indicated by different colours. Evidently, while in pH
7.4 the plateau phase is dominated by global and very coherent
Ca2+ waves, in pH 7.1 the intercellular activity patterns appear
more heterogeneous and less coherent. To put it differently, in
acidic conditions we can often observe waves that encompass
only a part of the islet, but these waves occur more repeatedly,
giving thereby rise to a higher average activity. This is
additionally confirmed by the quantification of pooled data
(Figure 4F), where the average size of Ca2+ waves was found
significantly smaller under pH 7.1 than under 7.4 or 7.7. We
argue that this more erratic nature of spatiotemporal activity
leads to decreased compactness of the functional beta cell
networks under acidification.
DISCUSSION

The major contribution of the work presented here is the
demonstration that the glucose-induced [Ca2+]c oscillations in
beta cell collectives depend on extracellular pH. The
concentrations of both [H+] (20-80 nM, equivalent to pH 7.1-
7.7, respectively) and glucose (6-8 mM) were kept in the
physiological range. Changes in this pH range are possible in
situ conditions due to close proximity to activated neighboring
ductal and exocrine cells during the process of digestion.
Utilizing the advances in both microscopy and data analysis
alongside acute pancreatic tissue slice preparation, we were able
to perform high precision [Ca2+]c measurements (18, 19, 22).
This enabled us to assess and describe the function of the
individual beta cell and the function of beta cell collectives
within the pancreatic islet.

Earlier work has shown that the activation at physiological
glucose concentration can be characterized as both synchronous
and variable among cells (24, 32–36). This study and one of our
previous reports (31) showed a high variability between the
activation times of individual cells within the islet during
stimulation with physiological glucose concentration. The idea
of heterogeneity among beta cells is not new and it has been
proposed decades ago (37). Only recent experiments started to
accumulate data supporting this claim. The heterogeneity among
beta cells is observed on multiple levels, among others:
morphology (38, 39), gene and protein expression (40, 41), cell
connectivity (42, 43) and functional heterogeneity (44, 45). The
heterogeneity we and Stožer et al. (2021) observed on the level of
activation time remained preserved at higher than physiological
[H+]. Elevated [H+] induced a clear left shift of the activation
curve of beta cells, as clusters representing ~10% of the beta cell
population were prematurely activated at this high [H+] already
in non-stimulatory glucose conditions. Earlier activation can be
associated with the ability of H+ ions to modulate beta cell
activity by directly modulating proteins on the beta cell plasma
membrane. The pancreatic-specific pH-gated potassium channel
TALK1 exhibits reduced opening probability by increased
extracellular [H+] (8). OGR1 is another example of membrane
protein in beta cells whose function can be modulated by pH
(12, 13). Interestingly OGR1 knockout has reduced pH influence
June 2022 | Volume 13 | Article 916688
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on insulin secretion, but the observed enhancement by pH
suggesting that additional mechanisms might be involved (13).
Future work on beta cells with specific protein ablation or the use
of target specific inhibitors of the membrane proteins is needed
to dissect these mechanisms.

At the plateau phase, beta cells exhibit highly coordinated
activity (46) and at this stage, we regard a mouse islet, during a
constant glucose stimulation, functions as a functional
Frontiers in Endocrinology | www.frontiersin.org 7
syncytium. The plateau phase therefore allows us to investigate
parameters such as frequency of [Ca2+]c oscillations and the
average beta cell activity in an islet. To our knowledge, until now
the influence of pH on beta cell [Ca2+]c oscillations has not been
studied, as the previous studies only demonstrated the pH effects
on the electrical activity or insulin secretion (5, 47, 48). The
measurements of [Ca2+]c oscillations provide insights both into
the mechanisms downstream of the electrical activity (49–51), as
A B

