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Abstract: Phytoplankton are prominent organisms that contain numerous bioactive substances and
secondary metabolites, including toxins, which can be valuable to pharmaceutical, nutraceutical, and
biotechnological industries. Studies on toxins produced by phytoplankton such as cyanobacteria,
diatoms, and dinoflagellates have become more prevalent in recent years and have sparked much
interest in this field of research. Because of their richness and complexity, they have great potential
as medicinal remedies and biological exploratory probes. Unfortunately, such toxins are still at the
preclinical and clinical stages of development. Phytoplankton toxins are harmful to other organisms
and are hazardous to animals and human health. However, they may be effective as therapeutic
pharmacological agents for numerous disorders, including dyslipidemia, obesity, cancer, diabetes,
and hypertension. In this review, we have focused on the properties of different toxins produced
by phytoplankton, as well as their beneficial effects and potential biomedical applications. The
anticancer properties exhibited by phytoplankton toxins are mainly attributed to their apoptotic
effects. As a result, phytoplankton toxins are a promising strategy for avoiding postponement
or cancer treatment. Moreover, they also displayed promising applications in other ailments and
diseases such as Alzheimer’s disease, diabetes, AIDS, fungal, bacterial, schizophrenia, inflammation,
allergy, osteoporosis, asthma, and pain. Preclinical and clinical applications of phytoplankton toxins,
as well as future directions of their enhanced nano-formulations for improved clinical efficacy, have
also been reviewed.

Keywords: phytoplankton; toxins; therapeutic; pharmaceuticals

1. Introduction

Epidemiological studies have found that modern diets, alcohol, and antibiotic con-
sumption increase the risk of oxidative damage, which lead to diseases such as inflam-
matory diseases, cancer, aging, coronary heart disease, cardiovascular disease, and other
ROS-related diseases [1,2]. In addition, several new diseases related to microbial pathogens
are occurring [3]. In recent times, such dangerous diseases are on the rise as a result of
rapid urbanization and lifestyle changes. Chemotherapy and other medications used in
cancer treatment have side effects, especially in terms of drug tolerance. Moreover, microor-
ganisms are becoming resistant to drugs due to conventional drug treatments [3]. In this
regard, searching for novel drugs from natural sources can resolve this issue [4].

Efforts to extract pharmaceuticals from natural sources commenced in the late 1960s.
To date, approximately 2500 novel metabolites have been discovered in a range of species.
These studies showed that marine and freshwater environments are a great source of novel
compounds that do not originate from terrestrial sources. More than 10,000 chemicals have
been identified from both marine and freshwater species, and over 300 patents on bioactive
natural products have been allotted [5].

Phytoplankton are photosynthetic organisms found in large numbers in aquatic envi-
ronments, worldwide. This diverse collection of phytoplankton accounts for about half of
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worldwide CO2 fixation and is the foundation of the aquatic food chain. Phytoplankton
play an important role as primary producers not only in freshwater ecosystems, but also in
marine ecosystems [6–10].

Phytoplankton are potentially the most novel source of bioactive secondary metabo-
lites, including toxins. They display antioxidant, anticancer, antibacterial, antifungal,
antiviral, antidiabetic, anti-inflammatory, and other activities that can be employed in drug
development and treatment [2,11–13]. Phytoplankton are responsible for the production
of harmful toxins [14–16]. Although phytoplankton toxins can be hazardous to aquatic
ecosystems and human health, some aquatic organisms are not affected by the toxins and
may even contribute to several biomedical applications [17]. Not only cancer, but also
diabetes, inflammation, and ROS-related diseases are among the most common health
concerns in the United States and other countries, and no satisfactory treatment strate-
gies are currently available [1,18]. The currently used synthetic medications and other
therapies have a variety of adverse effects that are detrimental to health. Consequently,
in recent times, alternative remedies have been sought, and natural products are being
investigated [3,11,19]. Plants are the most important source of natural molecules, which
have taken a lead in pharmaceutically created moieties in this “synthetic age”. Natural
chemicals derived from medicinal plants are becoming increasingly essential in the treat-
ment of cancer and other diseases due to the various harmful side effects of current cancer
treatments. More than half of all pharmaceuticals in clinical use around the world are
natural substances and derivatives, and over 60% of cancer treatments approved are of
natural origin [20–23]. However, marine phytoplankton may be a source of novel sec-
ondary metabolites, such as toxins, which may have potential biological applications [12].
Pioneering studies on drug discovery from marine phytoplankton have been conducted in
recent decades.

Therefore, this review is based on several phytoplankton toxins and their potential
biological applications. In addition, it also provides new research for the discovery of
new drugs for life-threatening diseases. Drug synergism, in the present era of discov-
ery of new drugs, focuses on preclinical and clinical applications, pharmacodynamics,
pharmacokinetics, and enhanced drug delivery technologies to produce next-generation
tailored treatments for disease prevention. The use of toxins will open up new frontiers
in studies related to therapy for various diseases once we understand the possible molec-
ular key players involved. Finally, such toxins could serve as therapeutic drugs in the
near future.

2. Phytoplankton: The Most Ingenious Source of Toxins

Phytoplankton are among the most important components of aquatic ecosystems [6,24].
They not only serve as a foundation for all aquatic food chains, but also provide a valuable
service to humans and other living creatures by producing a large amount of oxygen after
absorbing carbon dioxide from the environment [6]. Phytoplankton are buoyant and float
on the upper surface of water bodies. However, they are similar to terrestrial plants in that
they both have chlorophyll and require sunlight to survive and thrive. They also require
inorganic nutrients, including phosphates, sulfur, and nitrate, which are converted into
lipids, carbohydrates, and proteins [6].

