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Abstract

Background: Experimentally verified protein-protein interactions (PPIs) cannot be easily retrieved by researchers
unless they are stored in PPI databases. The curation of such databases can be facilitated by employing text-
mining systems to identify genes which play the interactor role in PPIs and to map these genes to unique
database identifiers (interactor normalization task or INT) and then to return a list of interaction pairs for each
article (interaction pair task or IPT). These two tasks are evaluated in terms of the area under curve of the
interpolated precision/recall (AUC iP/R) score because the order of identifiers in the output list is important for ease
of curation.

Results: Our INT system developed for the BioCreAtIvE II.5 INT challenge achieved a promising AUC iP/R of 43.5%
by using a support vector machine (SVM)-based ranking procedure. Using our new re-ranking algorithm, we have
been able to improve system performance (AUC iP/R) by 1.84%. Our experimental results also show that with the
re-ranked INT results, our unsupervised IPT system can achieve a competitive AUC iP/R of 23.86%, which
outperforms the best BC II.5 INT system by 1.64%. Compared to using only SVM ranked INT results, using re-ranked
INT results boosts AUC iP/R by 7.84%. Statistical significance t-test results show that our INT/IPT system with
re-ranking outperforms that without re-ranking by a statistically significant difference.

Conclusions: In this paper, we present a new re-ranking algorithm that considers co-occurrence among identifiers
in an article to improve INT and IPT ranking results. Combining the re-ranked INT results with an unsupervised
approach to find associations among interactors, the proposed method can boost the IPT performance. We also
implement score computation using dynamic programming, which is faster and more efficient than traditional
approaches.

Background
Biological databases, such as pathway databases, are very
useful in helping biologists discover new and existing
biological mechanisms. Each entry in a database is based
on experimental results. Yet as the amount of published
research increases, constructing databases becomes
more difficult. Biomedical text mining is a key technol-
ogy for automatically extracting important information
from biomedical literature.
One key task in biomedical text mining is gene nor-

malization (GN), mapping genes mentioned in the text
to their unique database IDs. This task is difficult
because one gene mention may map to different genes
in various species. For example, papers containing

in vivo experiments may describe mouse and human
genes with the same name (e.g. IL4) in the same paper.
Closely related to GN is the important and fundamental
task of identifying proteins for inclusion in protein-
protein interaction (PPI) databases. PPIs are of great
interest to biomedical researchers because of their
crucial role in elucidating signal pathways, controlling
central biological processes such as transcription factors
involved in cell division and DNA transcription [1], and
their implications in a range of human diseases includ-
ing cancer and neurodegeneration [2,3]. To provide effi-
cient widespread access to PPIs information, some
organizations have begun compiling structured PPI
annotation in public databases. MINT [4], IntAct [5],
and BioGRID [6] are examples of PPI databases contain-
ing large numbers of verified PPIs. PPI databases are* Correspondence: thtsai@saturn.yzu.edu.tw
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also very useful in building databases of signalling path-
ways, like BioCarta [3], or protein networks.
Since most PPI information exists in published papers,

text mining is an ideal way to speed up construction of
these databases. Several research institutes and groups
have been active in the effort to curate resources for
PPI text mining and lay our roadmaps for the develop-
ment of PPI mining tools. In 2005, BioCreAtIvE I/II
[7,8], held by the Centro Nacional de Investigaciones
Oncológicas (CNIO), established the GN task, in which
participant systems must map gene names to database
identifiers. Then in 2009, CNIO launched the interactor
normalization task (INT) [9,10] at the BioCreAtIvE II.5
challenge. Another more important and difficult task in
the BioCreAtIvE II.5 challenge is the interaction pair
task (IPT). In the IPT task, systems are further asked to
return a list of interaction identifier pairs for each
article.
The goal of IPT is to map interaction pairs in well-

formed full-text articles to UniProt identifiers (see [9,10]
for details on IPT) and to rank these identifier pairs
according to their probability of being interactors (refers
to the Interactor Ranking for detail). Ranking PPI pairs
is very important because only a small percentage of the
identifiers are suitable for database curation (23.10% in
abstracts, and 7.02% in full-text articles). In a quality
ranked list, the curatable identifier pairs should be
placed at the top. Such a ranked list would be more use-
ful for human curators.
Unlike other biomedical text mining tasks, which use

only abstracts as research data, the BioCreAtIvE II.5
challenge compiled a dataset of full-length journal arti-
cles, which were formatted in a well-formed block struc-
ture. Figure 1 shows an example article with three
blocks. The first line of each block defines the section
type and its corresponding text content. The section

types include TITLE, ABSTRACT, and BODY for the
main article content, as well as FIGURE, KEYWORD,
and TABLE. The second line defines the section and the
subsection headings. For example, the article has a key-
word “SOCS3”, and a subsection heading “SOCS3 inter-
acts with MAP1 S in vivo and in vitro”.
Our three main contributions in this paper are a

