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Abstract

Metastasis is known as a key step in cancer recurrence and could be stimulated by multiple

factors. Calumenin (CALU) is one of these factors which has a direct impact on cancer

metastasis and yet, its underlined mechanisms have not been completely elucidated. The

current study was aimed to identify CALU co-expressed genes, their signaling pathways,

and expression status within the human cancers. To this point, CALU associated genes

were visualized using the Cytoscape plugin BisoGenet and annotated with the Enrichr web-

based application. The list of CALU related diseases was retrieved using the DisGenNet,

and cancer datasets were downloaded from The Cancer Genome Atlas (TCGA) and ana-

lyzed with the Cufflink software. ROC curve analysis was used to estimate the diagnostic

accuracy of DEGs in each cancer, and the Kaplan–Meier survival analysis was performed

to plot the overall survival of patients. The protein level of the signature biomarkers was

measured in 40 biopsy specimens and matched adjacent normal tissues collected from

CRC and lung cancer patients. Analysis of CALU co-expressed genes network in TCGA

datasets indicated that the network is markedly altered in human colon (COAD) and lung

(LUAD) cancers. Diagnostic accuracy estimation of differentially expressed genes showed

that a gene panel consisted of CALU, AURKA, and MCM2 was able to successfully distin-

guish cancer tumors from healthy samples. Cancer cases with abnormal expression of the

signature genes had a significantly lower survival rate than other patients. Additionally, com-

parison of CALU, AURKA, and MCM2 proteins between healthy samples, early and

advanced tumors showed that the level of these proteins was increased through normal–

carcinoma transition in both types of cancers. These data indicate that the interactions

between CALU, AURKA, and MCM2 has a pivotal role in cancer development, and thereby

needs to be explored in the future.
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Introduction

Calumenin (CALU) is a known member of the CREC protein family. It is encoded from the

7q32 region of the human genome and translated into a 315 amino acid protein containing a

common CREC signal sequence, a putative N-glycosylation region, 6 ~ 7 EF-hand motifs, and

a carboxyl-terminal with an inefficient retention HDEF signal sequence [1]. Currently, a total

of 15 CALU isoforms have been identified in human [2]. Unlike the other CREC family mem-

bers, CALU proteins can only be transported via cellular secretory mechanisms, and most of

the CALU isoforms (CALU 1–14) are detected in the endoplasmic reticulum (ER), Golgi appa-

ratus and extracellular medium [3–5]. However, CALU-15, which lacks a signal peptide

sequence, can only be transported between cellular cytosol and nucleus [2].

CALU isoforms show distinctive roles in cellular functions. As chaperone proteins, CALU

isoforms participate in protein correct structure modeling and maturation [3–5]. The implica-

tion of CALU function results in the activation of ER-located enzymes such as the γ-carboxyl-

ase [6, 7]. Also, CALU can modulate the cellular stress through regulation of GRP78 and

phosphorylated PERK as ER-stress factors, C/EBP homologous protein (CHOP), and p-JNK

proapoptotic proteins, and antiapoptotic Bcl-2 [3]. Elevation of CALU extracellular isoforms

ameliorates SEPT1 expression and increases cell cycle modulation [8].

The upregulation of CALU, however, has been reported to associate with the elevation of

cell migration and metastasis in lung and colon cancers. Analysis of human lung cancer

patients indicated a higher level of CALU and Oxysterol binding protein-like 5 (OSBPL5) in

metastatic cancer cells than non-metastatic samples [9]. Interestingly, cancer cells were shown

to increase the CALU secretion from the cancer-associated fibroblasts (CAFs) via a TGF-β
induced miR-21 expression axis and promoted tumoral proliferation and metastasis [10]. A

high-throughput proteomic study on tumoral biopsies obtained from colon cancer patients

detected the co-progressive expression of CALU and Biglycan, as the new biomarkers of colon

tumors [11]. This investigation was in line with the previous study of identifying the potential

biomarkers of colorectal carcinogenesis, in which reported the CALU as one the metastasis-

related proteins upregulated from adenoma to carcinoma [12]. These findings brought us to

identify the CALU associated genes network with Bioinformatics tools. Moreover, we devel-

oped a signature gene panel consisted of CALU and other differentially expressed genes

(DEGs) between healthy and cancer datasets retrieved from the Cancer Genome Atlas

(TCGA), and estimated the diagnostic and prognostic performances of this panel in colon and

lung cancer patients.

Materials and methods

Network visualization and analysis

Network illustration was carried out using the Cytoscape version 3.7.1 [13]. Cytoscape plugin

BisoGenet was applied to visualize CALU interactions with neighbored genes [14]. The topol-

ogy of the network was determined with the Cytoscape plugin CytoHubba version 0.1 [15].

The Gene Ontology (GO) biological process and KEGG pathways annotation were analyzed

with the Enrichr web-based application (http://amp.pharm.mssm.edu/Enrichr/). The results

were assumed as statistically significant if P< 0.05.

Identification of calumenin related diseases

The list of CALU related diseases was retrieved using the Cytoscape plugin DisGenNet, a bio-

informatics platform that integrates the genes data of various human disorders [16]. Following

query terms were chosen as data sources: 1- Online Mendelian Inheritance in Man (OMIM)
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(Mendelian Inheritance in Man and its online version, OMIM), 2- Genetic Association Data-

base (GAD) [17], 3- Mouse Genome Database (MGD) [18], 4- Comparative Toxicogenomics

Database (CTD) [19], 5- PubMed, and 6- Uniprot. Ranking of the associations between CALU

and diseases was performed according to the number of sources, organism type, and the num-

ber of supported publications.

