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Circulating calcium and phosphate are tightly regulated by three hormones: the active form
of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid
hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a cru-
cial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The
oversecretion of the hormone results in hypercalcemia, caused by increased intestinal cal-
cium absorption, reduced renal calcium clearance, and mobilization of calcium from bone
in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism
of uremia is observed in its early stages, and this finally develops into the autonomous
secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such
as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho com-
plex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET,
MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically
engineered animals with these receptors and the associated genes have provided us with
valuable information on the patho-physiology of parathyroid diseases. The application of
these animal models is significant for the development of new therapies.
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INTRODUCTION
Hyperfunctioning parathyroid diseases such as primary hyper-
parathyroidism (PHPT) and secondary hyperparathyroidism of
uremia (SHPT) are characterized by the abnormal metabolism of
calcium (Ca) and phosphate (P). Parathyroid hormone (PTH),
the active form of vitamin D (1,25-dihydroxyvitamin D, or 1,25-
(OH)2D), and fibroblast growth factor (FGF)-23, are the principal
physiological regulators of Ca and P homeostasis in humans
(Imanishi et al., 2009a; Figure 1). There are feedback loops
between ionized Ca (Ca2+), P, 1,25-(OH)2D, FGF-23, and PTH.

Three receptors in parathyroid cells that are important in Ca
and P homeostasis are the calcium-sensing receptor (CaR) and
FGF receptor (FGFR-Klotho complex), which are located on the
cell surface, and the vitamin D receptor (VDR) in the nucleus.
Abnormal responses of these receptors by their ligands have been
reported in the pathogenesis of PHPT and SHPT.

This review will focus on the animal models of parathyroid
diseases, which exhibit abnormalities in Ca and P homeostasis
(Table 1).

RECEPTORS IN PARATHYROID CELLS
CALCIUM-SENSING RECEPTOR
Positional cloning approaches have clarified that loss-of-function
mutations in the CaR gene cause familial hypocalciuric hyper-
calcemia (heterozygous mutations) and neonatal severe hyper-
parathyroidism (homozygous mutations; Pollak et al., 1993). CaR
has a crucial role in PTH secretion from parathyroid cells by
sensing extracellular Ca2+ (Figure 2).

Heterozygous knockout mice for CaR exhibited a similar phe-
notype of familial hypocalciuric hypercalcemia (Ho et al., 1995).
Serum PTH levels were inappropriately elevated, but their parathy-
roid glands did not enlarge. Homozygous knockout mice had

markedly elevated serum Ca, PTH, retarded growth, and prema-
ture death (Ho et al., 1995), symptoms that are concordant with
human neonatal severe hyperparathyroidism. Double homozy-
gous CaR- and PTH -deficient (CaR−/−PTH−/−) mice were res-
cued from early lethality and skeletal abnormalities, and exhibited
normocalcemia with undetectable serum PTH (Liu et al., 2011),
indicating that normocalcemia in patients with neonatal severe
hyperparathyroidism may lengthen their lifespan and normalize
skeletal growth and development.

VITAMIN D RECEPTOR
1,25(OH)2D3 is a steroid hormone that plays a crucial role in Ca
and P homeostasis, which are mediated by the VDR. Hereditary
hypocalcemic vitamin D-resistant rickets (HVDDR) is an auto-
somal recessive disorder, caused by inactivating mutations in the
VDR gene, resulting in target tissue insensitivity to 1,25(OH)2D3

(Haussler et al., 1998). VDR knockout mice exhibit hypocalcemia,
hypophosphatemia, rickets, alopecia, and hyperparathyroidism
with enlarged parathyroid glands, a phenotype that is similar to
HVDDR (Yoshizawa et al., 1997). Tissue-specific ablation of VDR
in parathyroid tissue exhibits decreased parathyroid CaR expres-
sion and a moderate increment in basal PTH levels. However,
no significant abnormalities in PTH-Ca sigmoidal curves were
observed (Meir et al., 2009), suggesting a limited role for VDR in
parathyroid patho-physiology.