section-optimized ranking model, an efficient dynamic-
programming-based relational re-ranking algorithm, and
the interaction pair ranking function. Firstly, our rank-
ing model is optimized to take advantage of section-
specific information. Several studies [11-13] have shown
that scientific authors do, in the majority of cases, follow
the basic principles of the research article structure and
assign information accurately to each section. Each sec-
tion of the paper has different characteristics which we
can use to guide GN and the ranking algorithm. For
example, the Introduction often contains information
that repeatedly appears throughout the article (key
genes), while the Results section presents new scientific
findings, such as PPIs. In addition to section-specific
information, our ranking model also makes use of the
metadata that is included in full-text articles, such as
the keywords fields.
Secondly, we have developed a re-ranking algorithm

that considers co-occurrence among interactors in an
article. Co-mentioned genes influence each other’s rank
[14,15]. If two gene names frequently occur alongside
each other in the same sentences in an article, they are
likely to have an influence on each other’s rank. Take a
low-ranked interactor mentioned only twice in an article
for example. If both mentions happen to be alongside
the highest-ranked interactor in the article, then the
low-ranked interactor’s rank should be significantly
boosted. Our re-ranking algorithm is designed to use
this information to improve accuracy of interactor

KEYWORD SOCS3
QUALIFIER Keywords

BODY ...The SOCS family comprises eight proteins, including SOCS1-SOCS7 and 
cytokine-inducible Src homology 2-containing protein (CIS)…
QUALIFIER 1 Introduction

BODY …SOCS3 protein expression was induced 0.5h after LPS stimulation and 
MAP1S was precipitated with endogenous SOCS3 at 1, 2, 4 and 8h (Fig. 1C and D)…
QUALIFIER 3 Results 3.1 SOCS3 interacts with MAP1S in vivo and in vitro

Figure 1 Snippet of a full text article in the BioCreAtIvE II.5 dataset.
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ranking. Using a greedy computational approach, the
re-ranking procedure requires large amounts of compu-
ter resources and time to calculate each gene identifier’s
rank simultaneously and find the best ranked list.
Therefore, to maximize computational efficiency, we
implemented our re-ranking algorithm using dynamic
programming.
Finally, we describe an approach to generating a

ranked list of binary interaction pairs which combines
the INT re-ranking results with a labor-saving unsuper-
vised approach that still achieves competitive results.

Results and discussion
Implementation
Overview of the proposed INT and IPT system
Figure 2 shows a flowchart of our system for INT and
IPT. The top block depicts the fundamental steps for
both tasks. The well-formed full-text article is prepro-
cessed to resolve the conjunction problems presented by
[16]. We use several rules proposed in our previous
work [17] to expand collapsed ranges, such as SOCS1-
SOCS7 in the Introduction section of Figure 1, into
their individual components.

After preprocessing, the multi-stage GN procedure
[18] is executed (see “Multi-stage gene normalization”
sub-section). For each identifier extracted by the multi-
stage processing, the corresponding context information
is used to extract features and the identifier is ranked by
a support vector machine (SVM) classifier (see “SVM-
based ranking model” sub-section).
In order to further refine the ranking results, we cre-

ate a re-ranking algorithm that takes into consideration
the rank of an identifier and the genes that co-occur
alongside. The re-ranking results are treated as an inter-
action candidate list for the article.
To further extract interaction pairs, an unsupervised

association analysis method is employed to determine
their association scores. We then combine the scores
with the results of INT re-ranking to generate the list of
interaction pairs (see “Using re-ranked INT results for
IPT” section).

Algorithm
SVM-based ranking model
Our model is based on the SVM algorithm, a well-
known Machine Learning (ML) algorithm that has
proved useful for text classification [19]. We have
extracted the following features related to rank identi-
fiers found in the GN procedure:
Frequency features The frequency with which the iden-
tifier appears in the entire article is used as a feature. In
addition, based on the work of [20], who found that
molecular interaction descriptions usually appear in the
Results section, we added the percentage of an identifier
found in the Results section against in the other sections
as a feature.
Location features The features indicate where the iden-
tifier appears in the full text. The following location
types are taken into consideration: (1) title; (2) abstract;
(3) the first section (usually the Introduction section),
the Results section, the last section (usually the Conclu-
sion section), the Appendix section, and the other sec-
tions; (4) section and sub-section titles, such as “3
Results 3.1 SOCS3 interacts with MAP1 S in vivo and in
vitro” in the Figure 1; and (5) Figure and Table captions.
Field features These features indicate if the target iden-
tifier’s name occurs in the full-text article’s Keyword
field, full name, or abbreviation field.
Co-occurrence features These features describe co-
occurrence of the target interactor with three types of
the paper’s key information: keywords, full names/abbre-
viations, and references to figures in the article text.
Co-occurring with the paper’s keywords or full names/
abbreviations implies that the identifier is very likely to
be key identifier in this article [21] and [22] have shown
that figures often concisely summarize the most impor-
tant results or methods used and described in an article.

