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Abstract

Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current
treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs)

are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and
anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-
related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs,
derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model
studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved
metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral
insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and
insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly
extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the
diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such
strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for
autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such
as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route,
the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
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Introduction

Diabetes mellitus (DM) affects over 537 million peo-
ple worldwide and represents a major health burden in
industrial countries with estimated global direct health
costs of more than 750 billion USD [1, 2]. DM is a meta-
bolic disease that disturbs blood glucose level (BGL), it
is classified into two major forms; type 1 diabetes (T1D)
and type 2 diabetes (T2D). T1D is largely attributed to
autoimmune attacks and genetic dysregulation against
insulin producing beta-cells leading to insulin deficiency
[3]. T2D accounts for 95% of diabetes cases. Patients
with T2D are not sensitive to insulin and produce insuf-
ficient amounts of the hormone in the advanced disease
stages [4, 5]. Obesity due to a Westernized high-calorie
diet is considered the major cause of T2D [5]. Persistent
hyperglycemia in patients with uncontrolled DM is asso-
ciated with inflammation, oxidative stress and endoplas-
mic reticulum (ER) stress, leading to microvascular and
macrovascular complications [6]. There are many con-
ventional anti-diabetics, including oral drugs and exog-
enous insulin bolus, in addition to diet and exercise, that
can temporarily reduce hyperglycemia or promote insu-
lin sensitivity in target tissues. But unfortunately, they
can't reverse the disease development or cellular dysfunc-
tion. As well, severe hypoglycemia and poor adherence
to treatment plans are limitations. Therefore, finding an

effective long-term treatment for this disease is of high-
est priority [7, 8]. Pancreatic islet transplantation (PIT)
holds great promise for treatment of insulin-dependent
patients [9]. However, poor survival of isolated islets,
immunological rejection, significant postoperative dif-
ficulties, and a scarcity of donors limit the wide spread
application of PIT [7, 10].

In recent years, cell-based therapy using mesenchy-
mal stem/stromal cells (MSCs) is of great interest for
DM [11-13] MSCs have been successfully isolated from
a variety of adult tissues, predominately from bone mar-
row (BM) [14], adipose tissue (AT) [15, 16], and dental
pulp (DP) [17], or extraembryonic tissues such as pla-
centa [18], umbilical cord (UC) [19] and amniotic fluid
(AF) [20, 21]. In addition to fulfilling the three minimal
criteria for MSC definition (plastic adherence, expression
of a panel of surface markers, tri-mesodermal lineage dif-
ferentiation), the International Society for Cell and Gene
Therapy (ISCT) in 2019 recommended to demonstrate
the functional properties of MSCs based on standard-
ized functional assays, such as in vitro analyses of their
trophic secretome, immunomodulatory properties, and
angiogenic functions [22]. Noteworthy, MSCs from dif-
ferent sources barely express the major histocompat-
ibility molecules class II and costimulatory molecules
such as CD40, CD80, and CD86, thus they have been
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proposed as hypoimmunogenic cells [23, 24], however,
MSC immuneprivileged behavior is environmental con-
text-dependent, so it is not consistent [25].

Therapeutic mechanisms of MSCs in DM

Human tissue-derived MSCs (hMSCs) have been vali-
dated in treating different degenerative [26], inflam-
matory [27], or autoimmune [28], diseases. In DM,
hMSCs exhibit multifaceted therapeutic actions (Fig. 1).
Depending on their well-established immunoregula-
tory ability, h(MSCs can modulate various kinds of innate
and adaptive immune cells in inflammation [29]. The
MSC immunomodulatory effects include, among oth-
ers, the inhibition of autoreactive T cells’ proliferation
and activation, thereby halting the destruction of pan-
creatic beta-cells in T1D [30]. Moreover, they can pro-
mote the generation and/or expansion of regulatory T
cells (Tregs), crucial for maintaining immune tolerance,
to prevent autoimmune attacks on pancreatic beta-cells
[31-33]. MSCs promote the M2 macrophages for the
favor of improved peripheral insulin sensitivity in T2D
[34, 35]. M2 macrophages are considered to be criti-
cal effector cells in the resolution of inflammation and
the promotion of tissue repair [36]. MSCs exert the
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immunomoregulatory functions via surface proteins-
mediated direct interaction with immune cells or para-
crine mechanisms [37]. The paracrine function includes
the secretion, in response to inflammation, of extracellu-
lar vesicles or the release of anti-inflammatory molecules
such as indoleamine 2,3-dioxygenase (IDO), interleu-
kin-10 (IL-10), transforming growth factor-beta (TGE-p),
interleukin 6 (IL-6), interleukin 1 receptor antagonist (IL-
1RA), tumor necrosis factor-stimulated gene 6 (TSG-6),
and prostaglandin E2 (PGE2) [32, 34, 38].

Importantly, hMSC- mitigate insulin resistance (IR)
leading to enhanced glucose uptake by peripheral tissues
such as skeletal muscle, liver, and AT, thereby restor-
ing glycemic control, promoting beta-cell recovery, and
reducing the risk of T2D-related complications [39, 40].
MSCs ameliorate peripheral tissues IR via phosphati-
dyl inositol tri-kinase (PI3K)-enhanced phosphorylation
of insulin-receptor substrate 1 (IRS-1) which in turns
upregulates glucose transporter 4 (Glut4) and insulin
receptor expression on cell membrane [41-43], and via
downregulation of stress-induced serine kinases, such
as c-Jun terminal kinase 1 (JNK1) and extracellular-reg-
ulated kinase 1 (ERK1) [44]. Moreover, MSCs attenuate
high glucose-induced oxidative stress in beta-cells via
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the nuclear factor erythroid 2-related factor/ heme oxy-
genase 1 (Nrf2/HO-1) signaling pathway [32, 45], and
regulate hepatic glucose [46, 47], and glycolipid [48]
metabolism. Additionally, hMSCs reduce intracellular
reactive oxygen species (ROS) levels in diabetic beta-cells
by at least partially autophagy mediated-improving of
mitochondrial functions [49].

MSCs have the ability to promote insulin production
via different mechanisms. hMSCs from different sources
have been shown to differentiate into glucose-responsive
insulin-producing beta-cells (IPCs) in vitro [13, 50-54],
and in vivo [51, 55-57]. Moreover, MSCs enhance the
pancreatic microenvironment and restore beta-cell func-
tion by at least partially preventing beta-cell apoptosis
[57], and supporting their survival [58]. The combined
therapy of human UC derived-MSCs (hUC-MSCs) and
liraglutide, a glucagon-like-peptide 1 (GLP1), additively
inhibited beta-cell apoptosis in T2D model via suppress-
ing the ASK1/JNK/BAX signaling [59]. From another
perspective, hMSCs secrete trophic mediators and
growth factors, in response to injury, such as vascular
endothelial growth factor (VEGF) fibroblast growth fac-
tor (FGF), angiopoietin-1, and hepatocyte growth factor
(HGF) that promote angiogenesis, enhancing blood flow
and nutrient delivery to beta-cells [57, 58]. Moreover,
studies in T2D patients [60], and experimental models
[61-63] indicate that beta-cell dysfunction in hypergly-
cemia is mainly due to beta-cell dedifferentiation (loss of
canonical beta-cell markers and regression to an endo-
crine progenitor-like stage). Regulation of glucose and
lipid metabolism contribute to MSC reversal of beta-cell
dedifferentiation in T2D model [62], and that has been
reported to bean IL-1RA dependent [63]. Such findings
support the reversal of beta-cell dedifferentiation as one
the potential MSC therapeutic mechanisms in DM.

Notably, hMSCs play a significant role in promoting
PIT [10, 58, 64—71]. hMSCs improve islet engraftment,
survival, angiogenesis, and function [64, 70]. MSC-islet
composite before transplantation has been suggested
to promote the transplant immune tolerance in vivo
[65]. Human MSCs derived from BM (hBMSCs) or AT
(hASCs) cotransplanted with neonatal porcine islets in
an extrahepatic site augmented the anti-diabetic effects
of the islet xenograft in diabetic mice [68, 71]. In another
report, coculture of hASCs with murine or human islets
potentiated the islet graft viability and glucose-stimulated
insulin release and interestingly it was a critic for restor-
ing normoglycemia in diabetic mice, where, transplan-
tation without coculture had a detrimental effect [69].
This effect could be due to the MSC abundant release
of VEGE, interleukin 6 (IL-6), and/or tissue inhibitor of
metalloproteinase 1 (TIMP-1) [58, 70], and by the reduc-
tion of the inflammatory markers; tumor necrosis factor
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alpha (TNF-a), interleukin 1 beta (IL-1p), and monocyte
chemotactic protein 1 (MCP-1) in the graft [67, 70].