FGF RECEPTOR-KLOTHO COMPLEX
Klotho, which is expressed in the kidney, and in the pituitary
and parathyroid glands, converts FGFR1, a canonical receptor
for various FGFs, into a specific receptor for FGF-23 (Urakawa
et al., 2006). FGF-23 null mice exhibit various senescence-
like phenotypes such as a short lifespan, infertility, atrophy of
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lymphopoietic and reproductive organs, decreased bone min-
eral density, and ectopic calcification, a phenotype that is similar
to Klotho-deficient mice (Shimada et al., 2004), suggesting that
FGF-23 signaling is Klotho dependent.

The parathyroid cells expressing Klotho and FGFR1 are respon-
sive to FGF-23, both in vivo and in vitro (Ben-Dov et al.,
2007). Reduced expressions of Klotho and FGFR1 in hyperplas-
tic parathyroid glands from SHPT patients (Komaba et al., 2010),
suggesting reduced signaling by FGF-23 to parathyroid cells, have
a role in the development of SHPT. However, studies on Klotho
expression in uremic animals show conflicting results (Canalejo

FIGURE 1 | Feedback loops in Ca and P homeostasis, modified from
previous reports (Imanishi et al., 2009a,b). There are feedback loops
between Ca2+, P, 1,25-(OH)2D, FGF-23, and PTH. Ca2+, 1,25-(OH)2D, and
FGF-23 suppress PTH secretion, whereas P overload accelerates it. The P
overload does not always cause hyperphosphatemia, except for in some
conditions such as chronic kidney disease.

et al., 2010; Hofman-Bang et al., 2010). Further studies are nec-
essary to clarify the role of FGFR-Klotho signaling in uremic
parathyroid glands.

GENES IDENTIFIED IN PARATHYROID DISEASES
CYCLIN D1
Cyclin D1 was identified from parathyroid adenomas which har-
bored a DNA rearrangement that separated the PTH gene’s 5′

flanking region from PTH coding exons, and the DNA recombined
with cyclin D1 proto-oncogene (Arnold, 1993). The parathyroid
tissue-specific enhancer in the PTH 5′ flanking region drives the
cyclin D1 expression located downstream of the enhancer by the
rearrangement (Mallya et al., 2010).

To define the role of cyclin D1 in parathyroid neoplasia, trans-
genic mice that overexpress the cyclin D1 oncogene in parathy-
roid glands were generated using a transgene that mimics the
human PTH-cyclin D1 gene rearrangement (Imanishi et al., 2001).
PTH-cyclin D1 transgenic mice not only developed abnormal
parathyroid cell proliferation, but also developed biochemical
hyperparathyroidism with characteristic abnormalities in bone.
Specifically, the transgenic mice had an altered PTH-Ca relation-
ship, which was shifted upward and to the right, and was steeper
relative to that in the wild-type mice (Figure 2), due to reduced
CaR expression in the parathyroid glands of transgenic animals.

Cinacalcet is an allosteric modulator that activates the CaR and
inhibits PTH secretion from parathyroid cells. Administration of
cinacalcet shifts the sigmoidal curve left in the PTH-Ca relation-
ship (Figure 2), because cinacalcet increases the sensitivity of CaR
to Ca in parathyroid cells. A single administration of cinacal-
cet significantly suppressed serum Ca levels in PTH-cyclin D1
transgenic mice with moderate biochemical hyperparathyroidism
(Kawata et al., 2005). In older transgenic mice with advanced
hyperparathyroidism caused by severe hypo-expression of CaR,

Table 1 | Mouse models for parathyroid diseases.

Disorder Model Phenotype Reference

FHH Conventional heterozygous CaR knockout Benign and modest elevations of serum Ca, and PTH

levels as well as hypocalciuria

Ho et al. (1995)

NSHPT Conventional homozygous CaR knockout Marked elevations of serum Ca and PTH, parathyroid

hyperplasia, bone abnormalities, growth retardation, and

premature death

Ho et al. (1995)

HVDDR Conventional homozygous VDR knockout Alopecia, hypocalcemia, infertility, rickets, growth retar-

dation, and early lethality after weaning

Yoshizawa et al. (1997)

Parathyroid

adenoma

Parathyroid-specific overexpression of cyclin D1 Elevations of serum Ca and PTH, parathyroid hyperplasia,

bone abnormalities

Imanishi et al. (2001)