Full-text Article

Preprocessing

Preprocessed
Article

EntrezGene
SWISS-PROT
TrEMBL

Candidate
Identifiers

SVM-based
Ranking

Ranked List

Multi-stage
Gene Normalization

Re-ranking
Algorithm
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Figure 2 System workflow.
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The paragraphs containing figure references often sum-
marize the content of a figure. Therefore it follows that
identifiers that co-occur beside figure references have a
higher possibility of being interactors. For instance, the
interactor “SOCS3” appears beside “Figure 1C and 1D“
in the Figure 1.
Indicator phrase features [23] and [24] have shown
that there are commonly occurring structures which
explicitly state the article’s main knowledge claim or the
assertion for which the authors hope to be cited and
credited in future articles. Examples are “the aim/pur-
pose of this paper/article/study” and “we conclude/pro-
pose”. Those phrases that signal important sentences in
a text are referred to as indicator phrases [25,26]. Such
sentences can be used to create an extract-type sum-
mary of the text. We add a feature to indicate whether
or not the identifier occurs in the same sentences that
contain indicator phrases.
Table 1 shows an example of the features used for

SVM-based ranking and a sample ranking result, r =
[P40337, P40338, Q05513, Q9NPB6].
Re-ranking algorithm based on co-mentioned genes
The ranking procedure tends to rank the focus genes
higher. However, the main concern of INT and IPT is
to extract interactors. Our re-ranking algorithm is
designed to boost the rank of interactors by considering
co-occurrence among gene mentions in a single article.
The example shown in Table 1 gives a general illustra-
tion of how the algorithm works.
Table 1 shows the initial ranking results, r = [P40337,

P40338, Q05513, Q9NPB6], determined by SVM. The
algorithm starts by using a function, newRankedList
(see “Step1: Generate possible ranked lists” in Methods).
Given the rank-i identifier x and all other identifiers y in
r that co-occur with x, newRankedList generates a
ranked list lx, where the 1st to i-1th position are empty
slots, x is put in the ith slot. Each y is put in a slot start-
ing at i+1th from highest to lowest association(x,y)
score. The remaining slots are empty slots. The gener-
ated lists for Table 1 are shown in Table 2. We use an
unsupervised approach based on a sentence-level mutual
information (MI) [27] to measure the association

(see Methods section) because the dataset provided by
the BioCreAtIvE II.5 challenge did not contain sen-
tence-level PPI pair annotation. In this example, the
new ranked list generated by P40337 is [P40337,
Q9NPB6, Q05513, P40338]. For P40338, the ranked list
is [_, P40338, P40337, _]. The others are excluded
because P40338 only co-occurs with P40337.
After generating all possible ranked lists, there are

new candidates in each rank. As shown in Table 2,
Q9NPB6 and P40338 are candidates in rank 2 and 4
respectively. Therefore, there are several possible combi-
nations and each one represents a possible re-ranked
list. We then define a score function that estimates the
likelihood of an identifier x being re-ranked in i as
follows:

score L

rankN_Ratio L svmAccuracy

svmAccuracy

( , , )

( , , ) ( )

x i

x i i

=
× ×

(( ( , , ))deciderRank Lx i

where the rankN_Ratio function is calculated based on
all possible ranked lists, L (see “Step 2: Assign scores to
identifiers in all possible ranked lists” for the details);
svmAccuracy is the function that returns the INT accuracy
of rank i in our SVM ranking (Details and rank accuracies
are listed in “Preliminary experiments on the INT training
set” section); the deciderRank function returns the rank of
the highest ranked identifier that supports an identifier x in
rank i. For example, assuming that the identifier w’s corre-
sponding new list is [w, x, y, z] and x’s is [_, x, y, w], y will
be ranked third, and L = {[w, x, y, z], [_, x, y, w]}. In this
case, deciderRank(y,3,L), will return 1 since w and x sup-
port y in rank 3, but w’s rank is higher than x’s.
For a possible re-ranked list r, its overall score can be

calculated as follow:

overallscore L score L( ’, ) ( )
| ’|

r r i i
i

r
=

=∏ ’[ ], ,
1

where r’[i] is the ith element of r’. The re-ranked list
with the highest overallscore among all possible combi-
nations is chosen as the final output re-ranked list.