Sample size estimation

Sample size was determined by using of the chi-square test based on the α error = 0.05 and β
error = 0.2 [20]. Analysis of the gene panel expression in the colon cancer training cohort resulted

in a proportion of 0.41 in healthy samples, and 0.5 in CRC tumors. The values for the control

group and lung tumors in the training set of lung cancer were 0.57 and 0.71, respectively. The esti-

mated ratio between the healthy controls and cancer cases was set at 1:1.2 for colon cancer, and

1:1.25 for lung cancer. On the other hand, due to the existence of one confounder (gene panel),

the sample size of the validation set was increased by about 10%, in both types of cancers.

Data mining and processing

Illumina Hiseq 2000 RNA-seq datasets (level 3 per-gene RNA-seq v2 expression data) were

retrieved from TCGA (https://cancergenome.nih.gov). The dbGaP accession number to the

specific version of the TCGA datasets is phs000178.v10.p8. The read counts of these datasets

were estimated by RSEM package (RNA-seq by expectation maximization). To identify the

miRNAs, small reads (< 75 bp) were analyzed with the RNA family algorithms (Rfam, version

13.0, http://rfam.xfam.org), to remove the known small noncoding RNAs including rRNAs,

tRNAs, snRNAs, and snoRNAs. The filtered sequences were subsequently analyzed with MIR-

EAP (https://sourceforge.net/projects/MIREAP, 2018), and miRNAs were detected based on

their canonical hairpin structure. To identify the protein-coding genes reads> 100 bp were

analyzed the Coding-Noncoding-Index (CNI, version 2) based on 64 triplets of nucleotides

algorithms [21], and additionally examined with the coding potential calculator-2 (CPC-2)

webserver to distinguish noncoding transcripts from mRNAs based on the length and quality

rate of the open reading frame of protein-coding transcripts [22]. Next, we analyzed the

retrieved protein sequences with the Pfam-scan (version 1.3) database archive to evaluate their

annotation [23], and also used the phylogenetic codon substitution frequency (phyloCSF,

release 20121028) to distinguish the coding transcripts from noncoding alignments according

to the evolutionary preservation of amino acids with known families of proteins [24]. To iden-

tify the human transcription factors and kinases, the coding protein list was uploaded into the

Ensembl BioMart web process version 79 (https://www.ensembl.org/Biomart) and analyzed

with the human genome assembly GRCh38.p12.

Differential expression analysis

Genes quantitation was calculated with the Cufflink software (version 1.3.0, 2010). The expres-

sion score of transcripts was calculated by the Cuffdiff package (version 2.2.1, 2013), as

RPKM = total exon reads/mapped reads in millions × exon length in kb (RPKM = reads per

kilobase of transcript per million mapped reads). The false discovery rate (FDR) was set as 5,

and the q-value (p-adjusted) was given as <0.05.

Clinical specimens

This investigation was performed with the approval of the National Institute of Genetic Engi-

neering and Biotechnology (NIGEB) ethics committee (#971001-I-695). The study population
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consisted of 40 CRC and 40 lung cancer patients, who underwent cancer surgery at Shohadaye

Tajrish Hospital, Tehran—Iran, during 2012–2018. Each participant received and filled an

informed consent before sampling. Subjects median age was 65 years (range: 60–70 years). As

for healthy control, a matched adjacent normal sample was also received from each patient.

Samples were liquid nitrogen-frozen and kept at -80˚C. Tumors’ assessment was performed

based on the American Joint Committee on Cancer (AJCC) guidelines [25].

Western blot analysis

Tissue samples were lysed in a lysis buffer consisted of sodium dodecyl sulfate (SDS, 0.1%),

Triton X-100 (1%,), Tris-HCl (100 mM, pH 7.4), sodium deoxycholate (0.5%), NaCl (150

mM), protease inhibitor phenylmethylsulfonyl fluoride (PMSF, 1mM), ethylenediaminetetra-

acetic acid (5mM), and glycerol (10%). After heating for 95˚C for 5 min, the mixture was

cooled on ice and centrifuged for 5 min at 14,000 rpm to collect the supernatant. Analysis of

protein concentration was done by using Bradford’s method [26]. Electrophoresis was carried

on a 12% SDS-polyacrylamide gel, and the separated proteins were then electrotransferred

onto a nitrocellulose membrane by using at a constant voltage (20 V) for one h at 4˚C. After

transferring, the membranes were washed with the Tris Buffered Saline with Tween-20

(TBST-10X) at room temperature for 5 min, incubated with the blocking buffer consisted of

PBS (1X), Tween-20 (0.1%,), and skim milk (5%) for one h, and rewashed with the TBS buffer

again. Primary antibody incubation was done for an overnight at 4˚C with a 1:1000 dilution of

the following antibodies: anti-CALU (4C6) Mouse mAb (#11991S), anti-Aurora A (D3E4Q)

Rabbit mAb (#14475S), anti-Phospho-Aurora A (Thr288) (C39D8) Rabbit mAb (#3079S),

anti-MCM2 Antibody (#4007S), anti-Phospho-MCM2 (Ser139) (D1Z8X) XP Rabbit mAb

(#12958S), and anti-β-Actin Antibody (#4967S) as a loading control. The membranes were

then washed with the TBST buffer for three times and incubated for one h at room tempera-

ture with a 1:2000 dilution of the Anti-Mouse IgG, HRP-linked Antibody (#7076S, for CALU),

or 1:2000 dilution of the Anti-Rabbit IgG, HRP-linked Antibody (#7074S, for AURKA and

MCM2). All antibodies were purchased from Cell Signaling Inc., USA. The blots were then

rewashed with TBST buffer, and the immunoreactive proteins were monitored using the Sig-

nalFire ECL Reagent (#6883S, Cell Signaling Inc., USA). Proteins bands were analyzed using a

Densitometry scanner and the ImageJ software (NIH, Bethesda, USA). The relative density of

protein bands was determined by measuring the integrated density of each band after subtrac-

tion of X-ray film background. Before the analysis of the ratio of phosphorylated/total for

AURKA and MCM2 proteins, the density value of each band was normalized to β-Actin and

then calculated.