MEN1 Conventional heterozygous MEN1 knockout Tumors involving pancreatic islets, parathyroid, thyroid,

adrenal cortex, pituitary Hypercalcemia was not reported

Bertolino et al. (2003),

Crabtree et al. (2001)

MEN1 Parathyroid-specific MEN1 knockout Parathyroid neoplasia, elevations of serum Ca and PTH Libutti et al. (2003)

MEN4 Mutated CDKN1B (rat) Pheochromocytoma, paraganglioma, thyroid medullary

C-cell hyperplasia/neoplasia, pituitary adenoma, parathy-

roid hyperplasia

Pellegata et al. (2006)

Ca, calcium; CaR, calcium-sensing receptor; FHH, familial hypocalciuric hypercalcemia; HVDDR, Hereditary hypocalcemic vitamin D-resistant rickets; MEN1, Multiple

endocrine neoplasia type 1; MEN4, Multiple endocrine neoplasia type 4; NSHPT, neonatal severe hyperparathyroidism; VDR, vitamin D receptor; PTH, parathyroid

hormone.
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FIGURE 2 |The sigmoidal curve of the PTH-Ca relationship, modified
from a previous report (Imanishi, 2002). The analyses of PTH secretions
inhibited by extracellular Ca in vitro revealed the sigmoidal relationship of
the PTH-Ca relationship. Setpoint, the Ca concentration causing
half-maximal inhibition of PTH secretion, is an indicator of sensitivity of
parathyroid cells to extracellular Ca by CaR. (A) The relationship in healthy
subjects was fitted to a symmetrical sigmoidal curve. (B) The normal
sigmoidal curve will shift upward when the secretory cell number is
increased, without changing its setpoint. (C) An altered sigmoidal curve is
observed in human parathyroid adenomas, refractory SHPT, by changing
the setpoint to the right. In the case of severe setpoint shift, PTH secretion
is persistent even at high Ca concentration: so-called “autonomous” PTH
secretion. An altered PTH-Ca relationship was also observed in PTH-cyclin
D1 transgenic mice (Imanishi et al., 2001, 2009a). (D) Administration of
cinacalcet or activating mutation of CaR observed in autosomal dominant
hypocalcemia increases the CaR sensitivity to serum Ca. Activations of CaR
result in the PTH-Ca relationship curve moving to the left.

serum Ca, and PTH levels were not suppressed by the same
doses of cinacalcet administered to mice with moderate biochemi-
cal hyperparathyroidism. These levels were, however, significantly
suppressed by increasing cinacalcet, suggesting that higher doses
of this compound could overcome severe hyperparathyroidism.

Cinacalcet also successfully suppressed parathyroid prolifera-
tion in the PTH-cyclin D1 transgenic mice (Imanishi et al., 2011).
This mouse is thought to be a suitable model for PHPT and
refractory SHPT in drug evaluations.

RET
Multiple endocrine neoplasia type 2A (MEN2A) is an auto-
somal dominant syndrome of multiple endocrine neoplasms,
including medullary thyroid carcinoma, pheochromocytoma, and
multiglandular parathyroid tumors. The gene responsible for
MEN2A was identified as germline mutations of the RET proto-
oncogene, which encodes a tyrosine kinase receptor with a
cadherin-like and cystein-rich extracellular domain (Mulligan
et al., 1993). The MEN2A mutation leads to the dimerization of
RET even in the absence of its ligand, with consequent constitutive
activation of the intracellular signaling pathways (Santoro et al.,
1995).

Transgenic mice expressing the RET proto-oncogene with an
MEN2A mutation (cysteine 6343arginine) developed thyroid C-
cell hyperplasia or medullary carcinoma (Kawai et al., 2000).
Despite the widespread transgene expression, however, trans-
genic mice displayed a very peculiar tissue-restricted phenotype,
such as mammary or parotid gland adenocarcinoma. The role
of RET should be elucidated in the pathogenesis of parathyroid
tumorigenesis.