Table 1 Re-ranking example

Gene ID P40337 P40338 Q05513 Q9NPB6

GN procedure Exact Match Exact Match Exact Match Exact Match

frequency 45/0.76 14/0.00 10/0.20 7/0.57

location Title, first, Results, last, sub-section title, fig Abstract, fig Abstract, first, Results, last first, Results, last

co-occurrence keywords, abbr-full, fig keywords, abbr-full keywords

indicator phrase ✓ ✓ ✓

SVM ranking result 1 2 3 4

Concurrence information P40338:1
Q05513:2
Q9NPB6:2

P40337:1 P40337:2
Q9NPB6:1

P40337:2
Q05513:1
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If the duplication of identifiers in a re-ranked list is
permitted, the optimal ranked list can be directly found
by choosing the identifier with the highest score value
for each rank. However, a legal ranked list cannot have
any duplicates. To avoid duplication, we add a duplica-
tion constraint on the score function: when estimating
score(x,i,L), if the identifier x has been determined in
the previous rank, k, the score(x, k,L) function must
return 0 (i.e. overallscore(x,k,L) is 0). Unfortunately, the
duplication constraint increases the computational com-
plexity of finding the optimal ranked list. In order to
find the optimal ranked list and avoid computational
overhead, we propose a dynamic-programming-based
algorithm. Details on the algorithm are described in the
“Implementation of the re-ranking algorithm” sub-
section.
Using re-ranked INT results for IPT
In order to extract interaction pairs, we follow the work-
flow shown in Figure 2 to process the article and gener-
ate a ranked list of identifiers. If two identifiers are
described in one sentence, they are extracted as an
interaction pair candidate. The mutual information (MI)
analysis described in the Methods section is used to
determine their association score. We then combine the
association analysis with the results of INT ranking.
Based on the assumption that the IPTScore (which esti-
mates if x and y is an interactor pair given x in rank-i
and y in rank-j) is positively relevant to association(x,y)
and x and y’s individual interactor scores, we propose
the following formula to combine the results of associa-
tion analysis and re-ranking:

IPTScore

association interactor score

i

( , , , )

( , ) ( , )

x i y j

x y x i=
×

× _

nnteractor score_ ( , )y j

When using the score function introduced in Equa-
tion 1 as the interactor_score function, the formula can
be rewritten as:

IPTScore association score L score( , , , ) ( , ) ( , , ) ( , ,x i y j x y x i y j= × × LL)

Because we use MI to determine the association, the
formula can be rewrite as follows:

IPTScore MI score L score L( , , , ) ( , ) ( , , ) ( , , )x i y j x y x i y j= × ×

Testing
Dataset and evaluation metrics
The BioCreAtIvE II.5 [28] provides 124 journal articles
selected mainly from FEBS Letters for evaluating INT
and IPT systems. Following the format of the BioCreA-
tIvE II.5 challenge, we use 61 articles published in 2008
(50%) as our training set and 63 articles published in
2007 or earlier (50%) as our test set. The dataset is pre-
processed to convert Greek alphabet characters (e.g. a,
b) to corresponding diacritics (e.g. alpha, beta).
The most common information extraction (IE) evalua-

tion metric is centered on F-measure, an evaluation score
generated from combining precision and recall. This eva-
luation has an obvious shortcoming: it does not take rank-
ing of results into account. E.g., two systems reporting the
same two correct and eight wrong hits for a document
would produce the same F-scores, including precision and
recall values, no matter the ranking of the results. There-
fore, the area under curve (AUC) [29] of the interpolated
precision/recall (iP/R) curve used in the BioCreAtIvE II.5
challenge is used to evaluate the proposed approach. The
AUC of the iP/R function fpr is defined as follows:

AUC iP R/ (ri( ) )

( ) max ( )’

f p r

p r p r

pr i i
j

n

i r r

j
= × −( )
=

−=

≥

∑ 1
1

where n is the total number of correct hits and pi is
the highest interpolated precision for the correct hit j at
rj, the recall at that hit. Interpolated precision pi is cal-
culated for each recall r by taking the highest precision
at r or any r’ ≥ r.
Preliminary experiments on the training set
To examine calculate the accuracies used in the score
function (Equation 1), we apply the thirty-fold cross
validation on the training set. We use the SVM-based
ranking procedure to determine ranks, and then calcu-
late each rank’s accuracy using the training set. The
accuracy of rank i is calculated by the following formula:

svmAccuracy( )i = the number of correctly nomalized identifierrs in rank 
the number of normalized identifiers in rank 

r

rr

Figure 3 shows the accuracies of ranks 1 to 15. We can
see that as the rank increases, the accuracy drops. This
implies that higher ranks predicted by our SVM-based
ranking method are more reliable than lower ranks. As
mentioned in Equation 1, we utilize this phenomenon for
scoring each identifier. After all ranks’ accuracies are calcu-
lated, the re-ranking algorithm is employed.
INT test set performance
Figure 4 shows the AUC iP/R scores of three configura-
tions of our system. In the configuration (SVM ranking/
Rank1), multi-stage GN and SVM-based ranking are