Statistical analysis

The Chi-square test and unpaired unequal variance t-test were performed to calculate the sex

and age variables among the studied groups. The Mann-Whitney U test assessed the levels of

the genes between groups. The receiver operating characteristic (ROC) curve analysis was per-

formed to evaluate the diagnostic power of the genes panel. The area under the ROC curve

(AUC) was constructed as an accuracy criterion for the examination of the candidate genes

panel. Overall survival (OS) of patients was plotted with Kaplan–Meier survival analysis. All

data are represented as the mean ± S.D. (Standard deviation). Statistical significance was

achieved when P< 0.05 (�). All statistical analyses were performed with IBM SPSS Statistics

software version 22 (IBM, USA).
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Results

Identification of calumenin related diseases

To identify the calumenin related diseases, DisGeNET database was used with the keyword

CALU. According to the results, the expression pattern of CALU isoform 1 containing the

canonical sequence (UniPort identifier: O43852-1), was increased in 3 phenotypes (Mental

process, neoplastic process, and pathologic function), and ten human diseases (Table 1).

Among the identified diseases, seven diseases were categorized as Neoplastic Process, and two

other diseases, including Arteriosclerosis and Cystic Fibrosis, were identified as Disease or

Syndrome group. The neoplastic category diseases consisted of colon and lung cancers.

Visualization of the calumenin associated genes network

Calumenin associated gene network illustration was performed with the Cytoscape software.

The molecular interaction between CALU and other genes was analyzed by the Cytoscape

plugin BisoGenet, and the final network consisted of 127 nodes and 739 interactions. To create

a subnetwork consisting of the key nodes, we used the CytoHubba algorithms and selected the

hub objects (degree value >5) within the primary network. Fig 1 depicts the final system con-

sisted of 52 high degreed nodes with 354 interactions.

In cellular biology, the term of the network represents a complex signaling mechanism con-

sists of the essential information for a specific physiological action. Therefore, the analysis of a

signaling system requires the use of graph-theoretic parameters, including centrality, motifs,

etc., to depict the network organization. Like other kinds of directed networks, the nodes of

Table 1. DisGeNET analysis of calumenin correlated diseases.

Disease Name Type Semantic Type Disease Class Calumenin

Status

Arteriosclerosis disease Disease or

Syndrome

Cardiovascular Diseases Upregulation

Cystic Fibrosis disease Disease or

Syndrome

Congenital, Hereditary, and Neonatal Diseases and Abnormalities; Digestive

System Diseases; Respiratory Tract Diseases

Upregulation

Atherosclerosis disease Disease or

Syndrome

Cardiovascular Diseases Upregulation

Carcinoma of lung disease Neoplastic

Process

- Upregulation

Colon Carcinoma disease Neoplastic

Process

- Upregulation

Malignant neoplasm of lung disease Neoplastic

Process

Neoplasms; Respiratory Tract Diseases Upregulation

Adenocarcinoma of lung

(disorder)

disease Neoplastic

Process

Neoplasms; Respiratory Tract Diseases Upregulation

Non-Small Cell Lung

Carcinoma

disease Neoplastic

Process

Neoplasms; Respiratory Tract Diseases Upregulation

Malignant tumor of colon disease Neoplastic

Process

Digestive System Diseases; Neoplasms Upregulation

Primary malignant neoplasm

of lung

disease Neoplastic

Process

- Upregulation

Intelligence phenotype Mental Process Behavior and Behavior Mechanisms Upregulation

Neoplasm Metastasis phenotype Neoplastic

Process

Neoplasms; Pathological Conditions, Signs and Symptoms Upregulation

Neoplasm Invasiveness phenotype Pathologic

Function

Neoplasms; Pathological Conditions, Signs and Symptoms Upregulation

https://doi.org/10.1371/journal.pone.0233717.t001

PLOS ONE Developing a Gene panel for Detecting of early tumors from advanced colon and lung cancers

PLOS ONE | https://doi.org/10.1371/journal.pone.0233717 May 29, 2020 5 / 22

https://doi.org/10.1371/journal.pone.0233717.t001
https://doi.org/10.1371/journal.pone.0233717


the current system (Fig 1) were categorized based on their incoming and outgoing edges.

Degree is the simplest type of the centrality measures and shows the importance of a node in

the network based on its interaction (edge) with other nodes in directed networks. Using this

classification, those nodes (top 1–5%) with the highest degree are termed as hubs and have an

important role in the network. On the other hand, enrichment analysis of these nodes explains

the physiological aspects of the target network. For example, the node representing the CALU

protein in Fig 1, having an out-degree of 12 and an in-degree of 14, indicating the important

role of this protein in the complex network existed between known cancer related signaling

factors such as AURKA, EEF2K, EGFR, MCM2, RAF1, etc., which mediate the cancer cells

proliferation and survival.

Analysis of calumenin co-expressed genes perturbation in TCGA

The studied population consisted of 239 TCGA colon adenocarcinoma profiles (TCGA--

COAD, 107 normal and 132 CRCs), and 245 lung adenocarcinoma profiles (TCGA-LUAD,

108 normal and 137 tumors). Each dataset was divided into a training set and a validation set.

As for TCGA-COAD, the training set consisted of 47 healthy controls and 60 CRCs, and the

validation set consisted of 60 normal datasets and 72 CRCs. On the other hand, the training set

of TCGA-LUAD consisted of 37 healthy controls and 50 lung cancer datasets, and the valida-

tion set consisted of 71 normal and 87 lung cancer datasets. Descriptive details of colon and

lung cancer patients are shown in Table 2 and Table 3, respectively.

Fig 1. Construction of calumenin co-expressed genes network. The network was visualized using the Cytoscape plugins BisoGenet and CentiScaPe.

https://doi.org/10.1371/journal.pone.0233717.g001
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Following the data processing, DEGs of each cancer were analyzed using the cufflink and

visualized with the Volcano plot. The complete list of upregulated and downregulated genes of

TCGA-COAD and TCGA-LUAD datasets was presented in S1 Table, respectively. As already

Table 2. Clinical features of the colon cancer group.