In the coming review sections, we discuss studies that
illustrate the experimental potential of hMSCs from
different sources in T1D and T2D animal models. The
experimental anti-diabetic potential of MSC-free deriva-
tives especially, exosomes, are also briefly summarized.
We then present some strategies that are recommended
to potentiate the anti-diabetic effect of hMSCs at preclin-
ical level. Finally, the up-to-date clinical trials in the con-
text of MSCs and diabetes are reviewed to conclude the
clinical significance of hMSCs in DM metabolic abnor-
malities management.

Preclinical evidence for the anti-T1D potential of
undifferentiated hMSCs

Strong preclinical evidence for the therapeutic efficacy
of hMSC transplantation in experimental T1D has been
illustrated [32, 38, 41, 45, 51, 55, 56, 58, 72—85] (Table 1).
In those studies, T1D was modelled by injecting conse-
quent small doses or a single large dose of streptozoto-
cin (STZ), which induces diabetes by disrupting of islet
structure [86], then monitoring BGL to achieve stable
high values ranging from 200 to 500 mg/dl. From day 7
up to 21 days of STZ injection, the model was established
and MSC transplantation was performed. Alternatively,
genetically modified non-obese diabetic (NOD) mice that
develop spontaneous T-cell-dependent beta-cell destruc-
tion that resembles human T1D were used [86]. In those
experimental T1D models, MSCs, from different sources,
were administered, including mainly those derived from
UC/WJ, then BM or AT, and the least frequency reported
for those derived from dental tissues.

In the context of hBMSCs, it has been reported that
transplantation of hBMSCs elevated plasma and islet
insulin contents in non-obese diabetic (NOD) mice with
severe diabetes [32]. Relative to severe diabetic controls,
hBMSC infusion decreased insulitis and reduced pancre-
atic TNF-q, while increased pancreatic TGF-p1 and IL-10
expression in NOD mice. Importantly, the MSC infusion
increased the splenic Tregs percentages and levels of the
plasma anti-inflammatory mediators; IL-4, IL-10 and
TGF-B1, but reduced the percentages of splenic CD8*
T and levels of the plasma pro-inflammatory mediators;
interferon gamma (IFN-y), TNF-a and IL-17 A. Note-
worthy, the reparative effects of hBMSCs tended to be
dose-dependent, infusing multiple doses of hBMSCs had
a longer therapeutic persistence, compared with a single
dose regimen [32]. In another report, hBMSCs increased
the frequency of the M2 macrophages and reduced that
of the CD40-positive glucagon-producing a- cells in the
islets of STZ- diabetic rats [79].

In the context of hASCs, their systemic administration
enhanced the glucose tolerance, retained the beta-cell
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mass, and boosted the beta-cell proliferation in STZ-
treated mice in a TIMP-1 dependent-effect [58]. TIMP-1
is a member of the matrix metalloproteinase (MMP)
inhibitor family and its anti-apoptotic and regenerative
effects in beta-cells have been identified [87]. Recently,
Kawada-Horitani et al. [83]. found that systemic ASC
treatment could prevent the development of immune
checkpoint inhibitors-induced T1D in a NOD mouse
model. Programed death 1 (PD-1)/PD-ligand 1 (PD-L1)
blockade in cancer patients and NOD models developed
T1D and hMSCs prevented the accumulation of CXCL9-
positive macrophages infiltrated into the intricate gaps
between the beta-cells. Additionally, MSCs significantly
attenuated the infiltration of T cells into pancreatic beta-
cells. Mechanistically, ASCs strongly increased plasma
exosome levels and changed plasma cytokine profiles.
Such findings suggest that ASC transplantation may be
administered an adjuvant with cancer immune check-
point cancer therapy [83]

Another MSC type is is human DP-derived stem cells
(hDPSCs), which successfully improved hyperglyce-
mia and induced beta-cell repair in STZ- diabetic rats
through their ability to differentiate into IPCs. In addi-
tion, they seemed to inhibit beta-cell apoptosis, and to
promote angiogenesis, as represented by by downregu-
lation of caspase 3 (CASP3) and upregulated expression
of VEGEF, respectively [57]. Another limitedly investi-
gated source is the AF, Villani and her colleagues [74]
found that intracardiac injection of AF-derived MSCs
(AF-MSCs) preserved and promoted endogenous beta-
cell functionality and proliferation in STZ-NOD mice.
Importantly, he protective role of AF-MSC was evident
when stem cell transplantation is performed before
severe hyperglycemia occurs, and BGL at the time of
injection correlated with the pre-clinical response to AF-
MSC injection, which suggests the importance of early
MSC intervention for the best outcomes.

The most prevailing MSC type in experimental T1D
therapy is UC-MSCs or Wharton’s jelly (WJ])-MSCs
(around 50% of the included preclinical AMSC-T1D stud-
ies) [41, 45, 72, 73, 75, 78, 80, 81, 84, 85]. Administration
of WJ-MSCs alone or in combination with insulin ame-
liorated the signs of experimental T1D by enhancing the
leptin signaling in the hypothalamus and consequently
affecting the neuropeptide Y (NPY)/AgRP axis and the
melanocortin-dependent mechanism in the brain [81].
In another report, MSCs from BM and UC showed com-
parable abilities to regulate BGL and preserve beta-cell
functions in T1D model. However, the beta-cell mass
appeared higher in UC-MSC treatment than BMSCs,
without statistical significance [85]. Such effect may be
due to the stronger immunosuppressive ability of UC-
MSCs than BMSCs [88]. In accordance, diverse authors
ascribed the therapeutic potential of WJ-MSCs to their
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potent immunomodulatory functions in suppressing the
inflammatory T-cell-dependent destruction of beta cells
and promoting the tolerance in T1D models [41, 73, 75,
78, 80].

Among the variables which determine the outcome
of MSC in T1D therapy is the route of administration.
MSC injection in the tail vein of T1D models predomi-
nated and few studies compared the efficacy of differ-
ent administration routes [72, 79, 82]. STZ- diabetic rats
were injected with UC-MSCs (5x10°) via intravenous
(IV/systemically) or intrapancreatic (IP/locally) routes
[72]. The IP injection had less efficacy than the IV MSC
transfusion. IV injected MSCs might migrate via the
bloodstream to any injured tissues, consequently, they
promoted pancreas regeneration, decreased and stabi-
lized BGL, and improved the survival of diabetic mice.
However, the IP MSCs exhibited local limited potential
and reduced existence due to the harmful impact of pan-
creatic protease [72]. In another report, A contradictory
data were reported when hBMSCs (1x10° cells) were
injected IP and IV in STZ-induced diabetic mice on day
7 of disease induction [79]. Local delivery, not IV, sig-
nificantly reduced BGL on day 28 post-STZ injection.
Interestingly, MSCs that were injected twice into the pan-
creatic region on days 7 and 28 reduced the BGL to bor-
derline diabetic levels on day 56 as well as increased the
body weight. Additionally, hBMSC-IP injected animals
had an improved plasma insulin level, pancreas weight,
and histomorphological level of islets including the num-
ber, size, and insulin immunoreactions compared with
vehicle-injected mice [79]. In cope, hASCs adminis-
tered IP, not IV, in STZ-diabetes dramatically increased
the amount of replicating islet cells, islet area and num-
ber, the level of epidermal growth factor (EGF) gene,
and Th1/Th2 response balance, which in turn improved
both glycemic control and the animals’ body weight. The
reparative effects of IP injected hASCs was mediated via
inducing the pancreatic DLK1/EGF-ERK-FoxO1 signal-
ing cascade which promoted the anti-apoptosis BCL-2/
BAX ratio in STZ- murine pancreas. In vitro studies
revealed that the physical contact between hASCs and
murine pancreatic beta-cells is essential for ASC protec-
tive effect through the AKT and ERK pathway [82].