Many phytoplankton species produce compounds that are poisonous to humans,
which is why they are called “toxic microalgae”. Phytoplankton toxins have a variety of
chemical structures, ranging from relatively simple alkaloids and amino acids to polyke-
tides. Polyketides belong to a family of extremely diverse compounds in terms of structure
and potential biological properties. However, the evolution and functional therapeutic
relevance of these secondary metabolites remains unknown. Therefore, this review focuses
on the effects of toxins and their crucial roles in disease prevention. Phytoplankton toxins
that modulate different diseases in humans are displayed in Figure 1.
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yet. As a result, it is currently unknown how to assess this link in order to control micro-
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3. Phytoplankton Toxins Kills to Heal: A Cross Talk

For decades, the creation of toxins by phytoplankton has piqued the interest of the
scientific community. Thousands of articles have been published in the field of algal
production of toxins. Meanwhile, the ecological role of phytoplankton poisons such as
hepatotoxins and neurotoxins produced by cyanobacteria, diatoms, and dinoflagellates is
still up for debate in relation to their pharmacological applications. Numerous hypotheses
have been proposed that suggest a modest advantage or physiological function for the
production of toxins [25]. Phytoplankton toxins can have a great ability to prevent disease in
mammals and humans. Several studies have been published, and much has been discussed
about the deleterious consequences of phytoplankton toxins on human health. However,
many questions still remain unanswered about the true impact of these substances on
humans [26–28].

Microcystins from cyanobacteria have been shown to cause acute hepatotoxicity by
inhibiting protein phosphatases (PP1 and PP2A) and oxidative stress, as well as by acting
as tumor promoters by deregulating mitogen-activated protein kinases and activating
protooncogenes [29–32]. In addition, microcystins have been proposed to be genotoxic
agents and, as a result, are tumor initiators in humans [33]. However, no evidence of a link
between microcystins and the development of cancer in humans has been revealed yet.
As a result, it is currently unknown how to assess this link in order to control microcystin
risks [34]. Furthermore, epidemiological studies showed associations in organoid, tissue,
and cell culture. In addition, some studies on animals showed some associations. Hence,
health guidelines are available worldwide. Key research areas for phytoplankton toxins
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include pharmacology (17%), chemistry (18%), ecology (19%), and toxicology (24%) [35].
More than 90% of global research on phytoplankton toxins demonstrates that the existence
and properties of such toxins are not properly analyzed and are most likely underesti-
mated [35]. However, there is some evidence to suggest that phytoplankton toxins can be
used in pharmacology in the near future [36].

The search for biologically active secondary metabolites with therapeutic potential
is not new. Since ancient times, nature has been recognized as a valuable source of pos-
sible medicines. Toxins such as digoxin, paclitaxel, morphine, atropine, and colchicine
are among the first biologically active chemicals to be identified, and they are still used in
medical practice and healthcare systems today [37]. Many other life-saving medications,
such as antibiotics, immunosuppressants, and anticancer drugs, have been extracted from
natural sources. Even today, natural ingredients are the source of the bulk of novel chemical
entities offered as medications in the market [38]. This explains why these compounds
continue to play such an important role in the development of new front-line medica-
tions. Hundreds of phytoplankton compounds have been found recently, many of which
have antiviral, antibacterial, anticancer, and other properties [39]. Despite their powerful
biological actions, only few molecules have entered clinical trials, and none of them are
phytoplankton-derived. In this regard, toxins that cause paralytic poisoning and other
toxins that have been established as highly toxic compounds may be suitable candidates
for pharmaceutical purposes. The use of phytoplankton toxins may ultimately develop
a new drug for combating human diseases in the near future. In some cases, the use of
toxins for medicinal purposes has already been proven [40]. Nevertheless, it is now one
of the most versatile medications used to treat human disorders in the fields of ophthal-
mology, neurology, and dermatology [40,41]. To the best of our knowledge, a few marine
algae-derived bioactive compounds, such as phlorotannins, polysaccharides, fucoidans,
alginic acid, tripeptides, pyropheophytin, and oxylipin, have been shown to reduce the risk
of cancer, diabetes, and inflammatory diseases. In this regard, phytoplankton toxins can be
used as therapeutic agents and have been established as potent pharmacophores against
stress-associated diseases in humans. Phytoplankton toxins and their different potential
therapeutic applications are displayed in Table 1. Various biological activities and chemical
structures of phytoplankton toxins are shown in Figures 2 and 3.

Table 1. Phytoplankton toxins and their different potential therapeutic applications.

Disease Toxin Application Reference

Cancer

Okadaic acid (OA)
Breast, intestinal, blood, brain, lungs,
hepatic, human leukemia and human
endothelial cancer cell lines

[42–45]

Amphidinolides and colopsinols Murine lymphoma L1210 and human
epidermoid carcinoma KB cells [46]

Caribenolide I
Human colon tumor cell line HCT
116 and HCT 116/VM 46 [47]

in vivo against the mouse tumor P388 [48]
Gymnocin-A P388 murine leukemia cells [49]
Yessotoxins (YTXs) Epithelial cancer cells [50]

YTX and its analogues
In BC3H1 myoblast cells, primary
cortical neurons, and glioma cells [51]

Melanoma tumor cells [52]
Protoceratins I, II, III, and IV Human colon cancer cell lines [53]
Pectenotoxin (PTX) Lung, colon, and breast cancer cells [54]
Ciguatoxin (CTX) Gastrointestinal cell lines [55,56]
Brevetoxin (BTX) Jurkat E6-1 cell lines [57,58]

Palytoxin (PLTX) Lymphoblastic or myelogenous
leukemia cell lines [59]

Palytoxin (PLTX) and Ostreocin-D Intestinal and neuroblastoma
cell lines [60,61]
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Table 1. Cont.