Variable Training set Validation set Clinical samples p-value

Healthy count (%)

Sex

0.137Male 24 (51.06) 29 (48.33) 18 (45.00)

Female 23 (48.93) 31 (51.67) 22 (55.00)

Age (year)

0.27Mean + SD 55 ± 4 55 ± 6 65 ± 3

Colorectal cancer count (%)

Sex

0.339Male 30 (50.00) 40 (55.56) 18 (45.00)

Female 30 (50.00) 32 (44.44) 22 (55.00)

Age (year) 0.614

Mean + SD 63 ± 6 63 ± 9 65 ± 3

TNM stage

<0.01I 13 (21.67) 18 (25.00) 7 (17.50)

II 15 (25.00) 13 (18.06) 13 (32.50)

III 18 (30.00) 28 (38.88) 15 (37.50)

IV 14 (23.33) 13 (18.06) 5 (12.50)

Healthy versus cancer (p value2)

Sex 0.841 0.728 -

Age <0.001 <0.001 -

https://doi.org/10.1371/journal.pone.0233717.t002

Table 3. Clinical features of the lung cancer group.

Variable Training set Validation set Clinical samples p-value

Healthy count (%)

Sex

0.071Male 18 (48.65) 38 (53.52) 23 (57.50)

Female 19 (51.35) 33 (46.48) 17 (42.50)

Age (year)

0.728Mean + SD 55 ± 7 55 ± 7 65 ± 5

Lung cancer count (%)

Sex

0.331Male 25 (50.00) 43 (49.42) 23 (57.50)

Female 25 (50.00) 44 (50.58) 17 (42.50)

Age (year)

0.725Mean + SD 64 ± 5 64 ± 6 65 ± 5

TNM stage

<0.01I 10 (20.00) 17 (19.54) 5 (12.50)

II 13 (26.00) 20 (22.99) 15 (37.50)

III 21 (42.00) 29 (33.33) 12 (30.00)

IV 6 (12.00) 21 (24.14) 8 (20.00)

Healthy versus cancer (p value2)

Sex 0.919 0.873 -

Age <0.001 <0.001 -

https://doi.org/10.1371/journal.pone.0233717.t003
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shown, the expression level of CALU was significantly upregulated in both colon adenocarci-

noma and lung adenocarcinoma samples in comparison to the normal groups (P< 0.001).

Volcano analysis of the TCGA-COAD dataset indicated PRPH, PARK2, and CLGN as signifi-

cantly downregulated genes, and ASPM, AURKA, GTSE1, NPM1, and MCM2 as most signifi-

cant upregulated genes (P< 0.001, Fig 2A). Meanwhile, analysis of TCGA-LUAD dataset

introduced NOS2, SH3GLB1, CFTR, IQCB1, TCTN1, TPRKB, PLIN3, CTNNAL1, and

TMEM165 as most downregulated genes along with MCM2, RDX, P4HB, AURKA, LIMK2,

PDLIM5, and CEP76 as significantly upregulated genes (P< 0.001, Fig 3A).

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is a statistical evaluation performed to identify the most

significant biological terms in a given gene set, including signaling pathways, molecular func-

tions, diseases, etc. Here, we used the Enrichr web-based application to display CALU co-

expressed genes network enrichment results.

GO enrichment analysis of TCGA-COAD dataset showed that the upregulated genes were

over-presented in GO biological process: ribosomal small subunit export from the nucleus

(GO:0000056), and regulation of centrosome cycle (GO:0046605) (Fig 2B) while pathway

enrichment analysis of these datasets indicated KEGG’s DNA replication as significant term in

TCGA-COAD (Fig 2C).

Enrichment analysis of TCGA-COAD downregulated genes showed that the genes were

over-presented in GO biological process: positive regulation of protein localization to endosome

(GO:1905668), and positive regulation of protein localization to early endosome (GO:1902966)

(Fig 2B). While, pathway enrichment analysis of these datasets indicated KEGG’s Endometrial

cancer, and Amyotrophic lateral sclerosis (ALS) as significant terms (Fig 2C).

GO enrichment analysis of TCGA-LUAD dataset showed that the LUAD upregulated

genes were over-presented in GO biological process: mitotic cell cycle phase transition

(GO:0044772), and regulation of organelle assembly (GO:1902115) (Fig 3B) while pathway

enrichment analysis of this dataset indicated KEGG’s Regulation of actin cytoskeleton as a sig-

nificant term (Fig 3C).

Enrichment analysis of TCGA-LUAD downregulated genes showed that the genes were

over-presented in GO biological process: positive regulation of insulin secretion involved in

cellular response to glucose stimulus (GO:0035774), positive regulation of autophagosome

assembly (GO:2000786), protein localization to vacuole (GO:0072665), and positive regulation

of vacuole organization (GO:0044090) (Fig 3B) while pathway enrichment analysis of these

datasets indicated KEGG’s Arginine and proline metabolism, and Arginine biosynthesis as sig-

nificant terms (Fig 3C).

Estimation of DEGs diagnostic accuracy in cancer groups

Next, we performed a ROC curve analysis to estimate the diagnostic accuracy of DEGs in each

cancer (Table 4). Analysis of COAD profiles showed that CALU along with ASPM, AURKA,

CLGN, EEF2K, EGFR, GTSE1, HSPA4L, ILK, LIMK2, MAST3, MCM2, NPM1, PARK2, PLIN3,

PRKACA, PRPH achieved AUC> 0.7 (P< 0.0001). On the other hand, analysis of LUADs indi-

cated CALU along with AURKA, ASPM, GTSE1, NPM1, MCM2, HSPA4L, PRKACA, PLIN3,

LIMK2, EEF2K, ILK, EGFR, MAST3, PARK2, and PRPH with AUC> 0.7 (P< 0.0001).

