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SUMMARY

Epstein-Barr virus (EBV) represents a major global
health problem. Though it is associated with infec-
tious mononucleosis and�200,000 cancers annually
worldwide, a vaccine is not available. The major
target of immunity is EBV glycoprotein 350/220
(gp350) that mediates attachment to B cells
through complement receptor 2 (CR2/CD21). Here,
we created self-assembling nanoparticles that dis-
played different domains of gp350 in a symmetric
array. By focusing presentation of the CR2-binding
domain on nanoparticles, potent neutralizing anti-
bodies were elicited in mice and non-human
primates. The structurally designed nanoparticle
vaccine increased neutralization 10- to 100-fold
compared to soluble gp350 by targeting a function-
ally conserved site of vulnerability, improving vac-
cine-induced protection in a mouse model. This
rational approach to EBV vaccine design elicited
potent neutralizing antibody responses by arrayed
presentation of a conserved viral entry domain, a
strategy that can be applied to other viruses.
INTRODUCTION

Epstein-Barr virus (EBV) infection is associated with multiple hu-

man diseases, including infectious mononucleosis (IM) and a

variety of malignancies. Burkitt and Hodgkin lymphoma, gastric,

and nasopharyngeal carcinoma are among the neoplasms

observed after infection, as are lymphoproliferative disorders.

The prevalence and the severity of these diseases underscore

the potential public health benefit of an EBV vaccine (Cohen

et al., 2011).
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Despite the morbidity associated with EBV, there are no pro-

phylactic vaccines, though the virus was isolated and identified

more than a half century ago (Epstein et al., 1964). Attempts to

develop a vaccine have focused on the viral major envelope

glycoprotein 350/220 (gp350), because it represents a principal

target of neutralizing antibodies in naturally infected individuals

(Hoffman et al., 1980; Thorley-Lawson and Geilinger, 1980;

Thorley-Lawson and Poodry, 1982). Prototype gp350-based

vaccines have induced protective immunity against EBV-medi-

ated lymphomas in a cottontop tamarin challenge model of

disease (Epstein et al., 1985) and more recently reduced infec-

tion in a rhesus macaque model in which both immunization

and challenge were performed using rhesus macaque lymphoc-

ryptovirus, a homolog of EBV (Sashihara et al., 2011). Selected

candidate prophylactic EBV vaccines have been evaluated in hu-

mans (Elliott et al., 2008; Gu et al., 1995; Moutschen et al., 2007;

Sokal et al., 2007). The only phase II trial of an EBV prophylactic

vaccine used recombinant soluble gp350with an AS04 adjuvant.

That vaccine demonstrated a 78% reduction in the rate of IM in

EBV-seronegative vaccine, but it did not protect against acquisi-

tion of primary infection (Sokal et al., 2007), limiting enthusiasm

for its further development.

EBV infects B cells by engaging viral gp350 to its primary re-

ceptor, complement receptor 2 (CR2/CD21) (Fingeroth et al.,

1984), or alternatively CR1 (CD35) (Ogembo et al., 2013). The

heterotrimeric viral glycoprotein complex, gH/gL/gp42, binds

to HLA class II molecules as a co-receptor on B cells, while

heterodimeric gH/gL andBMRF2 engage integrins as primary re-

ceptors to infect epithelial cells (Connolly et al., 2011; Hutt-

Fletcher, 2007; Tugizov et al., 2003). Although inhibition of any

of these viral glycoproteins by antibody or gene disruption pre-

vents or severely impairs viral infection of cells, the degree of

virus neutralization varies by antibody specificity and the target

cell type. A murine monoclonal antibody (mAb) 72A1 potently

neutralizes EBV infection of B cells (Hoffman et al., 1980), and

its predicted epitope on gp350 largely overlaps the inferred

binding site of CR2, suggesting a mechanism of neutralization
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Figure 1. Molecular Design of gp350-Based

Nanoparticles

(A) Assembled hybrid ferritin model (left) and en-

capsulin (right). Engineered insertion sites for

exogenous antigens are indicated as red spheres.