Disease Toxin Application Reference

Azaspiracid (AZA) T-lymphocyte cell lines [62,63]
Gymnocin-A (GYMA) P388 murine leukemia cell lines [64]
Karlotoxin (KmTx) Breast and prostate cancer cell lines [65,66]
Combination of GYM and OA Several cancer cell lines [67]
GYM Neuroblastoma cell line [67]

Alzheimer

Okadaic acid (OA)
YTX and its analogues
Gambierol
GYM
Spirolides

Inhibits the level of t- and β-amyloid

[68]
[69]
[70]
[71]
[72]

Pain Gonyautoxins (GTX) - [73]
GTX2, GTX3 and TTX - [74]

Schizophrenia Okadaic acid (OA) - [75]

Diabetes Okadaic acid (OA)
Gambierol

- [76]
[77,78]

AIDS Okadaic acid (OA) - [76]

Fungal disease Okadaic acid (OA)
Karlotoxin (KmTx)

Suppress Candida albicans growth [79]
[65,80–82]

Allergy and Asthma YTX and its analogues - [83]
Brain disorder BTX-2 - [84]
Osteoporosis Symbioimine Postmenopausal women [85]

Inflammation Symbioimine Treatment of
cyclooxygenase-2-related disorders [86]

Brain injury,
autoimmune disorders,
multiple
sclerosis, and
rheumatoid arthritis

Gambierol -
[87]

[77,78]

[77,78]

Coronary heart disease
(CHD) Karlotoxin (KmTx) - [65,66]

Pain, Gonyautoxins (GTX) - [73]
Fungal, bacterial, and
protozoal disease Saxitoxin (STXs) - [88]
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4. Toxins Produced by Cyanobacteria and Their Potential Biomedical Applications

Cyanobacteria offer a variety of chemical compounds that have received much interest,
especially in medical chemistry and pharmacology [89]. They produce a wide array of
structurally diverse and bioactive compounds with anticancer, antibacterial, antifungal,
antituberculosis, immunosuppressive, antioxidant, and anti-inflammatory activities [90–92].
Conversely, many cyanobacterial toxins have anticancer potential in various cell lines,
providing hopeful results for future study into human glandular cancer management [93].
Phytoplankton toxins displayed potent anticancer activity via apoptosis modulation for
cancer treatment and prevention (Figure 4).
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Figure 4. Apoptosis modulation by phytoplankton toxin in cancer prevention. Phytoplankton toxins
such as azaspiracid, yessotoxins, and brevetoxins cause intracellular oxidative stress, which leads to
mitochondrial dysfunction and downregulates the expression of anti-apoptotic proteins Bcl-xl and
Bcl-2. Similarly, they enhance Bax expression to aid apoptosis via release of cytochrome-C, which
triggers the formation of apoptosomes, leading to caspase 9 and 3 being induced and displaying
apoptotic cell death. Microcystins and nodularin trigger the induction of caspase and display caspase-
dependent apoptotic cell death. Moreover, microcystins and nodularin inactivate PP1 and PP2, which
leads to excessive ROS. Excessive ROS enters into the ATM signaling pathways, which leads to
DNA damage and displays apoptotic cell death. In addition, yessotoxins, gymnodimine, kalkitoxin,
and okadaic acid trigger DNA damage, leading to apoptotic cell death. Kalkitoxin also induced
the activation of caspase 8/10 and caspase 3/7, displaying caspase-dependent apoptotic cell death.
Moreover, Azaspiracid entered into the JNK pathway and displayed apoptotic cell death.
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Natural products’ capacity to stop cancer cell lines from growing could lead to the
development of effective anticancer drugs [23]. In this regard, there are several cyanobacte-
ria that belong to potential groups of various taxa of marine organisms of pharmaceutical
value, for example, Leptolyngbya, Lyngbya, Microcystis, Oscillatoria, Calothrix, Symploca,
Dichothrix, Schizothrix, Geitlerinema, Aphanothece, Synechocystis, and Blennothrix [94]. Chemical
compounds having anti-proliferative, anti-cancer, and anti-tumor activities via apoptotic
death or influencing cell signaling via induction of protein kinase-C (PKC) were found
in abundance in marine Lyngbya majuscula [95,96]. Nair and Bhimba investigated the
anticancer activities of the cyanobacteria Oscillatoria spp., and the results showed that
Oscillatoria boryana has anticancer activity against human breast cancer cell lines [97].
Targeting HIF-1 (hypoxia-inducible factor-1) and processes downstream of mitochondrial
respiration is an evolving topic in the pharmacology of cytotoxins from marine cyanobacte-
ria [98]. Oftedal et al. discovered that extracts from Anabaena sp. M44, M30, and M27 rapidly
trigger apoptosis by comparing the higher-than-therapeutic concentration of daunorubicin
in cells from AML (acute myeloid leukemia) in humans [99].

Cyanotoxins are a rich source of naturally occurring cytotoxic compounds that can
target tumors by inducing the expression of specialized uptake transporters. Combinatorial
engineering, due to its structure, can be used to advance the therapeutic index and address
organ-specific toxicity concerns [100]. Furthermore, oscillatoxin and its analogs, such as
oscillatoxin E and 30-methyloscillatoxin D from the cyanobacterium Lyngbya sp., inhib-
ited Kv1.5 expression in CHO cells with IC50 values of 0.79 ± 0.032 and 1.47 ± 0.138 µM,
respectively. These findings should be useful to researchers looking for new ways to treat
atrial tachyarrhythmias [101]. Kalkitoxin from Lyngbya majuscula displayed cytotoxicity
against HCT-116 colon cell lines [102]. Furthermore, it reduces hypoxia-induced initia-
tion of HIF-1 in T47D breast tumor cells with an IC50 value of 5.6 nM [102]. Moreover,
because kalkitoxin interacts with voltage-sensitive sodium channels, it inhibits calcium
influx inhibition in primary rat cerebellar granule neuron cultures [103]. OATP (organic
anion transporting polypeptides)–microcystin interaction as a potential anti-cancer regi-
men is risky since OATPs are also expressed in healthy cells; treatment must be targeted
locally. Aside from the liver, microcystins can also have detrimental effects on other organs
such as the heart, kidney, and brain. Microcystins and nodularin are stable and have the
potential to cause cellular damage after uptake via organic anion transporting polypep-
tides (OATPs) by causing intracellular inhibition of the catalytic subunit of PP1 (protein
phosphatase 1) and PP2, glutathione depletion, and the generation of ROS (reactive oxygen
species) [89,104]. Because certain OATPs are overexpressed in tumors compared to normal
tissues, microcystins could be interesting targets for anticancer drug development [89].
Cancer cells have a high level of intrinsic oxidative stress, making them vulnerable to
exogenous ROS assaults. As a result, analogues of microcystin can kill cancer cells that
express OATP while inflicting little harm on healthy cells [105]. Microcystins and nodu-
larin decrease PP1 and PP2A activity and induce apoptosis in human embryonic kidney
HEK 293, Swiss 3T3 mouse embryo fibroblast, breast carcinoma cell line MCF-7, and rat
promyelocytic IPC-81 leukemia cells via cell shrinkage, membrane blebbing, and organelle
relocation [106–108]. More research is required for the exploration of cyanotoxin in the field
of pharmacology to establish a new pharmacophore against deleterious diseases such as
cancer in humans.