Other determinant variables in MSC-based therapy in
experimental T1D are the dose amount (low vs. high) [32,
77], and the dose frequency (single vs. repeated admin-
istration). It has been illustrated that the high dose of
hASCs (2x10°% induced a stronger anti-hyperglyce-
mic and survival effects in STZ-T1D model than the
respective lower dose (1x10° [77]. Despite most of the
research applied the single dose regimen, those studies
injected multiple bolus of MSCs in experimental T1D
confirmed prolonged/sustained anti-diabetic effects in
the multiple-doses-treated groups, compared with the
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single-regimen groups, in which the reparative effects
were transient [32, 55]. Noteworthy, only two studies
compared the differential effect of undifferentiated MSCs
and their IPC-derivatives using the same experimental
T1D setup [51, 80]. Kadam et al. [51]. reported the com-
parable potential of placenta-derived MSCs (PL-MSCs)
and their Islet-like clusters in ameliorating hypergly-
cemia in STZ-diabetic mice, suggesting the in vivo dif-
ferentiation of PL-MSCs into IPCs. In another report,
differential therapeutic mechanisms of IV transplanted
hWJ-MSCs and their IPCs were detected in a STZ-dia-
betic rat [80]. The WJ]-MSC-IPCs survived in the pancre-
atic islets of the rats and significantly reduced BGL and
improved glucose metabolism by the continuous secre-
tion of insulin. However, the undifferentiated hWJ]-MSCs
improved the ability of injured islets to secrete insulin by
restoring immune balance in the diabetic rats, with less
pronounced improvements in the BGL. The anti-inflam-
matory effect of WJ-MSCs in vivo was evidenced by
reducing the serum level of IFN-y and IL-1f and increas-
ing the level of IL-4 and TGEF-f [80].

Interestingly, not only MSCs, derived from healthy
donors, but also those derived from patients with newly
diagnosed T1D were effective in preventing the death
of pancreatic beta-cells and promoting the reversal of
hyperglycemia in STZ-diabetic rat. BMSCs derived from
healthy donors or patients with newly diagnosed T1D
significantly reduced pancreatic inflammation, preserv-
ing existing and newly formed beta-cells, leading to regu-
lar insulin production [76]. This anti-inflammatory effect
was evident as levels of IL-2 and IFN-y were decreased
in the pancreatic tissue of mice treated with both MSC
types on 35 days post-therapy. Furthermore, there was a
slight, though not significant, decrease in levels of IL-6,
TNFa, and IL-17 in the pancreatic tissue following MSC
injection [76]. Importantly, hMSCs delayed the onset of
autoimmune diabetes in NOD mice via inhibiting Th1
polarization, however, promoting Treg generation, in
TSG-6 dependent mechanism and the results might
indicate the preventive function which MSC infusion
or recombinant human TSG-6 could play in susceptible
T1D individuals [38].

Preclinical evidence for the anti-T2D potential of
undifferentiated hMSCs

The preclinical efficacy of hMSCs, derived from different
sources, in T2D has been evidenced by many research
groups [34-36, 39, 40, 43, 47-49, 56, 62, 63, 89-95]
(Table 2). T2D has been induced by a high-fat diet (HFD)
(40% fat, 41% carbohydrate, and 19% protein), followed
by injecting a single dose of STZ with a broad range (25-
100 mg/kg body weight). Genetically modified (db/db)
mice with leptin receptor deficiency and then spontane-
ously develop hyperphagia-induced hyperglycemia, IR,
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and dyslipidemia have also been used as a model of obe-
sity-induced T2D [86]. Another model known as WNIN/
GR-Ob rat model (WNIN mutant Obese rats) has been
introduced [40]. It closely resembles pre-clinical /clinical
obese diabetic subjects presenting metabolic dysfunc-
tions like impaired glucose disposal, IR, increase body
mass index (BMI), osteoarthritis, hypertriglyceridemia,
as well as hypercholesterolemia [40].

Injecting hBMSCs in HFD/STZ-T2D model, during dif-
ferent disease phases: early (at day 7) vs. late (at day 21) of
STZ injection, showed positive impact on beta-cell insu-
lin content, during the early phase treatment. However,
IR was improved during both therapy phases, leading to
reversal of hyperglycemia [89]. Noteworthy, the decline
of hyperglycemia in the studied T2D model was transient
with a single bolus of MSCs (<4 weeks), however, second
injection induced a better reduction in hyperglycemia,
than the first dose, which sustained over longer duration
[89]. In another report, hBM-MSC infusion augmented
autophagy in beta-cells of T2D model, as represented
by increased expression of lysosome-associated mem-
brane protein 2 (LAMP2) and enhanced formation of
autophagosomes and autolysosomes. That was associated
with significantly improved mitochondrial functions and
increased insulin granules number [47]. As well, hMSCs
isolated from human orbital fat tissues were able to cor-
rect the inflammatory and metabolic imbalances in HFD
diabetic mice [56]. The hASCs supported pancreatic islet
growth by direct differentiation into IPCs and by mitigat-
ing the cytotoxicity of IL-1 and TNF-a in the pancreas.
Human IDO, IL-10 and soluble neutralizing TNF recep-
tor (TNF RII) genes were upregulated in the treated mice
pancreatic tissues. hASCs improved glucose tolerance
and that was correlated with their localization in the liver
and skeletal muscle. In the liver, ASCs improved insulin
sensitivity by preventing fatty liver formation as well as
restoring glycogen storage in hepatocytes. Intriguingly,
systemic ASC transplantation did not alter adipocyte
number, but it decreased inflammatory cell infiltration in
AT of diabetic mice and reduced serum levels of adipo-
kines, including leptin and TNF-a contributing to inhibi-
tion of inflammation in AT of obesity-induced diabetes.
Leptin is an adipokine mainly secreted by white AT, and
its circulating level is proportional to the total amount
of fat in the body. It also acts as a proinflammatory and
mitogenic factor for immune cells, it is thus a marker of
AT-inflammation [96].

In a Goto-Kakizaki (GK) rat (non-obese T2D model),
administration of MSCs from human exfoliated decidu-
ous teeth (SHED) effectively reversed hyperglycemia
and restored the function and architecture of pancreatic
islets. MSC administration selectively acts on different
key enzymes that play important roles in glycogen syn-
thesis and gluconeogenesis for the favor of increased
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glycogen synthesis and decreased gluconeogenesis and
IR in liver of GK rats [47]. Not only pancreas, liver, and
AT are the target organs affected by MSC therapy, but
also the skeletal muscles do. PL-MSC therapy remod-
eled the cytokine efflux and insulin signaling, in addition
to enhanced Glut4 expression and glucose uptake, in the
skeletal muscle of WNIN/GR-Ob- T2D rats [40]. Koti-
kalapudi et al. [40]. reported a significant decrease in the
level of pro-inflammatory cytokines (IL-1f, IL-6, TNF-a,
MCP-1, IEN-y, IL-18) and significant increase of anti-
inflammatory cytokines (IL-10, IL-4, IL-13, GM-CSE
TGF-B), in addition to VEGF and leptin in the skeletal
muscle after PL-MSC local injection. Leptin increases
fatty acid oxidation and decreases esterification, reducing
IR in skeletal muscle [97]. As well, hASCs upregulated
glucose uptake in experimentally T2D skeletal muscles
by IL-1RA- associated GLUT4 increased expression
[56]. IL-1-RA has been found to be a diabetogenic mod-
ulator produced by MSCs [98]. At systemic level, ASCs
increased the anti-inflammatory cytokine IL-10 and
inhibited the expression of IL-6, IL-1B, and TNF-a [43].

Comparative studies for the efficacy of MSCs from
different human tissues in the same T2D experimental
setup have been limitedly conducted [39, 48]. The dif-
ferential effectiveness of MSCs derived from DP, AT, or
UC in treating glucose and lipid metabolic problems in
db/db mice has been tested [39]. IV injection of hUC-
MSCs, DPSCs, and ASCs into T2D mice demonstrated
that the three kinds of MSCs may be useful treatments
for T2D and its associated lipid dysregulation, and UC-
MSCs are superiorly effective in improving hyperglyce-
mia, glucose intolerance, IR, and dyslipidemia. Whereas,
ASCs are more effective in reducing liver fat content and
hepatic injury. In that study, dose-dependent ameliora-
tion of hyperglycemia was reported, where high (1x10°)
induced better effects than intermediate (0.5x10° and
low (0.25x10°) MSC doses [39]. Another report illus-
trated a comparable anti-diabetic potential of UC-MSCs
and amniotic membrane (AM)-derived MSCs in T2D db/
db mice and that was ascribed to the improved glycolipid
metabolism, increased insulin sensitivity, and decreased
inflammation in the liver of db/db mice [48]. AM-MSCs
and UC-MSCs have been suggested as a very promis-
ing therapeutic agents to treat metabolic dysfunction-
associated fatty liver diseases, and that may be attributed
to IL-6 secretion by MSCs, however, further research is
needed to verify this hypothesis [48].