MEN1
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal
dominant familial endocrine neoplasm syndrome characterized
by tumors in parathyroids, enteropancreatic endocrine tissues,
and the anterior pituitary. MEN1, encoding menin, is a tumor
suppressor gene, contributing to a mutated cell’s selective advan-
tage for growth through its bi-allelic inactivation. Menin interacts
with Smad3 and enhance the TGF-β signaling pathway to inhibit
cell proliferation (Kaji et al., 2001). Menin also interacts with his-
tone modifying enzymes, transcription factors including nuclear
receptors to suppress cell proliferation.

Mice with heterozygous deletion of the MEN1 gene exon 3–8
developed tumors involving pancreatic islets, and the parathy-
roid, thyroid, adrenal cortex, and pituitary, with loss of the
wild-type MEN1 allele (Crabtree et al., 2001). Another mouse
knockout model has been generated by deleting exon 3, and its
heterozygous mice developed parathyroid adenomas and carci-
nomas, insulinomas, gastrinomas, glucagonomas, prolactinomas,
or somatotrophinomas (Bertolino et al., 2003). All these features
seem to be compatible with human MEN1 syndrome. Although
mice with heterozygous MEN1 inactivation developed parathyroid
neoplasia, hypercalcemia was not reported (Crabtree et al., 2001;
Bertolino et al., 2003).

The mice with parathyroid-specific deletion of the MEN1
gene exhibited not only parathyroid neoplasia but also biochem-
ical hyperparathyroidism such as hypercalcemia with elevated
PTH concentration (Libutti et al., 2003). It is still unknown why
only the mice with parathyroid-specific deletion of the MEN1
gene but not conventional MEN1 mice exhibited biochemical
hyperparathyroidism.

HRPT2
Hyperparathyroidism-jaw tumor (HPT-JT) syndrome is a rare
autosomal dominant disorder, characterized by cystic parathyroid
tumors and fibro-osseous lesions of the mandible and maxilla. The
gene responsible for HPT-JT encodes parafibromin, a ubiquitously
expressed 531-amino acid protein (Carpten et al., 2002). The inac-
tivated mutations were observed in the encoded parafibromin
protein, suggesting the gene is a tumor suppressor.

To determine the role of parafibromin in parathyroid tumori-
genesis, a transcription factor encoded by the Hrpt2 gene, con-
ventional, and conditional knockout mice were generated (Wang
et al., 2008). Homozygous knockout mice were embryonic lethal.
Controlled deletion of the gene after embryonic day 8.5 resulted
in apoptosis and growth retardation. Deletion of the gene in the
adult led to severe cachexia and early death. These results revealed
the important role of parafibromin in development and survival,
but its role in parathyroid tumorigenesis is still unknown.
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CDKN1B
Recently, an MEN1-like recessive multiple endocrine neoplasia-
like syndrome was identified (named MEN4) in rats and humans,
which is due to mutations in the CDKN1B gene, encoding for
p27kip1, a cyclin-dependent kinase (Cdk) inhibitor that regu-
lates the transition of cells from G1 to S phase (Pellegata et al.,
2006). Mutated CDKN1B, encoding the p27Kip1

, was also identi-
fied in MENX rats with juvenile cataracts (Pellegata et al., 2006).
These rats exhibited neoplasia of multiple endocrine tissues such
as pheochromocytoma, paraganglioma, thyroid medullary C-cell
hyperplasia/neoplasia, adenoma of the anterior pituitary gland,
and hyperplasia of the parathyroid gland (Fritz et al., 2002), which
were compatible to human MEN4.

Interestingly, p27-null mice developed pituitary adenomas as
the sole tumor phenotype, although the MENX rats developed

a broader spectrum of neuroendocrine tumors (Pellegata et al.,
2006). The altered sensitivity to p27 loss in various tissues by
species may lead to the altered tissue expression patterns and
phenotypes.

CONCLUSION
In this review, the animal models exhibiting abnormal Ca and
P homeostasis were discussed. Many kinds of animal models
can be generated by manipulating genes relating to Ca and P
homeostasis, and genes identified in parathyroid diseases. Uremic
animals such as 5/6-nephrectomized rats are also good models
for SHPT, which is not discussed in this review. These models
are the best tool not only for understanding the pathogenesis of
parathyroid diseases, but also for developing new therapies for
these diseases.
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