5. Diatom’s Toxins: The Legendary Furthest Effective Biological Properties

Diatoms are the most common photosynthetic organisms in the world’s oceans and
are critical for energy transfer through marine food chains. However, multiple studies
have revealed that they produce hazardous secondary metabolites [109]. Toxigenic diatoms
cause poisoning in both people and animals on a regular basis [110]. Not only the genus
Pseudo-nitzschia but also Amphora have been identified as domoic acid (DA) producers,
which is a nonprotein amino acid that is water soluble, crystalline, and has a molecular
weight of 311 Da [111,112]. Recently, Antarctic diatom species have been identified as
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DA producers [113]. Less toxic isomers of DA have been discovered, such as isodomoic
acid A and isodomoic acid B from Nitzschia navis-varingica and isodomoic acid C from
Pseudo-nitzschia australis [114–116]. Humans and nonhuman primates showed no hazardous
symptoms at low doses of DA (0.20e0.75 ppm), but clinical effects were seen at 1.0 ppm,
and the tolerated daily intake (TDI) of DA for humans was calculated to be 0.075 ppm. The
TDIs for razor clams and crabs were 19.4 and 31.5 ppm, respectively [109]. Conversely,
although DA has poisoned humans, fish-eating birds, and marine mammals, the DA has
several disease preventive actions against several deleterious diseases such as cancer [117].
DA was responsible for the natural medicine’s curative effectiveness in killing parasitic
worms [111], and it displayed proliferative effects on cancer cell lines such as K562 and
EA.hy 927 in vitro [118]. Although little research has been conducted on the disease-
preventive effects of DA, more research is needed in order to develop a new drug molecule
to combat harmful diseases in humans.

6. Dinoflagellate Biologically Active Toxins and Their Potential Biomedical Applications

Dinoflagellates are unicellular and planktonic and are a promising source of biologi-
cally active toxins that have an impact on the safety of seafood and human health. Due
to HABs, dinoflagellates have been identified as potent natural physiologically active
toxin makers in marine environments [17]. The dinoflagellate toxin not only harms the
marine environment, but it is also detrimental to economic activities (such as aquacul-
ture, fisheries, and tourism) [119]. Despite the disadvantages listed above, dinoflagellate
toxins are valuable and interesting molecules due to their unusual structure and wider
functioning. The potential of dinoflagellate-derived toxins as attractive pharmacological
effectors and/or biological investigative probes has been revealed in several biological
studies [120–122]. Toxins from dinoflagellates and their different potential therapeutic
applications are displayed in Supplementary Table S1.

6.1. Dinoflagellate Toxins: The Most Prevailing Source of Toxins with Biological Properties

Dinoflagellate toxins and their analogs are employed in medical research in order
to better understand their mechanisms of action and assess their therapeutic potential.
These toxic marine dinoflagellates, such as the genera Alexandrium (A. minutum, A. catenella,
A. tamarense), Pyrodinium (P. bahamense), and Gymnodinium (G. catenatum), produce saxitoxin
(STX) and its naturally occurring equivalents (neosaxitoxin and gonyautoxins). Other
sources of STX-group toxins, such as cyanobacteria, have been identified, including the gen-
era Anabaena, Lyngbya, Planktothrix, Aphanizomenon, and Cylindrospermopsis [123]. Saxitoxin
(STX) is a group of toxins (also known as paralytic shellfish poisons, or PSPs) produced by
cyanobacteria in freshwater and dinoflagellates in marine water. STX is grouped into non-
sulfated (neoSTX), mono-sulfated (GTX1-6), di-sulfated (C1-4), decarbamylated (dcSTX,
dcneoSTX, dcGTXs1-4), and deoxy-decarbamoylated (doSTX, doGTXs1-3) with varying
toxicities. These toxins primarily block the sodium channels in the nerve and muscle cells,
resulting in paralysis. They also act as potential therapeutics, such as anesthetic agents.
They may minimize or even block pain sensations, muscle spasms, muscle relaxation,
and wrinkle reduction. STXs possess promising antifungal, antibacterial, antialgal, and
antiprotozoal activity in vitro [88]. Amphydinium dinoflagellates produce some important
analogues of STXs, such as gonyautoxins (GTXs), which have a similar mode of action.
GTXs have been shown as promising and safe therapeutic agents for acute or chronic anal
fissures, and they are also used as a pain reliever [73]. Moreover, chronic tension-type
headaches have also been treated with GTX2 and GTX3 [74]. The gonyautoxins are the
paralytic toxins produced by the dinoflagellate Amphidinium that have been employed in
clinical practice for anal sphincter infiltrations [73]. The antifungal polyether macrolide
goniodomin-A, generated by the dinoflagellate Goniodoma pseudogoniaulax, has been demon-
strated to prevent angiogenesis by decreasing endothelial cell migration and tube formation
caused by basic fibroblast growth factor (bFGF) [124]. Goniodomin-A has active effects
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in vivo as well [124]. Gymnocin-A, derived from the red tide dinoflagellate Gymnodinium
mikimotoi, is cytotoxic to P388 murine leukemia cells [49].

Tetrodotoxin (TTX) is produced primarily by bacteria and is recently associated with
marine dinoflagellate toxin, which was discovered in pufferfish and is linked to saxitoxins.
The toxin is produced by Alexandrium tamarense and is a long-acting topical anesthetic
regarded as safe and effective [125]. TTX is a highly unique chemical structure and a strong
neurotoxin that is of particular interest due to its similarities in effects to saxitoxins (and
equivalents). TTX and STX are structurally distinct but with a similar mode of action; both
block conductance in voltage-gated sodium channels, resulting in inhibition of neuromus-
cular signal transmission [126]. TTX poisoning is generally associated with contaminated
puffer fish, although such poisonings have also been reported with consumption of shellfish.
TTX has also been detected in various vertebrates and invertebrates (e.g., worms, starfish,
frogs, newts, octopus, slugs, etc.). TTX has been demonstrated to reduce narcotic hunger
in laboratory animals and is being employed in drug addiction [126]. TTX is effective for
the treatment of heroin addiction. Moreover, clinical trials resulted in finding that TTX
(5 and 10 µg) is also beneficial in relieving opiate withdrawal symptoms with minor side
effects [122].