Table 2 Possible ranked lists determined by all identifiers

Gene ID\Rank 1 2 3 4

P40337 P40337 Q9NPB6 Q05513 P40338

P40338 P40338 P40337

Q05513 Q05113 Q9NPB6

Q9NPB6 Q9NPB6
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employed. In the configuration (SVM ranking+Re-ranking),
the proposed re-ranking algorithm is added. We also
implement a baseline method (Freq) which ranks all identi-
fiers according to their frequency. If two or more identifiers
have the same frequency, two criteria are employed
sequentially to rank them: (1) highest frequently in the
Results sections (2) mentioned earliest in the article. Lastly,
Figure 4 also shows the AUC iP/R scores of the top three
teams and the average AUC iP/R score of all BioCreAtIvE
II.5 INT participants (Average).
As shown in Figure 4, after employing our re-ranking

algorithm, AUC iP/R performance increases by 1.84%
over the previous top score in BioCreAtIvE II.5. Accord-
ing to our analysis, before re-ranking, gene identifiers
whose feature values rarely appear in the training set are
often incorrectly ranked because their feature values are
underweighted in the ranking model. However, if these

identifiers co-occur with higher-ranked identifiers whose
feature values frequently appeared, our re-ranking algo-
rithm is very likely to increase their ranks. This results
in the improved AUC iP/R score.
IPT test set performance
Figure 5 compares the results of three configurations of
our IPT system. In the first configuration (MI), we rank
all possible interaction pairs according to their MI
scores. In the second configurations (MI+svmAccuracy),
we simplify the original Equation 2 to rank all pairs.
The score function is replaced by svmAccuracy. In the
third configuration (MI+Re-rank), we use Equation 2 to
rank all pairs. Figure 5 also shows the AUC iP/R scores
of the top three BioCreAtIvE II.5 IPT teams and the
average AUC iP/R score of all BioCreAtIvE II.5 IPT
teams (Average).
As shown in Figure 5, MI achieves a very low AUC

iP/R (2.07%), while MI+SVMAccuracy achieves a much
better AUC iP/R (16.02%) than Average (12.80%). MI
+Re-ranking (our proposed method) further achieves a
competitive AUC iP/R of 23.86% (outperforms the rank-
1 system in BioCreAtIvE II.5 IPT). The results show
that by using the results of INT re-ranking, the AUC iP/
R score can be improved by 7.84% (compared to our
system without re-ranking MI+SVMAccuracy) Compar-
ing with the top team [10,30,31], which constructed a
syntactic filter by semi-automatically annotating a PPI
syntactic path corpus based on the GENIA corpus [32],
and the third team [33], which manually annotated
interaction proteins according to SDA information to
construct a corpus for supervised learning, our approach
requires less annotated data to construct and has the

0
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0.3
0.4
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0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SVM-based Ranking Accuracy 

Figure 3 SVM-based ranking accuracy across different ranks in
the training set.

Figure 4 AUC iP/R scores of different INT approaches.
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potential to be improved by using advanced association
(x,y) calculation techniques.
Comparison of SVM-based ranking and re-ranking
We apply a two-sample t-test to examine whether the
proposed re-ranking method is better than the original
SVM-based ranking method by a statistically significant
difference in INT and IPT. The null hypothesis, which
states that there is no difference between the two con-
figurations A and B, is given as

H A B0: =  .

where μA is the true mean AUC iP/R of configuration
A, μB is the mean of the configuration B, and the alter-
native hypothesis is

H A B1: >  .

A two-sample t-test is applied since we assume the
samples are independent. As the number of samples is
large and the samples’ standard deviations are known,
the following two-sample t-test is suitable:

t
X X

s
n

s
n

A B

A

A

B

B

= −

+

( )
2 2

If the resulting t-score is equal to or less than 1.67
with a degree of freedom of 89 and a statistical signifi-
cance level of 95%, the null hypothesis is accepted;
otherwise it is rejected.

To get the average AUC scores and their deviations
required for the t-test, we randomly sampled ninety
training sets (g1,..., g90) and ninety test sets (d1,..., d90)
from the 124 BioCreAtIvE II.5 journal articles. We
trained the model with baseline ranking on gi and tested
it on di. We then performed the re-ranking procedure
on the test results for di. Following that, we summed
the scores for all ninety test sets, and calculated the
averages for performance comparison. Table 3 shows
the results. We can see that after re-ranking, INT and
IPT performances are improved by 3.12% and 3.88%
respectively on the AUC iP/R scores with a statistically
significant difference.