Numerous reports demonstrated that hMSCs amelio-
rate IR in T2D models via potentiating polarization of
adipose tissue macrophages (ATMs) [34, 35, 92], or intra-
islet macrophages [36, 91], toward M2 anti-inflammatory
phenotype. hUC-MSC induced M2 macrophages differ-
entiation via partially increased IL-6 production, which
in turn enhanced IL-4R expression in macrophages
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making them more sensitive to IL-4/IL-13 signaling, and
so to M2 polarization [34]. In addition to IL-6, hUC-MSC
infusion induced M2 macrophage differentiation in islets
of T2D mice via MCP-1 dependent mechanism [91]. The
additive potential of acombined therapy of UC-MSCs
and a low dose of decitabine (0.25 mg/kg DAC for 5 con-
secutive days) in T2D models has been proved [36, 92].
Decitabine, an FDA-approved DNA methyltransferase
(DNMT) inhibitor, an epigenetic modifier which is often
used in the treatment of hematological disease [36]. The
combined therapy induced greater ATMs [92], or intrais-
let macrophages [36], polarization into M2, compared
with the individual regimens, via the IL-4R/STAT6 axis
in a peroxisome proliferator-activated receptor gamma
(PPAR-y)-dependent manner or activated PI3K/AKT
pathways, respectively, in macrophages. Recent insights
demonstrate that the systemic administration of UC-
MSCs in T2D model directed ATMs into the M2 pheno-
type mixed with four sub-phenotypes [35]. Investigating
AT M2 subpopulations via SMART RNA-sequencing
(RNA-seq) and heatmap clustering revealed that M2a
and M2c subphenotypes predominated, while M2b
and M2d (tumor-associated macrophages) exhibited a
decreasing trend after infusion of MSCs. Importantly, the
MSCs group, compared with the diabetic control group,
did not appear to express higher levels of genes associ-
ated with tumor, inflammation, or fibrosis, in comparison
to the T2D control group. Such deep analysis supports a
hybridity state of four M2 sub-phenotypes, in AT of T2D
model after MSC infusion [35]. As well, hUC-MSCs have
been reported to improve insulin sensitivity in target tis-
sues of T2D through inhibiting the NLRP3 inflamma-
some activation [90].

Several reports demonstrate that administration
of hMSCs, specifically hASCs, in murine models of
diet-induced obesity (DIO) can reduce obesity asso-
ciated- altered glucose metabolism and IR [99-103].
ASC-mediated amelioration of skeletal muscle IR was
attributed to upregulation of miRNA-206, which pro-
motes muscle regeneration, expression of myoblast
determination protein (MyoD) and increase the pro-
tein content of the skeletal muscle of a DIO-associated
metabolic disturbance model [100]. Calvo et al. [101].
compared the anti-diabetic and anti-obesity effects of
hASCs isolated the AT surrounding a pheochromo-
cytoma, as an inducible brown fat, (IB-hASCs) rela-
tive to those isolated from visceral AT from lean and
healthy subjects (W-hASCs) in a murine model of DIO.
It has been found that both ASC therapies mitigated the
metabolic abnormalities of obesity to a similar extent,
including reducing weight gain and improving glucose
tolerance. However, infusion of IB-hASCs was superior
to W-hASCs in suppressing lipogenic and inflammatory
markers, as well as preserving insulin secretion. These
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findings provide evidence for the metabolic benefits of
visceral ASC infusion and support further studies on IB-
hASCs as a therapeutic option for obesity-related meta-
bolic dysregulations. Lee et al. [102]. demonstrated that
MSC-based therapies can ameliorate obesity-related
nonalcoholic fatty liver disease, nonalcoholic steatohepa-
titis, glucose intolerance, and inflammation. In that study,
the effectiveness of hASCs, ASC-derived brown adipo-
cytes (M-BA), and MSC lysate was compared after IV
transplantation into obese mice. All 3 MSC-based treat-
ments improved obesity-associated metabolic syndromes
after repeated administration for 10 weeks. MSC-based
treatments altered the ratio of adiponectin to leptin and
regulated the expression of PPAR-a and PPAR-y, which
are involved in maintaining energy homeostasis, in major
metabolic tissues. Among treatments, M-BA showed the
strongest beneficial effect. Importantly, M-BA adminis-
tration not only reduced obesity-associated metabolic
syndromes but also reduced body weight and hyperlipid-
emia, indicating that it is an effective therapy for obesity.
All the above presented preclinical data demonstrate the
possible benefits of the application of none genetically
engineered MSCs derived from different human tissues
for the treatment of T1D, T2D, or obesity-induced meta-
bolic syndromes and give new insight on the mechanism
by which the beneficial effects are achieved.

Preclinical anti-diabetic evidence of hMSC-derived
extracellular vesicles

The hMSC-derived extracellular vesicles (hMSC-EVs),
including exosomes (MSC-EX), microvesicles, and
apoptotic bodies, contribute to the hMSC therapeu-
tic functions [104]. Comprehensive reviews illustrating
MSC-EVs biogenesis, contents, and characteristics are
recommended [104, 105]. The application of hMSC-EVs
as the main cell-free therapy for experimental T1D [106—
109], or T2D [110-112], treatment is becoming more and
more extensive [104, 109].

In the context of T1D, hMSC-EVs have been reported
to induce pleiotropic immunoregulatory effects for the
favor of tolerogenic systemic and pancreatic environ-
ment. Favaro and her associates reported that hMSC-
EVs promoted the regulatory anti-inflammatory (IL-10
producing) phenotype of dendritic cells [DCs; antigen-
presenting cells (APCs)] derived from patients with T1D
[106]. In that study, MSC- and MSC-EV-conditioned DCs
acquired an immature phenotype with reduced activation
and increased IL-10 and IL-6 production. Conditioned
DCs exhibited attenuated potential to prime T-cells
toward an inflammatory phenotype. MSCs and their EVs
can thus treat T1D by inducing the tolerance of DCs to
inhibit aggressive T cell responses to islet antigens [106].
The immunomodulatory potentials of MSC-EVs to delay
the onset of T1D in mice, via inhibiting the activation of

Page 18 of 32

APCs and suppressing the development of inflammatory
Thl and Th17 cells, have been confirmed [107]. More-
over, menstrual blood-derived MSC-EX enhanced the
beta-cell mass and insulin production in the pancreas
of STZ-diabetic animals that received repeated MSC-
EX doses. Further investigations propose that exosomes
induced the islet regeneration through pancreatic and
duodenal homeobox 1(PDX-1)-dependent pathway [108].
PDX-1 is a master transcription factor orchestrates the
beta-cell differentiation and survival [113]. Interestingly,
ASC- EX loaded with nano-selenium, exhibited marked
pancreatic regenerative, antioxidant, immunomodula-
tory, anti-inflammatory, and anti-apoptotic capacities in
STZ-induced T1D, compared to those loaded with ele-
mental selenium, a natural antioxidant [109].

In the context of T2D, the therapeutic effect of hUC-
MSC- small EVs and EX has been investigated [110, 111].
hUC-MSC-EX maintained glucose homeostasis via dif-
ferent mechanisms; (1) they restored the phosphorylation
(tyrosine site) of IRS-1 and AKT in insulin target tissues,
(2) they promoted expression and membrane transloca-
tion of GLUT4 in muscle and (3) they inhibited glycoge-
nolysis in liver. Additionally, (4) hUC-MSC-EX abrogated
STZ-induced beta-cell apoptosis to restore the insulin-
secreting function. Apelin is an adipocyte-derived fac-
tor that shows promise in improving IR. Recently, it has
been reported that WJ-MSC-derived EVs loaded with
apelin showed enhanced capacity to improve insulin sen-
sitivity in T2D mice, driven by a significant increase in
the phosphorylated AKT and GLUT4 expression [112].
For safe and efficacious delivery strategies for MSC-EVs
in diabetes therapies, it has been demonstrated that the
minimally invasive L.V. approach would serve as a better
delivery strategy, than intra-arterial route of adminis-
tration, due to the higher spleen uptake, enhancing the
immunomodulatory functions of the IV administered
MSC-EVs [114].

The above studies provided promising results for the
use of EX-cell free therapy in ameliorating T1D or T2D
pathogenic mechanisms. Available data indicate that
MSC-derived EX may be more safe, rapid and easier to
inject with more efficient results than the MSCs them-
selves [113].