Okadaic acid (OA) and its derivatives, such as dinophysistoxins (DTX)-1, 2, and 3,
are lipophilic polyethers of marine biologically active toxins found in a variety of fish and
shellfish species. When consumed by humans, they can cause gastrointestinal symptoms
(known as diarrheic shellfish poisoning, DSP). These were first isolated from benthic
dinoflagellates. OAs are known phosphatase inhibitors, particularly PP1 and PP2, which
are similar to microcystins, and are primarily produced by Prorocentrum dinoflagellates
(P. lima, P. cuncavum, P. belezeanum, and P. mascul) and Dinophysis (D. acuminate, D. acuta,
and D. fortii) [124,125]. They are a marine biologically active toxins that have been connected
to many health problems, such as causing diarrhetic shellfish poisoning, and have proven
useful in several cellular processes, making them important in medical study [127]. OA’s
value in medical/pharmacological research has been established in numerous studies, both
in vitro and in vivo [43]. Numerous in vitro and in vivo studies have shown that OAs
have other effects on cellular metabolism, regulation, and control [43]. Okadaic acids are
especially useful for studying cellular processes that are regulated by phosphorylation.

In numerous cell types, including blood cells, intestinal cells, hepatic cells, lung cells,
and brain cells, OA has displayed cytotoxic effects via apoptosis and inhibition of cell
growth. It has cytotoxic effects on embryonic development, the immune system, and the
neurological system [43]. Okadaic acid, which inhibits protein phosphatase 2A, is being
used in research to clarify the processes by which conjugated linoleic acids may function
as anti-tumor mediators in breast cancer cells [39]. Because of its tumor-promoting and
cytotoxic properties, okadaic acid is a model potent neurotoxin for studying the therapeutic
effects of typical antipsychotic medications in the treatment of cognitive impairment and
neuropathological alterations in schizophrenia and other neurodegenerative diseases [72].
Because of its ability to inhibit serine/threonine phosphatases and the protein PP2A, OA
has become a promising tool in the study of Alzheimer’s disease (AD) and other neu-
rodegenerative illnesses linked to memory loss. Reduced PP1 and PP2 activity leads to
hyperphosphorylation of tau protein, which is a major marker in AD [68]. OA has also
been used as a biotoxin model in studies on diabetes, cancer, and AIDS to reveal numerous
pathways related to these diseases [76]. Furthermore, OA appears to have immunomodula-
tory effect potential since it causes T-cell receptor expression to be downregulated, affecting
T-cell function in immune responsiveness and, as a result, immunological response [128]. It
can also trigger an inflammatory response in HL-60 human cells by significantly increasing
interleukin 8 (IL-8) levels [44]. In addition to being a potent tumor promoter, OA has been
shown to increase the activity of HIF-1, a protein closely linked to vascular endothelial
growth factor in human endothelial cells [45]. Finally, OA from Prorocentrum sp. has been
demonstrated to have fungicidal properties, specifically the capacity to suppress Candida
albicans growth [79].
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Amphidinolides and colopsinols are two families of macrolides synthesized by marine
dinoflagellates of the genus Amphidinium that exhibit powerful anticancer effects via
inhibition of cancer cell lines [129]. Biological research has been hampered by the extremely
limited availability of these chemicals [46]. In vitro, amphidinolides showed high cytotoxi-
city against murine lymphoma L1210 and human epidermoid carcinoma KB cells [46]. The
human colon tumor cell line HCT 116 and its drug resistant variation, HCT 116/VM 46,
have shown high cytotoxicity in response to a similar chemical called caribenolide I [47]. In
addition, it is also efficacious in vivo against the mouse tumor P388 [48].

Yessotoxins (YTXs) are sulphated polyethers, a class of marine toxins derived from
Protoceratium reticulatum, Lingulodinium polyedra, and Gonyaulax spinifera [117,118]. As a
result of this property, such a toxin is regarded as one of the most polar among the oth-
erwise lipophilic toxins [120,130]. YTXs impair the E-cadherin–catenin system selectively
in epithelial cells, thus jeopardizing Ecadherin’s tumor-suppressive effects [50]. In the
supernatant of the cultivated dinoflagellate Protoceratium cf. reticulatum, Yessotoxins
have displayed significant cytotoxic effects [120]. Protoceratins I, II, III, and IV are the
four equally active glycoside polyether principles found in the extract. These compounds
displayed cytotoxicity selectively against human cancer cell lines with mean IC50 values of
less than 0.0005 M [53].

In a number of cellular systems, such as tumor cells, YTX and its analogues are par-
ticularly interesting tools for studying biological and pharmacological mechanisms with
multiple biological apoptotic pathways [131]. YTX also caused non-apoptotic cell death
in primary cortical neurons, BC3H1 myoblast cells, and glioma cells [51]. Moreover, it
also acts as a potent phosphodiesterase (PDE) activator [132]. PDEs are important regu-
lators of signal transmission, which is mediated by substances such as cyclic adenosine
monophosphate (cAMP) and modulates caspase protein inactivation via permeability tran-
sition through mitochondria and alteration of the cytoskeleton via selective disruption of
F-actin microfilaments [133,134]. It has recently been found to cause mitotic catastrophe
and genetic modifications, which may be useful for cancer progress management [52].
Additionally, it also inhibits the growth of melanoma tumor cells in mouse cells in vivo
with minimal damage [52]. YTX appears to impair immune function by reducing phago-
cytic activity in the J774 cell line and increasing cytokine expression in J774 phagocyte
mammalian cells [133]. Furthermore, it appears to control the immunological impact on
T-lymphocyte EL-4 cells via reversible T-cell receptor complex downregulation [128]. YTX
and its analogues could be used to treat Alzheimer’s disease by lowering the levels of
t- and β-amyloid, two insoluble formations found in the brain that are accountable for the
illness’s onset [69]. Furthermore, YTX may aid in the prevention and treatment of lipid
and glucose metabolism-related disorders in glioma cells as well as pancreatic and liver
transcriptional abnormalities [135]. YTX may also have a minor role as an anti-asthmatic
and anti-allergenic drug [83].