Establishment of the predictive panel

To determine the risk of being diagnosed with cancer, we built a logistic model between nor-

mal controls and cancer datasets in the training set (n = 107 for COAD and = 87 for LUAD).
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Fig 2. Analysis of calumenin correlated genes in TCGA-COAD. (A) Volcano plot analysis of the TCGA-COAD dataset. (B) Gene Ontology

(GO) biological process analysis. (C) KEGG pathways analysis. The statistical significance of each gene was calculated using the Cuffdiff package

and demonstrated as log2-fold changes in the volcano plot. Red points mean significantly upregulated genes, and blue points mean

downregulated genes.

https://doi.org/10.1371/journal.pone.0233717.g002
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Fig 3. Analysis of calumenin correlated genes in TCGA-LUAD. (A) Volcano plot analysis of the TCGA-LUAD dataset. (B) Gene Ontology

(GO) biological process analysis. (C) KEGG pathways analysis. The statistical significance of each gene was calculated using the Cuffdiff package
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The results indicated CALU, AURKA, MCM2 as significant predictors for both COAD and

LAUD (Table 4). The ROC curve for COAD was constructed using the logit model of DEGs:

Logit(p) = 19.3608–0.2534 X (CALU)– 0.1822 X (AURKA)– 0.2016 X (MCM2). For LUAD,

ROC curve was constructed as follows: Logit(p) = 14.1828–0.1955 X (CALU)– 0.1811 X

(AURKA)– 0.1857 X (MCM2).

Next, the diagnostic performance of established panel was estimated using the ROC data.

Analysis of CRC samples versus normal group achieved an AUC of 0.8369 (95% CI = 0.7551–

0.9187, 78.33% sensitivity and 80.85% specificity, Fig 4A). As for early CRC (I-II TNM stages),

and demonstrated as log2-fold changes in the volcano plot. Red points mean significantly upregulated genes, and blue points mean

downregulated genes.

https://doi.org/10.1371/journal.pone.0233717.g003

Table 4. Diagnostic performance of DEGs in TCGA-COAD and LUAD datasets.

TCGA-COAD

Gene Sensitivity Specificity Youden’s index J AUC p value 95% CI

CALU 96.5 61.7 58.2 0.85 <0.0001 0.7863 to 0.9260

ASPM 94.63 65.96 60.59 0.89 <0.0001 0.8408 to 0.9570

AURKA 95.12 76.6 71.72 0.88 <0.0001 0.8203 to 0.9582

GTSE1 94.63 63.83 58.46 0.87 <0.0001 0.8130 to 0.9420

NPM1 92.68 85.11 77.79 0.93 <0.0001 0.8955 to 0.9767

MCM2 95.61 48.94 44.55 0.85 <0.0001 0.7901 to 0.9286

HSPA4L 75.12 48.94 24.06 0.71 <0.0001 0.6537 to 0.7800

PRKACA 93.17 74.47 67.64 0.87 <0.0001 0.8130 to 0.9312

PLIN3 80 55.32 35.32 0.77 <0.0001 0.7012 to 0.8393

LIMK2 90.73 68.09 58.82 0.83 <0.0001 0.7549 to 0.9076

EEF2K 82.44 74.47 56.91 0.83 <0.0001 0.7663 to 0.8995

ILK 72.2 65.96 38.16 0.77 <0.0001 0.7008 to 0.8407

EGFR 87.32 59.57 46.89 0.78 <0.0001 0.7179 to 0.8594

MAST3 92.2 70.21 62.41 0.86 <0.0001 0.7939 to 0.9274

PARK2 83.41 74.47 57.88 0.86 <0.0001 0.8120 to 0.9196

PRPH 93.17 85.11 78.28 0.89 <0.0001 0.8249 to 0.9602

TCGA-LUAD

Gene Sensitivity Specificity Youden’s index J AUC p value 95% CI

CALU 86.46 64.86 51.32 0.76 <0.0001 0.6764 to 0.8585

AURKA 85.42 59.46 44.88 0.76 <0.0001 0.6664 to 0.8629

MCM2 84.38 64.86 49.24 0.79 <0.0001 0.7072 to 0.8812

PCNA 82.29 67.57 49.86 0.77 <0.0001 0.6793 to 0.8697

IRAK1 84.38 67.57 51.95 0.76 <0.0001 0.6584 to 0.8652

P4HB 82.29 72.97 55.26 0.76 <0.0001 0.6575 to 0.8639

DBN1 75 64.86 39.86 0.72 <0.0001 0.6315 to 0.8217

PRKAR1B 50 72.22 22.22 0.57 0.179 0.4739 to 0.6783

PRKCDBP 50 75 25 0.61 0.035 0.5210 to 0.7175

LIMK2 64.58 64.86 29.44 0.64 0.011 0.5382 to 0.7445

WARS 50 72.22 22.22 0.57 0.2 0.4721 to 0.6720

CNTROB 80.21 64.86 45.07 0.68 0.001 0.5722 to 0.7916

MSN 66.67 56.76 23.43 0.65 0.0065 0.5460 to 0.7591

RDX 90.63 51.35 41.98 0.74 <0.0001 0.6505 to 0.8417

CTNNAL1 78.13 62.16 40.29 0.68 0.0008 0.5794 to 0.7956

https://doi.org/10.1371/journal.pone.0233717.t004
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the AUC was 0.8144 (95% CI = 0.7336–0.8951; sensitivity = 68.33% and specificity = 82.98%,

Fig 4B). Analysis of advanced CRC (III-IV TNM stages) resulted in an AUC = 0.8512 (95%

CI = 0.7762–0.9263; sensitivity = 71.67% and specificity = 95.74%, Fig 4C).