(B) Schematic representation of full-length gp350,

its truncated variants, and gp350-based nano-

particles. Domains I, II, and III of gp350 are color

coded in dark blue, sky blue, and pale blue,

respectively. Structurally undefined region and

transmembrane (TM)/cytoplasmic tail (CT) are

colored in gray and white, respectively. Hexa-

histidine tag (HIS), ferritin, and encapsulin are

colored in black, red, and green, respectively.

Amino acid (AA) position relative to full-length

gp350 is indicated at the bottom.

See also Figure S1.
mediated by this antibody (Tanner et al., 1988). The mAb 72A1

also blocks the interaction of gp350 with CR1 (Ogembo et al.,

2013), further indicating that this epitope is functionally important

and hence an attractive vaccine target to prevent viral infection

of B cells, a principal target cell type of EBV. Here, we aimed

to elicit potent neutralizing antibodies to this epitope by

immunizing with a vaccine designed based on a rational under-

standing of structural biology and nanotechnology to optimize

presentation and recognition of this site of vulnerability.

RESULTS

Design and Expression of EBV gp350-Based
Nanoparticles
To display monomeric antigens on the surface of self-assem-

bling nanoparticles, we identified two potential platforms, ferritin

(Cho et al., 2009) and encapsulin (Sutter et al., 2008). Ferritins

form an octahedral cage consisting of 24 subunits, while encap-

sulin forms an icosahedron made of 60 identical subunits (T = 1).

Ferritins have been engineered for multiple purposes (Huard

et al., 2013; Jääskeläinen et al., 2007; Li et al., 2006; Meldrum

et al., 1992). Among these innovations, we have recently devel-

oped a platform to mount a viral trimeric glycoprotein at ferritin’s

3-fold axes, providing a basis for structure-based nanoparticu-

late immunogens (Kanekiyo et al., 2013). Comparison of ferritin

structures revealed that certain ferritins, including human light

chain (Wang et al., 2006) (PDB: 2FFX) and bullfrog lower subunit

(Trikha et al., 1995) (PDB: 1RCC), contained an NH2-terminal

extension that was not present in ferritin fromHelicobacter pylori

(Cho et al., 2009) (PDB: 3EGM). This NH2-terminal extension

makes the NH2-terminal residue project radially from the nano-

particle core, and the termini are evenly spaced on the surface.

Due to relatively high sequence homology between bullfrog

and human ferritins (62%), we were concerned that use of either

as a vaccine platform could induce an autoimmune reaction.

The overall architecture of ferritin subunits from different spe-

cies is largely similar, although the sequences ofH. pylori and hu-
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man ferritins are diverse (18% and 24%

identity to human light and heavy chains,

respectively). To avoid the potential for
vaccine-induced autoimmunity, we therefore fused the amino

terminal extension of bullfrog ferritin to H. pylori ferritin to build

a hybrid that has the antigen-attachment sites distributed evenly

on the surface (Figure 1A, left). Although encapsulin has not been

studied as a scaffold to present heterologous proteins on its sur-

face, we found that the COOH-terminal of encapsulin subunits

project outward from the particle core and are located proximal

to the 5-fold symmetry axis (Figure 1A, right). This allowed us to

create COOH-terminal fusion proteins to present foreign antigen

on the nanoparticle surface.

EBV gp350 is a type I transmembrane protein composed

of 907 amino acids, including an ectodomain, a transmem-

brane domain, and a cytoplasmic tail (Figures 1B and S1A).

We analyzed different gp350 truncation variants for their

ability to form nanoparticles and found that the smallest

gp350 variant (D12) failed to express on both ferritin and

encapsulin platforms, suggesting instability of this variant.

The largest variant (ectodomain) with ferritin was expressed;

however, a mixture of assembled and misassembled/disas-

sembled species was observed that excluded further use of

this construct (Figure S1B). Two truncation variants, termed

D2H6O and D123, expressed stably on the ferritin and encap-

sulin without disturbing self-assembly of the nanoparticles.

Although gp350 is extensively posttranslationally modified

by both N- and O-linked glycosylations (Machiels et al.,

2011; Serafini-Cessi et al., 1989), the shorter D123 trunca-

tion eliminates most of the ‘‘mucin-like’’ domain, which may

prevent recognition of gp350 by the immune system (Fig-

ure S1C), and hence D123 was selected for further studies.