Priming/preconditioning strategies that potentiate the
anti-diabetic potential of hMSCs: bench and beside
insights

The efficacy of MSC-based treatments in clinical tri-
als greatly varies [115, 116], due to both intrinsic differ-
ences resulting from the choice of diverse cell sources
and non-standardized production methods [117]. To
minimize such limitation and to enhance MSC thera-
peutic potential, researchers have explored many prim-
ing/ preconditioning strategies, that can tailor MSC
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Table 3 Priming strategies of h(MSCs in the context of DM

Ref. hMSCType Priming strategy & conditions The potentiated biological characteristic or Preclinical
therapeutic Efficacy Evidence
InT1D or
T2D model
131 BMSCs GE (overexpress VEGF, angiogenic factor) Beta-cell regenerative capacity \J
132 HF-MSCs GE (overexpress insulin with controlled release) Anti-hyperglycemic effect V
124 ASCs SDF-1a TTT (Chemokine, 0.5 mg/I for 1-6 h) Survival \
99 ASCs Metformin TTT (Insulin sensitizer, 1 mM for 16 h) Anti-hyperglycemic, Anti-hyperlipidemic, Anti-hyper- — +/
insulinemia effect
133 ASCs GE (overexpress betatrophin, hormone) Beta-cell proliferation N
134 WJ-MSCs GE (overexpress apelin, insulin sensitizer) Anti-IR potential in T2D v
135  ASCs GE (overexpress SOD-2 or Cat, antioxidant ASC potential to restore glucose tolerance and to N
enzymes) suppress inflammation and liver fat accumulation in
obese mice
140  ASCs GE (overexpress sSTNF-aR and HO-1, anti-oxidative  Porcine islet graft supportive ability \V
stress mediators)
125  DPSCs Resveratrol TTT (anti-oxidant, 50-100 um for 1 h Resistance to TNF-a induced inflammation at the X
before TNF-aTTT) concentration of 2.5 ng/mL
126 BMSCs Resveratrol TTT (a potent SIRT1 activator that Mitigating TNF-a induced inflammation in MSCs X
exerts anti-inflammation property, 50 pm for 24 h)
16 ASCs IFN-y (Inflammatory cytokine, 100ng/mlfor48 h)  Immunomodulatory properties X
(From healthy or
T2D patients)
136 UC-MSCs GE (overexpress TIMP-1, a regulator of cell prolif-  Beta-cell regenerative capacity V
eration & apoptosis)
121 WJ-MSCs TNF-a and IFN-y (Inflammatory cytokines, 50ng/  Immunosuppressive effects on mDCs and T cells X
ml/each for 48 h) isolated from patients with T1D
127 UC-MSCs Metformin (1 mM), Lactoferrin (500 ug/mL) or Restored proliferation and migration capacity and X
(diabetic) TUDCA (2 uM) for 24 h Inhibited cell stress
142 UC-MSCs 3D culture CM from 3D cultured MSCs induced the Treg popula-  +/
tion and regulated cytokine release in T1D model
128  UC-MSCs Melatonin (10 uM for 24 h) Anti-T2D potentials (hypoglycemic effect, anti-IR, islet ~ +/
recover, regulating hepatic glucose metabolism)
137 UC-MSCs GE (overexpress Exenatide, GLP1 analogue) Beta-cell regenerative capacity \V
138 UC-MSCs GE (overexpress IL-10, antinflammatory mediator) ~ Anti-inflammatory and anti-obesity potentials in DIO  +/
123 ASCs IFN-y TTT (10ng/ml for 48 h) Immunomodulatory Functions X
(From healthy or
non-obese T2D
patients)
24 ASCs IFN-y TTT (10ng/ml for 48 h) Immunomodulatory Functions X
(From healthy or
obese T2D patients)
139 UC-MSCs GE (overexpress IFN-y-inducible CXCL11 synthetic ~ Anti-inflammatory response X
promoter)
130 ASCs DFXTTT (a hypoxia mimetic agent, 300 uM for Angiogenic capacity X
(diabetic) 24 h)
33 UC-MSCs DEXTTT (150 uM) Immunomodulatory Functions in T1D v
143 BMSCs 3D culture priming T cell immunosuppressive potential X

ASCs Adipose tissue-derived mesenchymal stem/stromal cells (MSCs), BM-MSCs Bone marrow-derived MSCs, Cat Catalase, CXCL1T C-X-C Motif Chemokine Ligand 11,
CPTIA Carnitine palmitoyltransferase 1 A, DFX Deferoxamine, DIO Diet-induced obesity, DPSCs Dental pulp stem cells, GE Genetic Engineering, GLP! Glucagon-like-
peptide 1, h Hour, hMSCs human MSCs, HF-MSCs Hair follicle-derived MSCs, HO-1 Heme oxygenase 1, IFN-y Interferon gamma, /L-10 Interleukin 10, /R Insulin resistance,
mDCs mature dendritic cells, SDF-Ta Stromal-derived factor 1 alpha, sTNF-aR soluble tumor necrosis factor-a receptor type I, SOD-2 Superoxide dismutase 2, SIRT]
Sirtuin 1, siRNA Small interference ribonucleic acid, 71D Type 1 diabetes, 72D Type 2 diabetes, TTT Treatment, TIMP-1 Tissue inhibitor metalloproteinase 1, TNF-a Tumor
necrosis factor alpha, TUDCA (Sodium tauroursodeoxycholate), UGMSCs Umbilical cord-derived MSCs, WJ-MSCs Wharton's Jelly-MSCs
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regenerative properties to specific medical conditions
[118, 119]. Many hMSC priming manipulations have
been introduced [118, 120], including, among others,
exposure to inflammatory factors [24, 121-123], or small
chemical molecules or biomolecules [33, 99, 124-130],
genetic modification [131-141], or three-dimensional
(3D) culture [142, 143]. We discuss some of the promis-
ing preconditioning approaches which can enhance the
therapeutic efficacy of hMSCs in DM and they are sum-
marized in Table 3.

In vitro, a mixture of IFN-y and TNF-a boosted the
hWJ-MSC modulation of the profiles and functions of
mature DCs and activated T cells that were differen-
tiated from T1D patients [122]. IFEN-y-induced IDO
expression may underly the strong immunosuppressive
effect of inflammatory primed MSCs [24]. Bench stud-
ies indicate that preconditioning with deferoxamine
(DFX, a hypoxia mimetic agent) could enhance the MSC
regenerative secretome [33]. DFX treatment was able
to restore the angiogenic potential of hASCs isolated
from patients with T2D via hypoxia inducible factor 1
a (HIF-1 «)-dependent mechanism [130]. Resveratrol,
a potent antioxidant, has been documented to mitigate
TNEF- induced inflammation in hBMSCs [125] or hDP-
SCs [126] via upregulating Sirtuin 1 expression or activa-
tion autophagy to inhibit (JNK) MAPK, respectively. A
recent comprehensive review summarizes pharmacologi-
cal agents that could promote the therapeutic efficacy of
MSC transplantation in diabetes, with a focus on correct-
ing the mitochondrial dysfunction of diabetic MSCs for
autologous implications [129].