Dinophysis species such as D. tripus, D. acuta, D. fortii, D. caudate, D. acuminate,
D. norvegica, and D. rotundata are reported as producers of pectenotoxins (PCTs) that have
anti-cancer effects [136]. Pectenotoxins (PTXs) and their 20 analogues that have been
isolated from Dinophysis species are strongly cytotoxic against various human cancer cell
lines [137]. For example, PTX-2 has been shown to have anticancer action in human lung,
colon, and breast cancer cells [54]. Actin inhibitor pectenotoxin-2 (PTX2) has been proposed
as a potential chemotherapeutic treatment for p53-deficient malignancies [138].

Ciguatoxin (CTX) is a fat-soluble toxin generated by specific benthic Gambierdiscus
toxicus and some species of Gambierdiscus such as G. belizeanus, G. caribaeus, G. carolinianus,
G. carpenter, G. excentricus, and G. ribotype. It is one of a series of marine polycyclic ether
physiologically active toxins linked to ciguatera fish poisoning outbreaks [139]. However,
it has also displayed therapeutic effects via increased muscular contraction, particularly in
cardiac tissue and excessive fluid discharge by gastrointestinal cells [55,56]. Conversely,
this biologically active toxin can be a useful tool for studying the biological function of a
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variety of human diseases and channelopathies, including cancer, chronic pain, epilepsy,
and cardiac arrhythmias [140,141].

Maitotoxin (MTX) is a polyketide-derived polycyclic water-soluble molecule that
has long been recognized as a possible aid in chemical and biological research [142,143].
This is the largest and most potent secondary metabolite ever isolated from the genus
Gambierdiscus (G. pacificus, G. australes, and G. toxicus), and it comes in three different forms:
MTX-1, MTX-2, and MTX-3 [144–146]. MTX is thought to be a powerful disruptor of Ca2+

homeostasis, with a wide range of pharmacological properties on a variety of cell lines [144].
It has the ability to initiate intracellular cascades of events such as membrane depolarization
in excitable cells, insulin and neurotransmitter secretion, and phosphoinositide breakdown,
which is imperative in cell lipids and cell signaling, programmed cell death, and fertilization,
making it a useful tool for cell biology research, particularly when trying to understand Ca2+

dependent cellular developments [143,147–149]. In vivo, MTX seems to play a pivotal role
in innate immune responses and inflammation in mice, making it a useful tool for studying
specific aspects of the innate immune response and/or the physiology of inflammatory
effector cells [144,150]. In Xenopus laevis oocytes, MTX was recently discovered to be a
selective activator of an exact transient receptor potential (TRP) [151]. Maitotoxin promotes
the synthesis and secretion of nerve growth factor by activating voltage-insensitive Ca2+

channels in C6-BU-1 glioma cells [151]. MTX could be useful in further research into these
types of biological channels, as well as cancer, diabetes, and other stress-related human
disorders [152].

Brevetoxin (BTX) is derived from the dinoflagellate Karenia brevis (formerly known
as Ptychodiscus brevis or Gymnodinium breve) and has nine analogues that are categorized
according to their backbone structure, such as type-A and type-B [153–155]. It reduces
respiratory irritation symptoms such as cough, irritability of the nose, bronchoconstriction,
congestion, and/or asthma attacks in people [156]. As a result, it changes the immune
response in alveolar macrophage cells by boosting cytokines (TNF- and IL-2) implicated
in immune cell activation, lowering phagocytosis activity and playing a crucial part in
hypersensitivity inflammation in pulmonary tissue [57,157,158]. Furthermore, it has a
dose-dependent effect on cell growth, causes cell death via apoptosis, and has geno-
toxic properties in Jurkat E6-1 cells and leukemic T-cell lines [57,58]. BTX-2 also exhibits
neuro-activation qualities and can improve neuronal plasticity, which could be useful in
pharmaceutical treatments for restoring brain function following a stroke or other traumatic
brain damage [84]. A therapeutic invention based on BTX derivatives has also been devel-
oped to control disorders including cystic fibrosis and mucociliary dysfunction caused by
amplification of mucus transport [159]. Paradoxical thermal dysthesia is a rare malfunction
of the thermoregulatory system that happens in people who consume particular algal
toxins. Mice are being studied to see how marine algae toxins such as maitotoxin and
brevetoxin alter thermoregulatory processes. This type of research should lead to more
effective treatments [160].

Zooxanthellatoxins (ZTs) A, B, and C are polyhydroxypolyenes with significant
vasoconstrictive activity that have been identified from the cultivated dinoflagellate
Symbiodinium sp. [161]. In addition, the amphoteric metabolites symbioimine and neosym-
bioimine are known to be produced by the same dinoflagellate genus. Symbioimine is
an antiresorptive medication that can be used to prevent and treat osteoporosis in post-
menopausal women [85]. Symbioimine may also be useful in the development of new
nonsteroid anti-inflammatory medicines for the treatment of cyclooxygenase-2-related
disorders [86].

Palytoxin (PLTX) is a complex polyether compound isolated from dinoflagellates
such as Ostreopsis fattorussoi, O. ovata, O. lenticularis, O. mascarenensis, and O. siamensis,
with notable biological activity, including a wide spectrum of pharmacological proper-
ties [162,163]. PLTX-like compounds formed by dinoflagellates are usually known as
ostreocin. They modulates neurotransmitters (acetylcholine and/or norepinephrine) and
activate pro-inflammatory signaling cascades such as the release of prostaglandin-E2 and
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histamine [164]. PLTX and ostreocin-D modulate cytoskeleton distortion and dynamics
in intestinal and neuroblastoma cells and can significantly reduce cytotoxicity [60,61]. In
addition, PLTX from Palythoa clavata polyps, comprising Symbiodinium dinoflagellate,
displayed that a pharmaceutical formulation is appropriate for therapeutic use in the con-
tradiction of lymphoblastic or myelogenous leukemia [59]. Discovery of novel properties
of PLTX and PLTX like-compounds from marine dinoflagellates may lay the basis for a
talented form of anti-cancer therapeutics.