The purified soluble gp350 proteins and D123 nanoparticles

were homogenous, as shown by size exclusion chromatog-

raphy (Figure 2A).

Antigenicity and Structural Integrity of EBV
gp350-Based Nanoparticles
We next examined the antigenicity of gp350 displayed on nano-

particles by using mAbs to gp350. mAb 72A1 (Hoffman et al.,
August 27, 2015 ª2015 Elsevier Inc. 1091
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Figure 2. Biochemical and Antigenic Char-

acterization of gp350-Based Nanoparticles

(A) Size exclusion chromatography profiles of

soluble gp350 ectodomain, D123, and D123 nano-

particles. After affinity purification with Ni-NTA

(soluble gp350 proteins) or GNA lectin (D123-

ferritin and D123-encapsulin), proteins were sepa-

rated by size exclusion chromatography using a

Superdex 200 10/300 (soluble gp350 proteins)

(left) or a Sephacryl S-500 16/60 (D123 nano-

particles) column (right).

(B and C) Binding of anti-gp350 mAbs to purified

proteins was assessed by immunoprecipitation (B)

and ELISA (C). HC and LC indicate heavy and light

chains of antibody, respectively. Each symbol

represents mean ± SD.

See also Figure S2.
1980) recognizes the CR2-binding site (CR2BS) of gp350 and

potently neutralizes virus, whereas mAb 2L10 (Luka et al.,

1984) is a non-neutralizing anti-gp350 antibody and does not

compete with 72A1. Both D123-ferritin and D123-encapsulin

were immunoprecipitated equivalently by 72A1 and 2L10, but

not by an irrelevant mAb C179 (Okuno et al., 1993) (Figure 2B).

Analogous to soluble gp350 ectodomain, the D123 nanoparticles

bound to 72A1 and 2L10; however, soluble D123 showed

reduced reactivity to both mAbs by ELISA (Figure 2C), suggest-

ing that the conformation of D123 was preserved on the nanopar-

ticles while that of soluble D123 was altered. This indicated that

the soluble form of D123 differed biochemically from either

gp350 ectodomain or D123 nanoparticles, although the overall

thermostability of these proteins was similar, as measured by

differential scanning calorimetry (Figure S2A). To assess

whether the D123 nanoparticles could bind to their cognate

ligand, we tested their binding to CR2 on human B cells by

flow cytometry. As expected, both soluble gp350 and D123

nanoparticles bound to CR2hi B cells, and the binding was

dependent on CR2 expression, as the CR2lo B cells and

T cells (CR2�) showed weaker and no binding, respectively (Fig-

ure S2B). Preincubation of anti-CR2 antibody diminished the

binding of gp350 to CR2, indicating that the interaction was

mediated by CR2 (Figure S2B).

Electron microscopic (EM) analysis confirmed that the D123

and D2H6O nanoparticles formed monodispersed particles

with globular protrusions from both ferritin and encapsulin

nanoparticles (Figures 3A and S3). Cryo-EM reconstruction

further confirmed the symmetry of gp350 D123 on ferritin and

encapsulin nanoparticles (Figure 3A). The location of the

gp350 protrusions on the ferritin nanoparticles correlated with

the 2-fold symmetry and formed a dimer; however, the mono-

meric gp350 protrusions in the encapsulin nanoparticles are
1092 Cell 162, 1090–1100, August 27, 2015 ª2015 Elsevier Inc.
well separated (Figure 3A). Although

gp350 D123 is predicted to be highly gly-

cosylated, the dimer interface observed

in ferritin cryo-EM contains hydrophobic

patches that might be favored to form a

dimer. As expected, the inferred CR2BS

on the gp350 D123 is exposed on the
surface of ferritin and is readily accessible for immune recogni-

tion (Figure 3B).