Conclusions
In this paper, we have proposed a SVM-based ranking
procedure with a relational re-ranking algorithm that con-
siders the associations among gene identifiers to further
improve performance on the BioCreAtIvE II.5 INT and
IPT task. We formulated the re-ranking problem as an
optimization problem and solved it by using dynamic pro-
gramming to reduce computational complexity.
We evaluated our approach on the BioCreAtIvE II.5

full-text dataset. In INT, the highest AUC iP/R achieved
by our re-ranking system is 45.34%, 1.84% higher than
that of our SVM-based system (Rank 1 in the BioCreA-
tIvE II.5 INT challenge). In IPT, our unsupervised
method incorporating re-ranking not only achieves a
promising AUC iP/R of 23.86%, which exceeds the best
score in the BioCreAtIvE II.5 IPT challenge by 1.64%,
but also saves significant annotation effort in

Figure 5 AUC iP/R scores of different IPT approaches.
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comparison to other top teams’ supervised methods. A
statistical significance t-test using ninety randomly
selected training/test sets confirms that our additional
re-ranking procedure significantly improves performance
over the baseline ranking method.
The proposed re-ranking algorithm relies heavily on

association information, which it uses to generate possi-
ble ranked lists as described in the Algorithm section.
We believe that our proposed approach could be com-
bined with other advanced association scoring methods
to further improve results. In the future, we plan to
integrate our relation extraction method, which was
developed for extracting hypertension-related genes in
[34], into our INT and IPT system, and study the per-
formance gains. We will also continue to improve our
online web service to allow users to upload full text arti-
cles for PPI pair extraction.

Methods
Multi-stage gene normalization
We have updated our previous one-stage GN system
[17] with keyword-based species determination proces-
sing as well as multi-stage processing. In the following
paragraphs, we briefly describe the improvement. Please
refer to [18] for details.
Keyword-based species determination finds the species

for a given gene by checking the surrounding text for
species keywords. If keywords are found, the corre-
sponding identifier is assigned, otherwise the most fre-
quently described species in the article is chosen.
In order to exploit the characteristic of difference sec-

tions, we propose a three-stage GN procedure. In the
first stage, GN is carried out on the Title, Abstract and
Introduction sections. Successfully normalized gene
mentions and corresponding identifiers are collected
into a dictionary. In the second stage, we search the
whole article for mentions recorded in this dictionary.
The Title, Abstract, and Introduction sections are
rechecked in case our machine learning (ML)-based
gene mention tagger [35,36] missed any instances. In
the third stage, the remaining paper sections (except
Title, Abstract, and Introduction) including figure/table
captions and appendix descriptions are processed by our
GN system. When combined with the dictionary-based
approach used in stage two, disagreement of boundaries

or identifiers may occur. In such cases, we select the
candidate identifier with the longest gene mention
string.
Implementation of the re-ranking algorithm
Figure 6 shows the main steps of the proposed re-
ranking algorithm. It accepts the output of the ranking
procedure mentioned in “SVM-based ranking model”
section as its input, and generates the re-ranked list as
its output. In the following paragraphs, we describe the
algorithm in detail.

Notation
Let r be the ranked list generated by the SVM ranking
procedure and x be any identifier in r. The possible
ranked list generated by x is denoted by lx. The set of
all possible ranked lists is denoted as L = {lx|x in r}. For
a possible re-ranked list, r’, the rank-i identifier is
denoted as r’[i].
Step 1: Generate possible ranked lists
In the following paragraphs, we describe the algorithm,
newRankedList, and functions that are used for gener-
ating possible ranked lists. A pseudo code implementa-
tion of the algorithm using python syntax is shown in
Figure 7.
association(x,y):
This function measures the association between an iden-

tifier (interactor) x and another identifier y within an arti-
cle and returns an association score. Several approaches
can be used to measure this score, such as rule learning
[37,38], co-citation analysis [39], maximum entropy model
[40], and conditional random fields [41]. Because the data-
set provided by the BioCreAtIvE II.5 challenge did not
contain sentence-level PPI pair annotation, we use an
unsupervised approach based on mutual information (MI)
[27] to measure the association:

MI( , ) ( , ) / ( ) ( )x y P x y P x P y= ( )×

In the above formula, P(x) and P(y) are estimated by
dividing x’s and y’s frequencies by N, the number of
sentences containing gene identifiers. The joint prob-
ability, P(x,y), is estimated by dividing the frequency that
x co-occurs with y in the same sentence by N.
newRankedList(x,i):
Give the rank-i identifier x and all other identifiers y in

r that co-occurs with x, newRankedList generates a
ranked list lx, where the 1st to i-1th position are empty
slots, x is put in the ith slot. Each y is put in a slot start-
ing at i+1th from highest to lowest association(x,y) score
(see Figure 7, lines 5-7). The remaining are empty slots.
Take a ranked list of four identifiers w, x, y and z for
example. For the rank 2 identifier x, the output of new-
RankedList(x,2) will be [_, x, z, y] if association(x,z) >
association(x,y).