Analysis of lung cancer datasets versus normal controls indicated an AUC of 0.8344 (95%

CI = 0.7592–0.9096, 70% sensitivity and 78.72% specificity, Fig 4D). As for early cancer stages

(I-II TNM stages), the AUC was 0.7761 (95% CI = 0.6852–0.8670; sensitivity = 66.67% and

specificity = 85.11%, Fig 4E). Analysis of advanced cancer stages (III-IV TNM stages) resulted

in an AUC = 0.8436 (95% CI = 0.7658–0.92.14; sensitivity = 0.75% and specificity = 89.36%,

Fig 4F).

Validation of the predictive panel

The diagnostic power of the panel was then validated in independent datasets (COAD:

n = 132, and LUAD: n = 158). In COAD, the corresponding AUC for all stages (I-IV TNM

stages) compared to normal group was 0.8629 (95% CI = 0.7904–0.9355; sensitivity = 76.67%

and specificity = 87.23%, Fig 5A). Comparison of early CRC (I-II TNM stages) with normal

achieved AUC = 0.8422 (95% CI = 0.7663–0.9181; sensitivity = 71.67% and specificity = 89.36%,

Fig 5B). The AUC of advanced CRC (III-IV TNM stages) versus normal group was 0.8865

(95% CI = 0.8218–0.9513; sensitivity = 78.25% and specificity = 93.62%, Fig 5C).

As for LUAD, the corresponding AUC for all stages (I-IV TNM stages) compared to nor-

mal group was 0.8500 (95% CI = 0.7725–0.9275; sensitivity = 80% and specificity = 82.98%, Fig

Fig 4. Receiver operating characteristics (ROC) curve analysis of the logit model with the CALU/AURKA/MCM2 panel. (A-C) The area under the ROC

curve (AUC) assessment of the logit(p) value for the CALU/AURKA/MCM2 panel in distinguishing (A) colorectal cancer (CRC) patients (All TNM stages),

(B) early CRC (I-II TNM stages), and (C) advanced CRC (III-IV TNM stages) from the healthy controls in training set. (D-F) The area under the ROC curve

(AUC) assessment of the logit(p) value for the CALU/AURKA/MCM2 panel in distinguishing (D) CRC cases (All TNM stages), (E) early CRC (I-II TNM

stages), and (F) advanced CRC (III-IV TNM stages) from the healthy controls in validation set. Logit(p) = 19.3608–0.2534 X (CALU)– 0.1822 X (AURKA)–

0.2016 X (MCM2).

https://doi.org/10.1371/journal.pone.0233717.g004
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5D). Comparison of early cancer (I-II TNM stages) with normal achieved AUC = 0.8184 (95%

CI = 0.7366–0.9003; sensitivity = 71.67% and specificity = 80.85%, Fig 5E). The AUC of

advanced lung cancer (III-IV TNM stages) versus normal group was 0.8876 (95% CI = 0.8220–

0.9533; sensitivity = 78.33% and specificity = 97.87%, Fig 5F). These results indicated that the

type of cancer or its status have no effect on diagnostic performance of the panel.

Correlation between the abnormal levels of candidate genes and overall

survival

The Kaplan–Meier survival analysis was performed to plot the OS of colon and lung cancer

patients with abnormal levels of CALU, AURKA, and MCM2, in separate form and as a panel.

There was no significant correlation between DEGs level and OS of patients with colon and

lung cancers in training sets (Fig 6A–6C and Fig 7A–7C). On the other hand, analysis of DEGs

in validation sets indicated that the abnormal level of CALU associated with the OS of cancer

patients with lung cancer (P< 0.01, Fig 7E).

OS analysis of CALU, AURKA, and MCM2 in form of a panel indicated a significant

correlation between abnormal expression of DEGs and overall survival of CRC patients in

both training set (P< 0.05, Fig 6D) and validation set (P< 0.01, Fig 6H), along with overall

survival of lung cancer patients in training set (P< 0.01, Fig 7D) and validation set (P< 0.001,

Fig 7H).

Fig 5. Receiver operating characteristics (ROC) curve analysis of the logit model with the CALU/AURKA/MCM2 panel. (A-C) The area under the ROC

curve (AUC) assessment of the logit(p) value for the CALU/AURKA/MCM2 panel in distinguishing (A) lung cancer patients (All TNM stages), (B) early lung

cancer (I-II TNM stages), and (C) advanced lung cancer (III-IV TNM stages) from the healthy controls in training set. (D-F) The area under the ROC curve

(AUC) assessment of the logit(p) value for the CALU/AURKA/MCM2 panel in distinguishing (D) lung cancer cases (All TNM stages), (E) early lung cancer

(I-II TNM stages), and (F) advanced lung cancer (III-IV TNM stages) from the healthy controls in validation set. Logit(p) = 14.1828–0.1955 X (CALU)–

0.1811 X (AURKA)– 0.1857 X (MCM2).

https://doi.org/10.1371/journal.pone.0233717.g005
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Fig 6. Association between DEGs expression and overall survival (OS) of colon cancer patients. (A-D) Kaplan–Meyer analysis of CALU, AURKA, MCM2, and

CALU/AURKA/MCM2 panel in the training set (n = 107). (E-H) Kaplan–Meyer analysis of CALU, AURKA, MCM2, and CALU/AURKA/MCM2 panel in the

validation set (n = 132). Data indicated that CALU, AURKA, and MCM2 in the form of a panel had a significant correlation with OS of colon cancer patients in

training set (P< 0.05) and validation set (P< 0.01).

https://doi.org/10.1371/journal.pone.0233717.g006
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Fig 7. Association between DEGs expression and overall survival (OS) of lung cancer patients. (A-D) Kaplan–Meyer analysis of CALU, AURKA, MCM2, and

CALU/AURKA/MCM2 panel in the training set (n = 108). (E-H) Kaplan–Meyer analysis of CALU, AURKA, MCM2, and CALU/AURKA/MCM2 panel in the

validation set (n = 158). Data indicated that the abnormal level of CALU associated with the OS of patients with lung cancer (P< 0.01). Also, CALU, AURKA, and