Immunogenicity of EBV gp350-Based Nanoparticles
To characterize the antibody response elicited by soluble gp350

derivatives and D123 nanoparticles, mice were immunized with

5.0 mg of soluble gp350 ectodomain, D123, D123-ferritin, or

D123-encapsulin in the presence of Sigma Adjuvant System

(SAS) at weeks 0 and 3. After the first dose, antibody binding

to gp350 was detected in mice immunized with D123-ferritin

and D123-encapsulin (ELISA endpoint titers of 104.6 ± 0.1 and

104.4 ± 0.4, respectively). These titers were >100-fold higher

than those found in mice immunized with gp350 ectodomain

(Figure 4A). Antibodies to gp350 were also measured in a

luciferase immunoprecipitation system (LIPS) assay, which

has been shown to correlate well with EBV neutralization activity,

and in a virus neutralization assay using a GFP-reporter

virus (Sashihara et al., 2009) (Figure 4A). The second dose of

D123-ferritin or D123-encapsulin substantially increased gp350

antibody titers. The binding dissociation rate of anti-gp350 anti-

bodies in sera was also improved by 3- to 5-fold after the second

dose, as measured using biolayer interferometry (Figure S4A),

indicating that anti-gp350 antibodies showed greater affinity

maturation and bound more tightly to gp350 than antibodies eli-

cited after the first dose, as observed with other vaccines (Bach-

mann et al., 1997; Khurana et al., 2011; Lee et al., 2012). After the

second injection, gp350 ectodomain elicited anti-gp350 anti-

body titers only �2-fold lower than those in mice immunized

with D123-ferritin or D123-encapsulin; but the neutralization activ-

ity of the sera frommice immunized with gp350 ectodomain was

�1,000-fold lower than that of sera from D123-ferritin or D123-en-

capsulin immunization groups (Figure 4A). This discrepancy was

also observed in the LIPS assay (Figure 4A). Immunization with
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soluble D123 elicited a negligible antibody response by ELISA,

LIPS, and virus neutralization assays, indicating that the mono-

meric form of this protein is much less immunogenic. No virus-

neutralizing antibody was induced by ferritin alone or ferritin

mixed with either soluble gp350 ectodomain or D123 in contrast

to immunization with D123-ferritin (Figure 4B). These data docu-

ment that a physical linkage of antigen to nanoparticle is required

for antigen-specific immune induction and show that ferritin

does not stimulate a non-specific adjuvant response. Immuniza-

tion with a 10-fold lower dose (0.5 mg) of D123-ferritin and D123-

encapsulin induced virtually the same gp350 ELISA, LIPS, and

neutralizing antibody titers in mice (Figure S4B).

Durability of Neutralizing Antibodies Elicited by
gp350-Based Nanoparticles
We next assessed the kinetics of virus-neutralizing antibody in

immunized mice. Two months after the second dose of vaccine

(week 11), the neutralizing antibody titers in mice receiving D123-

ferritin and D123-encapsulin declined about 10-fold from the

peak titers but then remained stable until 3 months after the sec-

ond dose without further immunization (Figure 4C). Neutralizing

antibody titers in mice immunized with gp350 ectodomain

were slightly increased over time but still remained at a low level

(101.3 ± 0.5) (Figure 4C). Mice were then immunized with a third

dose at week 16. The titers were increased by 33- and 26-fold

in D123-ferritin and D123-encapsulin, respectively (IC50 titers of

104.3 ± 0.2 and 103.7 ± 0.2, respectively) after boosting, and those

titers did not wane as rapidly as after a second dose and re-

mained high even after 3 months (IC50 titers of 103.7 ± 0.3 and

103.6 ± 0.2, respectively) (Figure 4C). The soluble gp350 ectodo-

main did not substantially enhance the neutralizing antibody

titers after three immunizations (Figure 4C). We again observed

similar titers and kinetics of neutralizing antibody in the lower-

dose (0.5 mg) groups immunized with D123-ferritin or D123-encap-

sulin (Figure S4C). Importantly, no cross-reactive antibodies to

autologous (i.e., murine) ferritin were observed even after three

immunizations with D123-ferritin in mice, consistent with previous

findings that tolerance to homologous ferritin is preserved (Kane-

kiyo et al., 2013) (Figure S4D).
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Immunogenicity of gp350-Based
Nanoparticles in Non-human
Primates
To evaluate vaccine-induced immunity

in a species more closely related to
humans, we immunized cynomolgus macaques (Macaca fasci-

cularis). Monkeys were given 50 mg of gp350 ectodomain or

25 mg of either gp350 D123-ferritin or D123-encapsulin with adju-

vant (SAS) at weeks 0, 4, and 12. Because these monkeys are

naturally infected with a lymphocryptovirus that shares homol-

ogy with EBV, cross-neutralizing EBV antibody was found in all

monkeys prior to immunization (IC50 titers from 101.1 to 102.0)