In vivo, substantial improvements in immunomodula-
tion and beta-cell regeneration in STZ-T1D model were
seen with DFX-preconditioned hUC-MSC-derived con-
ditioned medium (CM) [33]. Metformin, insulin sensitiz-
ing drug, potentiated the therapeutic efficacy of hASCs
in HFD-diabetic mice as shown by enhanced reversal of
hyperglycemia, hyperinsulinemia and triglyceridemia
[99]. Metformin was also able to counteract high glu-
cose-induced cell stress in hUC-MSCs, as represented
by the significant decrease in the transcriptional levels of
senescence, proinflammation, ER stress markers [127].
As well, melatonin treatment effectively potentiated the
hypoglycemic effects of hUC-MSCs in T2D model via
potent PI3K/AKT-amelioration of IR and regulation of
hepatic glucose metabolism. RNA-seq analysis revealed
significant differential expression of genes that enrich cell
proliferation and migration in melatonin-primed UC-
MSCs [128]. The aggregation of MSCs into 3D spheroids
could act as a functionalized formulation, supporting
the administration of MSC spheroids for a sustainably
improved immunosuppressive potency. In T1D model,
the superior immunosuppressive capacity of CM-har-
vested from 3D over that from 2D- cultured UC-MSCs
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was evidenced, and augmented IL-4 release by the 3D
formulation was suggested as an underlying mechanism
[142]. Next generation sequencing revealed differential
immune-modulation gene expression signatures between
3D cultured and the pro-inflammatory factor treated-
MSCs indicating distinct immunosuppressive mecha-
nisms engaged by the different priming strategies [143].
Numerous reports indicated that genetic modifica-
tion of hMSCs could improve their experimental anti-
diabetic efficacy [131-139]. hBMSC overexpressing the
angiogenic factor VEGE, exhibited a sustained potential
to reverse hyperglycemia in diabetic mice which was cor-
related with the activation of insulin/insulin-like growth
factor (IGF) receptor signaling pathway involved in
maintaining beta-cell mass and function [131]. Interest-
ingly, hair follicle-derived MSCs (HF-MSCs) were engi-
neered to overexpress human insulin gene and release
human insulin in a time-and dose-dependent manner in
response to rapamycin. When mice with STZ-T1D were
engrafted with those engineered HF-MSCs, the cells
expressed and released a dose of human insulin, dramati-
cally reversed hyperglycemia, and significantly reduced
death rate [132]. Betatrophin-transduced hASCs exhib-
ited a stronger islet-supportive ability and a better thera-
peutic efficacy in STZ-T1D model than non-engineered
ones [133]. Betatrophin is a hormone that can increase
the production and expansion of insulin-secreting beta-
cells when administered to mice [144]. Gao et al. [134].
reported that WJ-MSCs over expressing the newly iden-
tified adipokine, apelin, could provide a promising ther-
apeutic option for management of T2D at clinical level.
In that study, T2D rats infused with W]-MSCs-apelin
significantly decreased BGL by two weeks post-infusion.
Transplantation of WJ-MSCs-apelin not only improved
significantly insulin sensitivity and glucose disposal, but
also promoted endogenous pancreatic beta-cell prolifera-
tion (9.6-fold increase compared to the control group).
The inflammatory cytokines IL-6 and TNF-a were sig-
nificantly decreased, whereas anti-inflammatory factor
adiponectin was significantly increased after WJ-MSC-
apelin injection. In another study, intraperitoneal admin-
istration of anti-oxidant modified hASCs, overexpressing
SOD2 (superoxide dismutase 2 gene) or Cat (catalase
gene), in HFD-diabetic mice improved glucose tolerance
and reduced systemic inflammation and fatty liver [135].
Wang et al. [137]. transduced UC-MSCs to overexpress
exenatide, GLP1 analogue, and compared their beta-cell
regenerative ability in NOD mice with non-transduced
UC-MSCs. Exenatide-UC-MSCs exhibited superior anti-
T1D potential (repressing insulitis and promoting beta-
cell regeneration and insulin production). Bioinformatic
studies predict that the effects of exenatide-UC-MSCs
correlate with decreased abundance of pro-inflam-
matory intestinal bacteria and increased abundance
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of anti-inflammatory intestinal bacteria. An interest-
ing Germany research designed and transduced hUC-
MSCs with a synthetic inflammation-inducible promoter
(CXCL11 promoter) to conditionally overexpress IL-10,
which potentiate MSC therapy in inflammation-driven
diseases [139].

In the context of PIT, hASCs preconditioned with a
mixture of hyaluronic, butyric, and retinoic acids exhib-
ited a superior potential to support the vascularization
and function of an islet graft in diabetic rats, compared
with naive hASCs [66]. hASCs exposed to the mixture
were able to increase the secretion of VEGEF, as well as,
the expression of angiogenic genes, including VEGE,
kinase insert domain receptor (KDR), and HGF. That
study suggests a novel strategy of MSC precondition-
ing to remarkably improve the efficacy of islet-hMSC
cotransplantation [66]. Genetically modified hMSCs
to overexpress soluble tumor necrosis factor-a recep-
tor type I (STNF-aR) and heme oxygenase (HO)-1 genes
(HO-1/sTNF-aR) exhibited improved survival of porcine
islets and could reverse hyperglycemia more than por-
cine islets not treated with MSCs or islets cotransplanted
with naive/non-modified MSCs [140]. The present find-
ings support the combined gene and MSC therapy for
DM management. However, sufficient data for the clini-
cal proficiency of primed hMSCs either with small mol-
ecules or biomolecules or genetic engineering is still
required [141].

Clinical outcomes: evaluation of hMSC-based therapy in
patients with T1D or T2D

In the preclinical investigations, hMSCs have shown
outstanding outcomes in treating T1D and T2D animal
models. Administration of purified hMSCs, from various
sources has also been considered clinically safe and effec-
tive for diabetic patients [8, 30, 32, 85, 145-160] (Table 4)
and the therapeutic outcomes and safety concerns are
summarized in supplemental Table 1.

In the context of T1D, the effectiveness of autologous
BMSCs (aBMSCs) was tested [147, 151, 157]. aBMSCs
administered IV to patients with newly-onset T1D sig-
nificantly improved the C-peptide response in a mixed-
meal tolerance test during the first-year post-therapy,
indicating intervening in the disease process and preserv-
ing the beta-cell function [147]. Furthermore, IV trans-
planted aBMSC:s, in another cohort of patients with T1D
showed, from the first month, a decrease in the doses of
daily insulin, while it caused relatively small change in
glycated hemoglobin (HbAlc) and leptin level. By the
third month, they enhanced a significant increase in the
leptin level [151]. Izadi et al. [157]. addressed the thera-
peutic effect of IV injection of two doses of aBMSCs in
children with T1D (early/ during the first year of diag-
nosis vs. late/ one year -post diagnosis). The factor of
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exercise and patient life style was also considered and the
patients were followed for at least one year-post trans-
plantation. Despite the non-decrease in exogenous insu-
lin dose, the therapy achieved efficacy by normalizing
HbAlc and controlling immunological responses in the
patients (decreased serum TNF-q, increased serum IL-4
andTregs frequency in the peripheral blood). Early MSC
transplantation offered advantages over the late one as it
caused higher reduction in HbAlc and the serum TNEF-
a, however, a significantly higher increase of C-peptide
and the serum levels of TGF-B1, IL-10, and IL-4. Note-
worthy, exercise enhanced MSC transplantation efficacy
in early and late groups for the favor of improved quality
of life and better metabolic indices [157].

Allogeneic MSCs isolated from adult [32, 85, 152], or
extraembryonic [30, 85, 155, 160], sources have also
shown promising outcomes in patients with differ-
ent T1D diagnostic onset. WJ-MSCs were induced a
significant reduction of postprandial plasma glucose
(PPG) & HbAlc, however, a significant increase of fast-
ing C-peptide (FCP) over 24 months follow-up in fifteen
patients with newly onset-T1D [30]. Fluctuated insu-
lin intake after therapy was reported, 20% of patients
suspended exogenous insulin, around 53% and 6% of
patients reduced the dose by >50% and 15-50%, respec-
tively. Li and his colleagues [32] recruited a total of five
T1D patients with ketoacidosis and treated them with
allogenic hBMSCs. Mean daily exogenous insulin dos-
ages required to control hyperglycemia individually
were recorded and the levels of fasting and postpran-
dial plasma C-peptide (PCP), as well as, HbAlc over a 4
years follow-up period were determined longitudinally.
Patients responded differentially to MSC therapy, how-
ever, 80% of patients were responders. That was repre-
sented by (1) lower levels of HbAlc, as compared with
that before treatment, for at least three years, an indica-
tion of effective control of hyperglycemia, and (2) slower
decrease of FCP or PCP, indicating preserved beta-cell
functions. Additionally, 60% of patients reduced mean
daily insulin dosage for at least two years by >40%. Cai
et al. [160]. transplanted combined WJ-MSC and auo-
logus bone marrow-mononuclear cells (aBM-MNCs)
in patients with established T1D through supraselec-
tive pancreatic artery cannulation with follow up for one
year (3 months intervals). The authors reported signifi-
cant improvements in FCP, C-peptide area under curve
(AUC(_pcp), and insulin area under the curve (AUC,,)
during oral glucose tolerance test, at 1-year post-therapy,
as evidences of enhanced insulin production and reduced
insulin need. A small change/increase in the FCP after
therapy was considered significant, taking into account
the negligible or non-existing basal level of FCP by long
disease incidence. In addition, compared to baseline and
the control group, HbAlc, and fasting blood glucose
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(FBG) were reduced. Furthermore, serum levels of Thl
cytokine, IFN-y, and ATP generation by CD4*T cells
were decreased after therapy, suggesting T-cell inacti-
vation. Additionally, patient serum levels of the regula-
tory cytokine IL-10 were elevated [160]. Another report
evaluated the short-term efficacy of a combined therapy
of allogenic hASCs and calciferol in patients with newly
diagnosed T1D (<3 months). At the end of the observa-
tion period, significantly lower insulin doses and HbAlc
in the treatment group, as compared with the control
standard insulin treated group, were reported. However,
c-peptide did not differ between the treatment and the
control groups. The glycemia control-mediated effect
of the combined therapy was likely attributed to the
significant upregulation of the frequency of the immu-
nomodulatory CD8*" FOXP3* Tregs post-treatment.
A larger sample and a longer follow-up period are nec-
essary to further determine the safety of the treatment
and the efficacy of ASCs infusion combined to Vitamin
D supplementation for recent-onset T1D [152]. The
short-term efficacy of PL-MSCs in newly-onset juvenile
T1D has been clarified in four patients. PL-MSC injec-
tion decreased specific and sensitive antibodies in T1D
pathogenesis (ZnT8-Ab and anti-Gad-Ab) till month 3
of follow up, then they increased again [155]. The effect
of MSC source on the efficacy of MSC therapy in dia-
betes was evaluated. Allogeneic BMSCs or WJ-MSCs
were administered through IV in patients with T1D who
were observed for 12 months. WJ-MSCs showed advan-
tages over BMSCs as they induced a greater reduction of
HbA1c % and better improvement of FCP [85].