Gambierdiscus toxicus dinoflagellate produces a toxin such as gambierol. Its chemi-
cal structure is similar to that of ciguatoxins and brevetoxins, and it has a high level of
neurotoxicity [165,166]. Gambierol is also known as a CTX precursor [167]. Further bi-
ological research has been limited by its paucity of natural sources. Chemical synthesis
has been attempted to address these challenges for in vitro and in vivo studies, and new
immunotherapy medicines have been proposed [77,168,169]. Cao and colleagues discov-
ered that gambierol causes bidirectional neurite development, which could be beneficial
to patients with brain injury [87]. T-cell proliferation, immunological induction, and cy-
tokine production are all induced by it, and it is thought to be a therapeutic target for
T-cell-mediated autoimmune disorders [77,78]. Gambierol is an intriguing compound for
its use as an immunosuppressant in diseases involving a malfunctioning immune system,
such as multiple sclerosis, rheumatoid arthritis, and type 1 diabetes [77,78]. Gambierol and
two of its analogues (tetra and heptacyclic forms) are potential compounds for reducing
β-amyloid and/or tau hyperphosphorylation in Alzheimer’s disease both in vitro and
in vivo [70]. Gambierol is an inhibitor of both PbTx-2-induced Ca2+ influx and cytotoxicity.
Moreover, gambierol has been shown to be a potent antagonist of PbTx-2-induced Ca2+ and
has been displayed as a functional antagonist of neurotoxin site 5 on neuronal VGSCs [170].

Azaspiracid (AZA) and its derivatives are phycotoxin polyethers generated by the Aza-
dinium genus of dinoflagellates such as A. dexteroporum, A. poporum, and A. spinosum [171–173].
Azaspiracid-1 (AZA1), the first compound isolated and the one with the highest toxicity, is
followed by AZA2 and AZA3 and has a significant biotechnological impact [174]. In vivo
and in vitro toxicological investigations revealed cytotoxicity against a variety of human cell
types as well as the capacity to modify cell shape and cytoskeleton structure, particularly
in the E-cadherin system [136,175,176]. It was also discovered to be an active modulator of
intracellular cAMP and calcium levels, as well as a potent activator of c-Jun-N-terminal
kinase (JNK) and caspases, both of which are involved in stress-signaling pathways such
as cytoskeleton regulation, cell damage, and apoptosis [177–179]. Furthermore, it lowers
cell cholesterol levels, especially in T-lymphocyte cells [62,63].

Gymnocin-A (GYMA) is a rare toxin identified in Gymnodinium mikimotoi, a red tide
dinoflagellate [180]. Although it is only mildly poisonous to fish, it is extremely toxic to
P388 murine leukemia cells [64]. In the meantime, several additional variants of GYMA
have been discovered, including Gymnocin-B, which has even developed cytotoxicity in
several cell lines [64].

Karlotoxin (KmTx) is a linear polyketide toxin produced solely by the Karlodinium
genus (K. veneficum). This biologically active toxin displayed a variety of actions, including
haemolytic, cytotoxic, ichthyotoxic, and antifungal [65,80–82]. The biological activity of
these chemicals is determined by the target cell’s sterol composition [65,181]. The ability
of KmTx to cause the creation of pores in cholesterol-containing cell membranes suggests
that it could be used to treat a variety of human diseases, including CHD (coronary heart
disease). Furthermore, by inducing cell death through cholesterol depletion, KmTx could
be developed as a new chemotherapeutic drug to control cancer in various solid tumor
lines, such as prostate and breast cancer cells [65,66].

Spirolides (SPX) are biologically active toxins produced by Karenia selliformes, Alexandrium
ostenfeldii and A. peruvianum, and there are currently 16 isoforms known [171,182–185].
SPX toxins have been shown to have a large deleterious effect [186]. Moreover, it dis-
played cytotoxic effects [186]. GYM (gymnodimine) and its two analogues Gymnodi-
noid dinoflagellates, notably Karenia selliformis (formerly known as Gymnodinium selli-
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forme), make gymnodimine-A, GYM-B, and GYM-C [185,187]. GYM’s fourth analogue,
12-methylgymnodimine, was recently discovered as a novel analogue in Alexandrium
ostenfeldii [188,189]. Spirolides have also been proven to have a neuroprotector role in
Alzheimer’s [72]. These toxins can be used against different stress associated diseases.

Both SPXs and GYMs are found in A. ostenfeldii [190], are thought to have a pharma-
cophore component that activates L-type calcium channels in brain receptors and has a
high affinity for neuronal and muscle nicotinic cholinergic receptors [187,191]. According
to certain studies, the synergistic actions of GYM and OA can be employed therapeutically
to boost anti-cancer effects by inducing tumor cell toxicity and acting as chemotherapeutic
drugs. In the Neuro2a neuroblastoma cell line, GYM may also make cells more sensitive
to apoptotic stimuli [67]. GYM may play a role in lowering amyloid levels and tau phos-
phorylation, which could help to treat degenerative illnesses [71]. Still, more research is
required to explore dinoflagellate toxins in the field of pharmacology, even at a clinical
level, to establish a new potent remedy against deadly diseases in humans such as cancer.
Phytoplankton toxin can be used as a future drug molecule (Figure 5).
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Figure 5. A proposed model for phytoplankton toxin as a future drug molecule. Toxins involve the
identification of screening and optimization to increase the affinity through preliminary assays, high
throughput screening, and in vitro screening. After successful screening, the phytoplankton toxin
enters secondary assays, counter screening, bioavailability, toxicity, metabolism, etc. Then, screening
of the phytoplankton toxin and its structural activity relationship can be performed through structural
characterization of the protein–ligand complex. After conformation, it enters into modelling and
designing of the toxin. Then, it enters into the chemical synthesis, which is more required for the
clinical test. After the successful clinical phase is over, the phytoplankton toxin can be used as a drug.
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6.2. Bioactive Compounds from Dinoflagellates and Their Potential Biomedical Applications