Table 3 Comparison of INT and IPT performance on SVM-
based ranking and SVM-based ranking + re-ranking

Avg AUC iP/R(%) Stdev AUC iP/R(%) t t > 1.67?

SVM SVM+
Re-ranking

SVM SVM+
Re-ranking

INT 47.29 50.41 6.30 6.34 3.31 Y

IPT 15.87 19.75 6.39 6.85 3.93 Y
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Step 2: Assign scores to identifiers in all possible ranked lists
Given an identifier x, a rank i and the set of possible
ranked lists L generated in step 1, the score of x in ith
rank is calculated as follows:

score L rankN_Ratio L svmAccuracy

svmAccuracy

( , , ) ( , , ) ( )x i x i r= ×
× (( ( , , ))deciderRank Lx r

The following are definitions of functions used for
defining score:
svmAccuracy(i):

Given a rank i, the function returns the INT accuracy
of rank i in our SVM ranking. The accuracy is calcu-
lated based on a three-fold cross validation carried out
on the training set.

deciderRabk(x,i,L):

For an identifier x whose new rank i is determined by
more than one identifier, the function returns the rank
of the highest ranked identifier. If only one identifier, y,
determines x in i, the function returns the rank of y.

rankN_Ratio(x,i,L):

function newRankedList (idi: an identifier in the ith rank, R: [id1 ,… , idn])
{return a possible ranked list PR(idi, R)}
1. assoc = {}  # a dictionary that maps an association score to a list of ids

for id in CO(idi, R):
2. assoc[association(idi, id)].append(id)
3. Sort assoc.keys() in decreasing order
4. pr = {i : [idi]} # a dictionary that maps a new rank to a list of ids
5. newRank = 1

for mi in sorted assoc.keys():
for id in assoc[mi]:

6. pr [i + newRank].append(id)
7. newRank =  newRank + 1

return pr
Figure 7 A pseudo code implementation for newRankedList function.

Figure 6 The re-ranking algorithm.
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Given an identifier x, rank i and the set of all possible
ranked lists L, the rankN_Ratio score is calculated
based on the following equation:

rankN_Ratio L
isRankN

isRankN
( , , )

( , , )

( , , )
| |x i

x i l

x j l

y
y

y
j

r=
∑
∑ =1yy∑

where y is any identifier except x in r
The intuition behind rankN_Ratio is that the more

ranked lists that agree with x in rank i, the more likely
it is that x is in rank i.
isRankN(x,i,ly) indicates whether the identifier x is in

rank i of ly (return 1) or not (returns 0). Therefore,

isRankN( , , )
| |

x j lyj

r

y =∑∑ 1
is the total number of times

x appeared in all ranks of all lists in L.
Figure 8 shows the algorithm illustrated in step 2. It

first generates all possible ranked lists for each identifier

in r (lines 1-2). For each rank, the corresponding identi-
fiers and their scores are calculated and stored in a dic-
tionary-like data structure, scoreInfo (lines 3-6). Table 4
shows the data structure and its attributes.

function calculateScores (R: [id1…idn])
1.possibleRankedLists = {} # a dictionary that maps idi to a possible

# ranked list determined by idi

for i in range (1…n):
2. possibleRankedLists [idi] = newRankedList (idi, R)

# rank i [(idi, scorei, overallscorei, sourcei),…,
(idj, scorej, overallscorej, sourcej)]

3.scoreInfo = {} # a dictionary that maps a rank to a list of 
# tuples: (id, score, overallscore, from)

for i in range (1...n):
# to simplify, we let possibleRankedList be a list, not a

# dictionary
4. pr = possibleRankedLists [idi]

for j in range (0…length (pr)-1):
5. x = pr [j]
6. scoreInfo [i+j].append( ( pr [j],

score (x, i+j, possibleRankedLists),
score (x, i+j, possibleRankedLists),
None))

return scoreInfo
Figure 8 Pseudo code implementation of calculateScores function.

Table 4 The scoreInfo data structure

scoreInfo

A dictionary maps the rank (an integer) to a list of tuples: (id, score,
overallscore, from). The dictionary’s keys are the ranks in the re-ranked list.

Attributes

tuple.id: the identifier

tuple.score: the score of tuple.id

tuple.overallscore: the overall score of the ranked list after considering
tuple.id

tuple.from: the identifier in the previous rank, which leads to the
optimal

tuple.overallscore

Methods

scoreInfo[key]: Return the list of tuples in si with key key.

scoreInfo [key][i]: Return the ith tuple in the list in si with key key.