In the context of T2D, few studies were found to
address the therapeutic efficacy of aBMSCs [150, 156].
Bhansali et al. [150]. compared the efficacy of aBM-
SCs vs. aBM-MNCs by administering them through the
superior pancreatico-duodenal artery in patients with
established T2D (>5yrs disease diagnosis), and changes
in metabolic indices were observed over the course of
one year. aBBMSCs and aBM-MNC demonstrated a sig-
nificant reduction in insulin requirements (=50% from
baseline). Specifically, aBMSCs increased the expression
of the IRS-1 gene, resulting in enhanced insulin sensitiv-
ity, whereas, aBM-MNCs improved glucagon-stimulated
C-peptide response during hyperglycemic clam, provid-
ing newer insights in T2D cell-based therapy. In a criti-
cal clinical trial conducted by Nguyen and his colleagues
[156] BMSCs were administered into patients with T2D
disease duration<10 years vs. those with a disease diag-
nostic onset>10 years and BMI<23 vs.>23 kg/m? via IV
or IP (dorsal pancreatic artery/DPA) with follow-up for
almost one year and three months-time points. It was
illustrated that the route of administration didn’t affect
the efficacy of aBMSC therapy, however, it was greatly
correlated with the disease duration and patient’s BMIL.

Follow-
up
(M)

2

2

Administration Duration

Route
Elbow joint (IV)

of
Y

Allogenic vs. Autologous
Three doses with one-
month interval

(1x10%

Kg BW/

1% 10° cells/kg body

dose)
Single dose

Cell Dose
and Fre-

quency of

Mean or range Regimen

1144+
4.78Y
™™

Allogenic
Allogenic

the disease

Duration of
(Y or M)

(MEDIAN)

1
(kg/m?)
28694335
173+20

BM

Mean or range

50.00+

9.38
15 (Median)

DM MSC- Patients
type treated Agerange
patient  (Y)

Size
45
14
BMSCs
(n=4)
UC-MSCs

T2D
T1D

MsC
source
uc

R, PC, double-
blinded
RC, OPEN TRIAL BM or UC

Study

Type
A single-center,

China

Gp Group, IV intravenous, /P Intrapancreatic, KA Ketoacidosis, M Months, MSC Mesenchymal stem/stromal cells, ND not-defined, PC Placebo controlled, PL Placenta, R Randomized, RC Randomized controlled, SPD Superior

AT Adipose tissue, ASCs adipose tissue-derived mesenchymal stem/stromal cells, BV/ Body mass index, BM Bone marrow, BM-MNC Bone marrow mononuclear cells, B// Body weight, C Controlled, DPA Dorsal pancreatic artery,
pancreatico-duodenal artery, 77D type 1 diabetes, 72D type 2 diabetes, 77T Treatment, UC Umbilical Cord, WJ Wharton'’s jelly, ¥ Years

Table 4 (continued)
Ref Country
159 China

85
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Patients with T2D duration<10 years and BMI<23 kg/
m? showed significant reduction in both HbAlc and
remarkable decrease of FBG with diminishing effective-
ness over the time (short-term efficacy). Interestingly
neither duration nor BMI affected C-peptide level which
showed same change in all treated groups. Insightful
investigation revealed that T2D duration badly affected
the proliferation rate, abrogated the glycolysis and mito-
chondria respiration of BMSCs, and induced the accu-
mulation of mitochondria DNA mutation in BMSCs,
explaining the loss of efficacy of 10-years or more dia-
betic BMSCs.

Diverse investigators assessed the efficacy and safety
of allogeneic MSCs derived from adult [153], or perina-
tal [145, 146, 148, 149, 158, 159], tissues in T2D patients
illustrating promising results. Li et al. [153], assessed the
therapeutic efficacy of SHED transplantation in patients
with T2D>5 years and one-year follow up. The SHED
effectively improved metabolic glucose and lipid indi-
ces. Analysis revealed that the patient BGL before SHED
therapy was correlated with the efficacy, where patients
with HbAlc<8.5 and total cholesterol <5 mmol/L or tri-
glyceride<1.5 mmol/L or low-density lipoprotein choles-
terol<3.2 mmol/L reduced significantly the daily insulin
dose. The islet function state of the patients before treat-
ment was closely related to the degree of islet function
recovery after treatment, such that patients with FCP
1.7 ng/mL and PCP at 2 h>3 ng/mL showed better islet
function recovery after treatment. Such findings support
blood lipid levels and baseline islet function may serve
as key factors contributing to the therapeutic outcome
of MSC transplantation in patients with T2D. Jiang et al.
[145]. investigated the efficacy and safety of IV admin-
istration of PL-MSCs in patients with established T2D.
Six months-post therapy, significant reduction in the
mean daily insulin dosage and HbAlc %, while, signifi-
cant increase in c-peptide, were detected. Additionally,
the renal and cardiac functions were improved and no
adverse reactions were recorded [145]. Furthermore, WJ-
MSCs were tested for their long-term effects by adminis-
tering them intravenously to T2D patients and following
them for 3 years. PPG and HbAlc levels significantly
decreased after treatment, accompanied by a significant
increase in FCP [30]. Non-significant decrease in homeo-
static model assessment of IR (HOMA-IR), IR indices,
was detected in the first year, followed by re-increase.
In that study, the differential effect of WJ-MSC on dos-
ages of daily insulin and oral hypoglycemic drugs was
clarified and 32.3% of patients remained insulin free for
12.5+6.8months. Moreover, compared with the control
group/sham-treated, WJ-MSC infusion decreased sig-
nificantly the incidence of diabetes complications [30]. In
accordance, Liu et al. [146]. stated that transplantation of
two doses of WJ-MSCs in patients with T2D via IV, then
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IP endovascular routes regulated significantly, at 1-year,
the PPG, FCP, and beta-cell function [represented by
homeostatic model assessment of beta-cell (HOMA-B)].
In terms of insulin requirements, 94% of patients who
were receiving insulin, exhibited differential decline in
insulin dosage post transplantation and 41% of insulin-
dependent patients suspended insulin for 9 months.
Additionally, immunological tests revealed a decrease
in the counts of CD3, CD4, and CD8 lymphocytes, with
significant changes for CD3 and CD4 T lymphocytes
at 6 months post-transplant. At the same time point, a
significant decrease in the serum inflammatory mark-
ers, IL-6 and IL-1p was also detected. The correlations
between the change in the levels of FCP and the counts
of CD3* T lymphocytes and serum IL-6 level were sig-
nificant. Such findings confirm that MSC anti-diabetic
effect in clinic is mediated at least partially via modulat-
ing inflammation [146]. In a pilot study, hUC-MSCs were
transplanted intravenously into six patients with T2D,
who were then monitored for more than 24 months. 50%
of patients became insulin-free for the whole follow-up
period, while the remaining three patients reduced their
insulin demands. In the insulin-free group, post MSC
therapy, levels of FCP and c-peptide release in response
to meal increased significantly within one month and
remained high during the followup period. Addition-
ally, HbAlc significantly reduced with a stable level over
the 24-month time. In contrast, the insulin-dependent
group, post MSC therapy, showed a significant reduction
in HbA1lc for only 3 months and did not exhibit any sig-
nificant change in C-peptide levels [148]. In a preliminary
short-term evaluation (=3 moths) of the efficacy and
safety of hUC-MSCs in patients with T2D and a mean
disease duration 10.06 years, the authors reported that
hUC-MSCs could ameliorate hyperglycemia by decreas-
ing FBG and HbAlc and reducing the dosage of hypo-
glycemic agents. It also improved islet beta-cell function.
However, no significant improvement of IR and no sig-
nificant decrease in FCP and PCP during the follow-up
period was reported [158]. The safety and effectiveness
of hUC-MSCs were also evaluated in Chinese people
suffering from T2D. The UC-MSCs were administered
IV three times (one dose /month) at the elbow joint and
the patients were investigated for one year. The treat-
ment resulted in significant decrease in daily insulin
requirement and HbAlc levels, and ameliorating IR, as
represented by improved glucose infusion rate, in a time-
dependent manner. Only 20% of patients achieved the
study goal (HbAlc levels<7.0% and daily insulin reduc-
tion of 250% at the end of follow-up [159]. In conclusion,
the above-mentioned studies recommend the effective-
ness of MSCs in controlling metabolic indices in T1D
or T2D patients. Additionally, enhanced physical and
mental quality of life measures were observed after MSC
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transplantation [157, 160]. Importantly, MSC injection
was associated in some reports with transient easily-
resolved adverse events such as abdominal pain, fever,
fatigue, headache, vomiting or bleeding at site of injec-
tion [153, 156, 158, 160]. MSC transplantation signifi-
cantly reduced the incidence of hypoglycemic episodes,
relative to standard insulin treatment, suggesting the
safety of MSC-based therapy in DM [153, 157, 160].