MCM2 in the form of a panel had a significant correlation with OS of lung cancer patients in training set (P< 0.01) and validation set (P< 0.001).

https://doi.org/10.1371/journal.pone.0233717.g007
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Analysis of colon and lung cancer biopsy specimens indicated a gradual

increment of CALU, AURKA and MCM2 proteins level through normal–

carcinoma transition

To investigate the protein alteration of the candidate signature biomarkers through cancer pro-

gression, the protein level of CALU, AURKA, and MCM2 was analyzed between 40 biopsy speci-

mens and matched adjacent healthy tissues collected from CRC and lung cancer patients. To

eliminate the possible impact of the TNM stage parameter on the analysis results, each cohort was

designed to have an equal number of early (I-II TNM stage, n = 20), and advanced (III-IV TNM

stage, n = 20) cancer patients. Additional details are demonstrated in Table 2 and Table 3.

Western blot analysis of CALU, AURKA, and MCM2 proteins showed that the level of all

of these candidate biomarkers was statistically increased through normal–carcinoma transi-

tion in both types of cancers (Fig 8). Comparative analysis of CALU between normal samples

and all cancer tumors indicated a 3.2-fold and 3.63-fold enhancement of protein level in the

CRC group and lung cancer group, respectively (P< 0.001). On the other hand, analysis of the

CALU level between early and advanced tumor stages of CRC and lung cancer groups resulted

in a 1.66-fold (P< 0.001), and 1.31-fold (P< 0.01) elevation of CALU level, respectively.

To investigate the alteration level of AURKA and MCM2 proteins, the ratio of their active

form to their total level (phosphorylated AURKA at Thr-288 residue/total AURKA, and phos-

phorylated MCM2 at Ser-139/total MCM2) was analyzed between target groups. Comparative

analysis of p-AURKA/AURKA between normal samples and all cancer tumors indicated a

3.43-fold and 3.12-fold enhancement of protein level in the CRC group and lung cancer

group, respectively (P< 0.001). On the other hand, analysis of the p-AURKA/AURKA ratio

between early and advanced tumor stages of CRC and lung cancer groups resulted in a

1.88-fold increment (P< 0.001), and 1.14-fold elevation (P = 0.021) of p-AURKA/AURKA

ratio, respectively.

Similar results were obtained from the analysis of p-MCM2/MCM2 level between healthy

samples and all tumor in CRC group (3.48-fold increment, P< 0.001), and lung group

(3.56-fold increment, P< 0.00). Analysis of the p-MCM2/MCM2 ratio between early and

advanced tumor stages of CRC and lung cancer groups resulted in a 1.27-fold increase

(P< 0.01), and 1.44-fold elevation (P< 0.001) of p-MCM2/MCM2 ratio, respectively.

Discussion

Tumor metastasis is defined as cancer cell migration from the primary site to distant locations

and plays a critical role in cancer recurrence and mortality [27, 28]. As most of the current

anticancer therapeutic efforts are focused on metastasis prevention, thus identification of

metastasis signaling mediators is highly appreciated.

One of the main regulators of cancer metastasis is the extracellular matrix (ECM) proteins.

ECM family consists of fiber molecules and proteins such as calumenin, which interact with

extracellular focal adhesion complex (EFAC) and intracellular cytoskeleton, and through that

improve the structural formation of cells [29]. Meanwhile, the positive impact of calumenin on

cancer development was also reported [2, 8, 30–32]. According to the vital role of calumenin

in tumor metastasis, it could be considered as a potential target for anticancer therapy. How-

ever, considering the lack of knowledge about the calumenin association with other signaling

mediators, we tried to visualize and analyze calumenin co-expressed genes network in human

cancers.

Analysis of CALU co-expressed genes network in TCGA datasets indicated that the net-

work is markedly altered in human cancers. Diagnostic accuracy analysis of these DEGs in

TCGA datasets COAD and LUAD showed that a gene panel that consists of CALU, AURKA,
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Fig 8. Analysis of CALU, AURKA, and MCM2 proteins level in biopsy specimens and matched adjacent healthy

tissues collected from (A) CRC and (B) lung cancer patients. (C) Comparative analysis of CALU level between healthy

samples, early and advanced CRC tumors. (D) Comparative analysis of p-AURKA/AURKA ratio between healthy

samples, early and advanced CRC tumors. (E) Comparative analysis of the p-MCM2/MCM2 ratio between healthy

samples, early and advanced CRC tumors. (F) Comparative analysis of CALU level between healthy samples, early and

advanced lung tumors. (G) Comparative analysis of p-AURKA/ AURKA ratio between healthy samples, early and

advanced lung tumors. (H) Comparative analysis of the p-MCM2/ MCM2 ratio between healthy samples, early and

advanced lung tumors. Western blot analysis was performed with a 1:1000 dilution of the anti-CALU antibody, anti-

Aurora A antibody, anti-Phospho-Aurora A (Thr288) antibody, anti-MCM2 antibody, and anti-Phospho-MCM2

(Ser139) antibody. The quality of protein bands was measured with the NIH ImageJ software relative to the control

band (B-actin). Each value is the mean ± SD of six separate experiments. The asterisk indicates significantly different

from the control group.

https://doi.org/10.1371/journal.pone.0233717.g008

PLOS ONE Developing a Gene panel for Detecting of early tumors from advanced colon and lung cancers

PLOS ONE | https://doi.org/10.1371/journal.pone.0233717 May 29, 2020 17 / 22

https://doi.org/10.1371/journal.pone.0233717.g008
https://doi.org/10.1371/journal.pone.0233717


and MCM2 could successfully distinguish cancer tumors from healthy samples. Additionally,

cancer cases with abnormal expression of these genes had a statistically meaningful lower sur-

vival rate than other patients.