Tsai and Lai BMC Bioinformatics 2011, 12:60
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Step 3: Find the optimal overall score
Given a possible re-ranked list, r’, its score is defined as
follows:

overallscore L score L( ’, ) ( ’[ ], , )
| ’|

r r i i
i

r
=

=∏ 1

where r’[i] is the ith element of r’.

We can now formulate the re-ranking problem as an
optimization problem that maximizes the overall scores
over all possible rank orders:

arg max ( ’, )
’r

roverallscore L

The duplication constraint on the score function can
be defined as follows: when estimating score (x,i,L), if

function findOptimalScore (R: [id1…idn])
{return a re-ranked list}
1.scoreInfo = newRankedList(R)     # a dictionary that maps a rank to a list of 

# tuples
2.optimal_end = None

# forward phase
for i in range (2…n):

3. candidateIDs = scoreInfo [i]
for j in range (0…length (candidateIDs)-1):

4. candidateID = candidateIDs [j]
# find the maximal overall score in rank i-1

5. previousIDs = scoreInfo [i-1]
6. Sort previousIDs by overallscore in decreasing order
7. source = None

for k in range (0…length (previousIDs)):
8. previousID = previousIDs [k]

while previousID.from not None:
if previousID.identifier is candidateID.identifier:

9. break
# if identifier does not appear in previous ranks
if previousID.from is None:

10. source = previousIDs [k]
11. break

# update the overallscore
if source not None:

12. candidateID.overallscore = 
candidateID.score* source.overallscore
else:

13. candidateID.overallscore = 0
14. Sort candidateIDs by overallscore in decreasing order
15. optimal_end = candidateIDs [0]

# backward phase
16. optimal_reRanking = []

while optimal_end.from not None:
17. optimal_reRanking.push (optimal_end)
18. optimal_end := optimal_end.from

return optimal_reRanking
Figure 9 Pseudo code implementation for findOptimalScore function.
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the identifier x has been determined in the previous
rank, k, the score (x,k,L) function must return 0 (i.e.
overallscore(x,k,L) equals 0). For example, consider two
possible re-ranked lists: r1 = [x, w, y,...] and r2 = [x, y,
z,...]. Assuming that overallscore(r1,L)> overallscore(r2,
L), and we now want to determine the value of overall-
score function when w is in rank 4, then r1’s overall-
score becomes 0 because score(w,2,L) = 0 and r2’s
overallscore is greater than zero. Therefore, even
though in rank 3, r1’s overallscore is higher than r2’s,
the algorithm will not choose r1 as the optimal sub-
ranking when considering w in rank 4.
Figure 9 shows the dynamic-programming-based re-

ranking algorithm. The algorithm starts by using calcu-
lateScores defined in Step2 to generate all possible
ranked lists and their scores, which are stored in the
data structure scoreInfo (lines 1). Lines 2-18 of Figure 9
encompass the dynamic programming approach
employed to find the optimal ranked list.
In the forward phase (lines 3-15), the algorithm com-

putes the optimal overall score for each identifier in each
rank. Lines 8-11 find the maximum overall score in scor-
eInfo[i-1] in which the identifier, scoreInfo[i][j] = candi-
datesIDs[j], does not appear among rank 1 to rank i-1.
In the following formula, scoreInfo[i][j].overallscore is

shorted to overallscore (i,j ), which is the optimal over-
all score from rank 1 to rank i when rank i’s jth candi-
date is placed at rank i. scoreInfo[i][j].identifier is
shorted to, which stands for rank i’s jth candidate. The
score can be recursively calculated as follows:

−
×

−

−
score ID i j i

overallscore i

overallscore i

( ( , ), , ) max

( , )

(

L

1 0


11 1

2

1 0 1 1 0

, )

( ( , ), , ,

k

score ID i j

−

⎧
⎨
⎪

⎩
⎪

⎫
⎬
⎪

⎭
⎪

>

= =

⎧

⎨
⎪
⎪

⎩
⎪

if i

) if L⎪⎪

where k is the number of tuples in the scoreInfo[i-1].
Lines 12-13 calculate the score.
In the backward phase (lines 16-18), the optimal rank-

ing is reconstructed by tracing the “from” attribute of
the tuple in the last rank with maximal overall score
(the optimal_end) until the value of “from” is None.
Step 4: Interaction pair ranking function
After Step3, the algorithm has generated the re-ranked
list for INT. The final step of the algorithm is to employ
the IPTScore function defined in Equation 2 to generate
the ranked list for IPT.

Availability and requirement
We have developed a demo website to demonstrate the
proposed re-ranking algorithm. The service is available at
http://biosmile.cse.yzu.edu.tw/DPRerankAlgorithmForAb-
stractDemoWebsite/. The web-based service has been
tested and run on the Firefox 3.5+, Chrome 7+, and IE7+.
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