MSC-based therapy in DM perspectives and limitations
Accumulating experimental and clinical data indicate
that MSCs from adult or perinatal tissues serve as ideal
candidates for the treatment of DM due to their great
advantages in terms of abundance, high proliferative
phenotype, immunomodulation and plasticity for IPC
generation [27]. The UC and its main component W] are
normally discarded after a birth and poses no risk for col-
lection. Importantly, hUC- and hWJ- MSCs have been
widely used in DM cell-based therapies at the pre-clinical
and clinical levels [161]. However, the efficient translation
of the routine application of these cells in DM cure, large
highly-standardized clinical trials can be planed. Such
trials should be unified in sample inclusion and exclusion
criteria, disease duration/stage, sample size, and inves-
tigated metabolic parameters for continuous follow-up.
Importantly, banking of these cells (autologous or allo-
genic) needs special attention.

From clinical perspectives and depending on the avail-
able data, many uncertainties need deeper research to
draw a possible effective therapeutic regimen for MSCs
or their derivatives (EVs or EX) for DM in clinics. Among
the variables of future research interest is the optimal
MSC source to treat DM. Equivalent effectiveness, of
UC-MSCs and BMSCs in glycemic control and beta-cell
preservation at both the preclinical and clinical levels, has
been reported [85]. In another report, the same donor-
derived AM-MSCs and UC-MSCs possessed comparable
effects and shared a similar hepatoprotective mecha-
nism on the alleviation of experimental T2D symptoms
[48]. Controversially, Ma et al. [39], reported that MSC
types exhibit differential potential to ameliorate preclini-
cal T2D, UC-MSCs presented super anti-hyperglycemic,
anti-IR, and anti-hyperlipidemia effects over DPSCs and
ASCs, however, ASCs showed the strongest liver lipo-
genesis inhibition. The optimal MSC tissue source for
efficient MSC therapy in DM could thus depend on the
detailed biochemical and histopathological examination
of the diabetic patients, not only broad categorization
as patients with T1D or T2D. The findings may also sup-
port the therapy by MSCs pooled from different sources
to cover the diverse disease pathological mechanisms.
As well, among the challenges that face the choosing of
the optimal MSC source and the effective clinical trans-
lation of MSCs is their inherent heterogeneity which
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complicates the safety and consistency of the therapeu-
tic outcomes [162]. The advent of single-cell RNA-seq
(scRNA-seq) has enabled precise MSC characterization
and biomarker identification, revealing the diversity of
MSC subclusters and their specific transcriptome pat-
terns and functions [163]. scRNA-seq and developmen-
tal trajectory analysis of MSCs derived from different
human sources may identify subpopulations with supe-
rior therapeutic properties, particularly in DM. This in-
depth knowledge is crucial for the optimal MSC source
selection, targeted MSC-based therapies development
and clinical applications refinement].

Despite the encouraging experimental results, the
duration of efficacy of a single MSC infusion is relatively
transient [36, 89]. Si et al. [89]. found that the antidiabetic
effect of a single MSC infusion was maintained for less
than 4 weeks in T2D rats. Clinical trials also exhibited
similar results [30, 146]. To overcome such limitation,
repeated MSC administrations may prolong the anti-dia-
betic effect. Alternatively, the combined administration
of MSCs with a pharmacological agent, an epigenetic
modifier [36, 92], or hyperbaric oxygen therapy [93], to
augment MSC immunomodulatory and anti-inflamma-
tory responses and sustain their anti-diabetic effects, can
be introduced in clinics. Moreover, the infusion of MSCs
to diabetic patients follow fasting- mimicking diet (FMD)
regimen can be applied to achieve a better improvement
in restoring lipid metabolism, as reported at the preclini-
cal level in mice with T2D [95]. FMD is a kind of caloric
restriction which represents a dietary mode low in calo-
ries, sugars, and proteins but high in unsaturated fats,
can dramatically reduce triglycerides and total and low-
density lipoprotein cholesterol, resulting in a loss of total
body fat and a reduction of liver fat accumulation [164].
Patient life style, nutrition, exercise, and microenviron-
ment could impact the MSC therapeutic outcome [157]
and that can be uniformly considered in the future clini-
cal studies.

Disease duration greatly influence the therapeutic effi-
cacy of MSCs and their functional characteristics, affect-
ing the autologous implications [156, 157]. Similar results
were reproducible at preclinical level, where the efficacy
of UC-MSC:s to reverse beta-cell dedifferentiation in T2D
model was reduced in the late-stage treatment, relative
to the early stage one [62]. Thus, the precise selection of
patients who may benefit from MSC treatment, depend-
ing on the onset of diagnosis and the disease stage, is
really crucial from a clinical standpoint [116]. Most of
the reported clinical studies (=95%) injected MSCs intra-
venously in patients with T1D or T2D. However, those
studies have not tacked MSCs in vivo and they have not
considered the potential lung trapping [165]. Few studies
explored the efficacy of DPA administration [156, 160] or
intraportal infusion [166]. Further comparative clinical
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studies in the context of MSC delivery route are therefore
implored. To optimize MSC tracking [167], preclinical
research, focusing mainly on comparing different routes
at the same set-up, to elaborate knowledge about the
route-MSC pancreatic homing efficacy and therapeutic
outcome, are potentially encouraged.

Different MSC priming approaches, reviewed here,
were only performed on bench or in diabetic animal
models. In order to accelerate the translation of the inno-
vative MSC enhancement strategies into the DM clin-
ics, several key issues have been previously introduced
by Li et al. [120], including: (1) setting-up a quality con-
trol strategy for manufacturing clinical grade primed or
genetically modified MSCs, (2) establishing an efficient
screening system to exclude primed cells with oncogenic
mutations and, (3) precise patient selection to enroll
patients who most likely derive maximal benefits from
those strategies.

In the context of MSC-secretome and EVs, almost no
clinical translation in DM has been reported yet, even
MSC secretome is a factor-rich protein-based biotech-
nological product with a greater safety when compared
to administration of living human cells, so presenting vir-
tually no/low risk [161]. Thus, preliminary clinical trials
evaluating the efficacy and safety (immunogenicity and
tumorgenicity) of primed MSCs, with different augment-
ing approaches, and MSC-derived EVs or secretome in
precisely selected diabetic patients are recommended.

Conclusion

In summary, the clinical studies demonstrated a potential
benefit of MSC administration for the treatment of T1D
(especially the early onset) and T2D, however, consider-
able number of critics remain not-fully explored and a
final conclusion cannot be drawn. The methodological
aspects of the identified studies and findings are het-
erogeneous, challenging the interpretation of the actual
DM-MSC therapeutic impacts and methodically rigorous
research is further needed to increase credibility. Thus,
high-quality, large-scale randomized clinical studies are
demanded to provide a definitive conclusion. At the pre-
clinical level, standardized research in non-murine large
diabetic animal models, considering the genetic defect(s),
may decrease the translation gap between the murine
models and human patients in hMSC-based DM therapy.
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