Dinoflagellates are appealing sources of bioactive compounds for new drug progress
by the pharmaceutical industry due to their extensive diversity and complexity in chemical
structure [192]. Owing to their structural diversity of chemicals, the dinoflagellate bioactive
compounds have been screened for several biomedical applications in different ROS asso-
ciated diseases. Gambieric acid (GA) and its related gambieric acids A, B, C, and D were
identified from the Gambierdiscus toxicus culture dinoflagellate [193]. They are effective
antifungal drugs that have a high affinity for filamentous fungus but are ineffective against
bacteria and yeasts. Furthermore, GA-A and GA-B have been shown to be 2000 times more
effective than amphotericin B against the fungus Aspergillus niger [194]. GA, conversely,
has no significant toxicity in cultivated mammalian cells or even in vivo [195].

Alexandrium hiranoi, A. monilatum, and A. pseudogonyaulax generate goniodomin A
(GDA), which acts as an antifungal agent [196–198]. Pharmacological studies have shown
that it has a significant impact on cytoskeleton remodeling [197]. By decreasing endothe-
lial cell migration and basic fibroblast growth factor (bFGF)-induced tube formation via
suppression of actin rearrangement, this drug limits angiogenesis (vessel regeneration).
In vivo, GDA also inhibits angiogenesis [124]. GDA alters the actin state in astrocytoma
cells, causing cell morphological changes by increasing filamentous actin [100]. GDA has
been demonstrated to increase filamentous actin levels in clone 9 rat hepatocytes and to
cause cytotoxicity in human neuroblastoma cells. A counterpart of GDA, goniodomin B,
appears to have effects similar to GDA but is less powerful [199].

Amphidinolide (AMP) is generated by the dinoflagellate Amphidinium genus. Thus
far, more than 40 AMPs have been found and show strong in vitro cytotoxicity against
murine lymphoma L1210 and human epidermoid carcinoma KB cells [46,200]. Among all
the AMPs, AMP-N has the strongest anti-tumor activity, with a preference for malignant
cells’ mitochondria, while AMP-H appears to target the actin cytoskeleton [201]. This class
of chemicals is likely to lead to new anticancer medicines, but their scarcity has prevented
more comprehensive research [46,202]. A similar chemical, Caribenolide-I, was found to
have a potent cytotoxic effect against a human colon carcinoma cell line and the murine
tumor P388 [203].

Amphidinol (AM) is an antifungal and hemolytic compound generated by the Amphi-
dinium genus, including A. klebsii and A. carterae [204]. Amphidinol 1 (AM1) was isolated
from A. klebsii for the first time in 1991, and there have been around 23 AMs identified thus
far, including seven analogues [205–208]. AMs are powerful cytotoxic compounds that can
also promote proliferation and act as antifungal agents. AM3 had a stronger affinity for
the ergosterol membrane, implying the production of a more stable complex, which could
lead to the development of a new antifungal medication [209]. In addition, AM-5, derived
from benthic Amphidinium species, promoted the proliferation of osteoblastic MC3T3-E1
cells and murine stromal ST-2 cells in the bone marrow [210]. Only at low doses did AM-4
promote highly intense proliferation in murine bone marrow stromal ST-2 cells, but not
in MC3T3-E1 or NIH3T3 cells. It also improves the immune system’s ability by inducing
TNF-α [211]. Iriomoteolide, another AM-related chemical discovered from Amphidinium
benthic species, showed cytotoxic action against human cervical cancer HeLa cells [212].

Kobayashi et al. (1988) discovered a new form of biologically active ceramide, symbio-
ramide, from the laboratory-cultured dinoflagellate Symbiodinium sp. [213], which showed
antileukemic action in vitro against L-1210 murine leukemia cells [214]. Gambieric acids
A–D, potent antifungal compounds derived from a culture of the marine dinoflagellate
Gambierdiscus toxicus (GIII strain), have shown strong antifungal activity against filamen-
tous fungus but are inert against yeasts [215]. Gambieric acids are up to 2000 times more
effective than amphotericin B against some fungi. Gambieric acids are cytotoxic as well, al-
though they do not have the same level of neurotoxicity as other big marine fused-polyether
toxins such as ciguatoxins, brevetoxins, maitotoxins, and yessotoxins [194]. Additional
research is needed to investigate the bioactive compounds found in dinoflagellates in order
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to discover a new cancer-fighting medicine and create a cancer-free environment. The need
for a cancer-free and healthy environment is immense.

7. Conclusions and Future Prospects

Toxins derived from phytoplankton and their therapeutic interventions are briefly
discussed. Phytoplankton have been proven to be a rich source of physiologically active
toxins with intriguing biological properties that could be used in a variety of therapeutic and
medicinal applications. Phytoplankton toxins are valuable in pharmacology because they
contain a wide range of chemical structures as well as possess a wide range of biological
properties. Despite their known value, the shortage of such biologically active toxins for
more active research as well as preclinical testing, which may ultimately lead to commercial
exploitation, continues to be a major problem. However, due to a paucity of pure toxins,
several such toxins have not been well studied, and their pharmacological properties
remain unknown. Future studies should be aimed at the synthesis of these toxins, such
as an in-silico approach, the utilization of high-throughput technology, appropriate study
design to implement desirable clinical trials, surface modification of the compounds, drug
repurposing, and the formation of a noncomplex structure, as these will be highly relevant
and sophisticated approaches for developing ideal and effective toxin molecules to be used
for protection against diseases. More research is urgently needed to determine the precise
mode of action of these unique physiologically and biologically active phytoplankton toxins
and to develop potential pharmacophores against harmful diseases such as cancer and
other diseases in humans.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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phosphodiesterase; PP1 and PP2, protein phosphatase 1 and 2; PLTX, Palytoxin; PTXs, Pectenotoxins;
ROS, reactive oxygen species; SPX, Spirolides; STX, saxitoxin; TNF, tumor necrosis factor, TTX,
Tetrodotoxin; YTXs, Yessotoxins; ZTs, Zooxanthellatoxins.
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