D E

F G
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J
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FIGURE 3 | Beta cell functional connectivity at different pH. (A) Functional networks of beta cells at 8 mM glucose and different pH changing in a sequence as
indicated by the black arrow below: (A) 7.4, (B) 7.1, (C) 7.7. (D) Node degree of the pooled data for the sequence A-C. (E) Average clustering coefficient of the
pooled data for the sequence A-C (F) Functional networks of beta cells at 8 mM glucose and different pH changing in a sequence as indicated by the black
arrow: (F) 7.4, (G) 7.7, (H) 7.1 (I) Node degree of the pooled data for the sequence F-H. (J) Average clustering coefficient of the pooled data for the sequence
F-H n=5 islets for each condition in the sequence A-C and n=3 for the sequence F-H. Box plots are showing upper and lower quartile; line median; whiskers 5-
95%. (***p < 0.001).
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FIGURE 4 | pH-dependent spatiotemporal organization of intercellular Ca2+ waves in islets. Raster plots of binarized fast [Ca2+]c oscillations of all cells in two
representative islets stimulated with 8 mM glucose under pH 7.4 and 7.1, as indicated by the protocol bars (A). Space-time graphs (B, C) and the corresponding
raster plot outtakes (D, E) in the plateau phase of sustained activity under 8 mM glucose and under pH 7.4 (B, D) and pH 7.1 (C, E). The colors of dots in panels
(B, C) signify different extracted Ca2+ waves and purple dots in the x-y plane denote the coordinates of individual beta cells. The box-plots in panel (F) signify the
distribution of relative Ca2+ wave sizes under different pH pooled from 3 different islets for each pH level. Box plots are showing upper and lower quartile; line
median; whiskers 5-95%. (***p < 0.001).
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well as mechanisms triggering insulin secretion (52). Our results
upgrade these previous electrophysiological studies and insulin
measurements by a high spatiotemporal resolved Ca2+ imaging.

To avoid the dilemma whether the pH effects involve extra- or
intracellular mechanisms, we focused on its effects on the
intercellular communication. Advanced network analysis based
on threshold pairwise correlations of Ca2+ imaging signals has
proven itself a sensitive tool to quantify the non-trivial
intercellular interaction patterns in multicellular systems (53,
54), including the islets of Langerhans (17, 20, 24–26, 55).
Reaching the glucose concentrations above the physiological
threshold for activation of beta cells in mouse islets (6.5-7
mM), it takes about ten minutes of constantly elevated glucose
concentration until all small clusters of beta cells distributed all
over the islet eventually get recruited into an active collective
with a “wave-like” propagation pattern (19, 23, 25, 29, 46, 56).
Along with prolonged [Ca2+] oscillations and higher activity,
progressively higher stimulatory glucose concentration leads to a
higher average node degree and clustering coefficient, indicating
the network expansion (20, 31). Interestingly, pH 7.1 triggered
even higher activity and on average increased the frequency of
[Ca2+]c oscillations, but the cell network became more
segmented compared to pH 7.4 at the same stimulatory
glucose concentration. A Ca2+ wave analysis has revealed that
a decreased compactness of the functional beta cell network
structure in acidic conditions is a consequence of a less coherent
spatiotemporal activity and more heterogeneous and smaller
Ca2+ wave sizes. The presence of less connected beta cells and
smaller beta cell clusters raised a question about whether larger
active clusters and predominantly global Ca2+ waves are needed
for the normal and more efficient islet function, or it is more
beneficial for the beta cell collective sensing if they communicate
in near proximity. The reduced gap-junctional coupling could
release the break on the most active beta cells by uncoupling their
activity from the rest of the syncytium, allowing these cells to
activate at a usually substimulatory glucose concentration (57,
58). Furthermore, H+ ions can weaken the cellular connections
by decreasing gap junction protein expression (59) and by
reducing the gap junction coupling efficiency (60). Further
studies are needed to determine whether the altered
intercellular communication in lower pH is due to the effects
on reduced gap junction conductance or increased input
resistance of beta cells.

A prolonged increase in [H+] is in no way beneficial for the
overall health of an organ. The pancreas contains cell types that
can control the pH of their microenvironment. Both acinar cells
and ductal cells can sense and regulate the pH. It might be that
under physiological conditions, an initial increase in [H+] from a
local source, like a neighboring ductal cell is sufficient to enhance
the response to increased glucose concentration, while prolonged
acidic conditions are less probable due to mechanisms of local
pH control. The experimental model used in this study could be
used to mimic the cellular responses during the early disease
progression such as pancreatitis (61–63).

In the scope of this paper, we confirmed previous findings
that the pancreatic beta cell activities can be modulated by the
Frontiers in Endocrinology | www.frontiersin.org 9
extracellular pH. Moreover, we obtained the data using mouse
acute pancreatic tissue slice with preserved tissue architecture of
the islets alongside the surrounding cells. The [Ca2+]c oscillations
were triggered within the physiological range of both glucose and
pH. This approach enabled us to study individual beta cells as
well as beta-cell collective responses, revealing until now
uninvestigated pH-dependent network properties within
pancreatic islets. The data clearly demonstrate that under these
conditions decreasing pH enhanced beta cell activity and insulin
secretion as well as it altered the nature of intercellular
communication patterns.
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