AURKA is a kinase involves in destabilizing the microtubules of cancer cells by phosphory-

lation of the tumor suppressor RAS-association domain family 1, isoform A (RASSF1A), and

subsequently increases abnormal cancer cells proliferation by disrupting the mitotic phase

[33]. AURKA overexpression leads to consequent activation of the NF-κB signaling pathway

via negative regulation of IκBα and induces tumor invasion [34]. One the other hand, AURKA

plays a pivotal role in tumor survival by provoking Bcl-2 and MCL-1 [35, 36], and anti-apopto-

tic factors levels, blocking Bax, Bim, PUMA apoptotic mediators activity [35, 37, 38], along

with disruption of the mammalian Target of Rapamycin (mTOR) autophagy pathway [38].

AURKA upregulation also suppresses cytochrome C releasing into the cytoplasm and prevents

Apaf-1/cytochrome C apoptosome formation [39].

MCM2, the other member of our panel, belongs to the minichromosome maintenance pro-

tein complex family and has a critical impact on initiating DNA replication and proliferation

of cells [40]. MCM2 is activated in response to growth signaling pathways and stimulates DNA

replication, and therefore highly expressed in active proliferative cells, including cancer cells

[41, 42]. Accordingly, an abnormal level of MCM2 has been reported widely to associate with

human cancers, including breast [43], colon [44], gastric [45], rectal [46], and skin cancer

development [47].

To our knowledge, no investigation has been done to find the signaling interaction between

CALU, AURKA, and MCM2 proteins. However, a survey in the published literature helped us

to visualize the possible correlation between these candidate genes (Fig 9). As previously men-

tioned, the expression level of CALU is reported to be increased in advanced colon and lung

cancer tumors [9, 11]. Likes other ER-resident chaperones, the expression of CALU can be

triggered in response to ER stress and the unfolded protein response (UPR) caused by the

physiological and pathologic stimuli such as metabolic disturbance, DNA damage, accumula-

tion of misfolded proteins, calcium depletion, oxidative stress, and etc., which are directly asso-

ciated with cancer initiation and development [48]. A recent study on neonatal rat

cardiomyocytes showed that that the modulatory impact of CALU on ER stress is mediated

thorugh the suppression of ER-initiated apoptosis markers CHOP, and p-JNK, alleviation of

the UPR triggers pro-apoptotic PERK- ATF4 axis, and eventually increment of antiapoptotic

protein Bcl-2 [49]. As a known UPR transcription factor gene, ATF4 is overexpressed under

glucose deprivation and positively upregulates the ATF3 expression [50, 51]. It has been

shown that ATF3 has a suppression impact on the mitotic kinase gene AURKA expression.

The other negative effect of ER stress on AURKA expression can be mediated by AFT4,

through the suppression of the FOXO1/AURKA expression axis [52]. AURKA is reported to

remove the inhibitory impact of the p53/p21 axis on the activation of the Cyclin-dependent

kinase 2 (CDK2), cell cycle transition, and tumorogenesis by promoting the HDM2-induced

ubiquitination and inhibition of p53 [53]. This kinase also has a positive role in Akt activation

to suppress the p27 protein, like the other negative regulator of CDK2 [53]. As a tumor sup-

pressor, p27 is also reported to be able to block the G1/S transition by suppression of the

MCM2 phosphorylation [54]. The suggested mechanism is illustrated in Fig 9. Although our

analysis of the clinical samples of the CRC and lung cancer patients confirms the possible cor-

relation, however, this theoretical mechanism needs to be investigated with the experimental

validations to elucidate the exact underlying interactions.

Currently, there is a lack of a low-cost, noninvasive method with high sensitivity and speci-

ficity performances for cancer screening. For example, According to the American Cancer

Society (ACS) screening guidelines for early detection of colon cancer [55], both men and
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women beginning at age 50 should follow one of the following testing schedules: (1) colonos-

copy (every ten years); (2) flexible sigmoidoscopy (every five years); (3) double-contrast BE

(every five years); or (4) CT colonography (every five years). Despite the high accuracy of these

techniques, all the current screening methods have their own disadvantages. For example,

using the colonoscopy as a golden standard for CRC screening requires unpleasant bowel

preparation, and mostly is along with the pain experiment, discomfort, and embarrassment

[56–58]. Therefore, a wide range of subjects delay their colonoscopy test or entirly avoiding it.

Although other less-invasive screening methods such as fecal occult blood test (FOBT) and

carcinoembryonic antigen (CEA) blood estimation are now using as alternatives; but, low sen-

sitivity and specificity of these methods limit their use for cancer diagnosis [59–61]. Hence,

detection of new biomarkers with more accurate diagnostic capability is needed for cancer

screening in routine health checkups.

The current study suggests a multigene panel for cancer screening. Although a wide range

of biomarker studies has been dedicated to a single gene exaination, this strategy is not always

efficient. Some clinical features, such as the personal and familial history of patients, should be

considered, especially in the case of hereditary diseases like cancer [62]. In addition, there is

no guarantee that repeating a test for an individual gene will yield the initial results. Therefore,

the application of a multigene panel for cancer diagnosis will save time and cost and can pro-

vide more accurate results. Besides that, it will elucidate the underlying interactions between

candidate genes involved in malignancy.

In summary, analysis of CALU co-expressed genes network as one the key regulators in

tumor metastasis introduced a gene panel that consists of CALU, AURKA, and MCM2 with

high discriminative accuracy between healthy and cancer (colon and lung) populations. Also,

abnormal levels of these genes had a reverse correlation with the patients’ survival rate. This

data indicates that the interactions between CALU, AURKA, and MCM2 has a pivotal role in

cancer development, and thereby needs to be explored in the future.

Fig 9. Schematic presentation of the correlation between CALU, AURKA, and MCM2.

https://doi.org/10.1371/journal.pone.0233717.g009
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