(Figure 5A). Nevertheless, the neutralizing antibody titers

increased after two doses (week 6) with either D123 nanoparticle,

and these titers were further enhanced by 119- and 25-fold from

the baseline after a third dose (week 14) of D123-ferritin and D123-

encapsulin, respectively (Figure 5A). Neutralization titers in

gp350 ectodomain-immunized animals were �0.5 to 1.0 log

lower, although the overall antibody binding titers were similar

to that of D123-ferritin and D123-encapsulin-immunized animals

(Figures 5A and 5B). The data confirm the immunogenicity of

gp350-based nanoparticles in a second species and indicate

that antibody production can be enhanced in the presence of

pre-existing immunity.

Protective Immunity against Experimental Challenge
with Recombinant Vaccinia Virus Expressing EBV gp350
To test the efficacy of vaccine-induced immunity in a mouse

challenge model, we employed a recombinant virus challenge

using a vaccinia virus that expressed EBV gp350 (rVV-gp350).

We constructed and characterized rVV-gp350 and titrated the

dose of virus in mice to establish a model in which weight loss

was observed as a result of the infection (Figure S5), as has

been reported with parental vaccinia virus (Chen et al., 2007).

When mice were challenged 2 months after the third immuniza-

tion, all mice immunized with gp350 ectodomain and control

mice, with one exception, lost R30% of their weight within

8 days and required euthanization; however, four out of five of

the D123-ferritin-immunized mice were protected, showing

milder weight loss followed by rapid recovery (Figure 6A,

p = 0.0027 for mice immunized with D123-ferritin versus gp350

ectodomain). We observed similar findings in mice that were

challenged even 10 months after the third immunization (Fig-

ure 6B, p = 0.0210 for mice immunized with D123-ferritin versus
August 27, 2015 ª2015 Elsevier Inc. 1093
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Figure 4. Immunogenicity of Soluble gp350 Monomer and gp350-Based Nanoparticles

(A) Groups of BALB/c mice (n = 5) were immunized with 5.0 mg of soluble gp350 ectodomain, D123, D123-ferritin, or D123-encapsulin in adjuvant at weeks 0 and 3.

Immune sera were collected 2 weeks after the first (1) and the second (2) immunizations and analyzed by gp350 ELISA, LIPS, and virus neutralization assays.

Endpoint binding titer (left), LIPS relative light units (RLU) (middle), and neutralization IC50 titer (right) were determined. **p < 0.01; ***p < 0.001; ****p < 0.0001.

(B) Neutralization titers frommice 2 weeks after the second immunization with ferritin alone, ferritin mixed with gp350, or D123-ferritin. The data are shown as box-

and-whiskers plots (box indicates lower andupper quartileswith line atmedian, andwhiskers spanminimumandmaximumdatapoints)with individual datapoints.

(C) Kinetics of serum neutralization titers after immunization with gp350 ectodomain or gp350-based nanoparticles. Groups of BALB/c mice (n = 5) were

immunized with 5.0 mg of gp350 ectodomain, D123-ferritin, or D123-encapsulin in adjuvant at weeks 0, 3, and 16. Immune sera were collected periodically after

immunization, and serum neutralization IC50 titers were determined and plotted. Each dot represents an individual mouse. The horizontal dotted line represents

the detection limit of the assay.

See also Figure S4.
gp350 ectodomain). Protection was not observed in mice immu-

nized with D123-encapsulin in both experiments (Figures 6A and

6B).We note that themajority of the vaccinia virionswould not be

enveloped by the plasma membrane where the gp350 would be

expressed but instead envelope would be derived from the

endoplasmic reticulum. Hence, anti-gp350 antibody would likely

not completely neutralize the incoming vaccinia virus particles

and allow the incoming virus to infect cells for at least one round

of replication. In contrast, it is more likely that vaccinia virus-

infected cells that express gp350 on the surface are prone to

be killed by antibody-dependent cell cytotoxicity, complement-

dependent cytotoxicity, or cytotoxic T cells. We think that one
1094 Cell 162, 1090–1100, August 27, 2015 ª2015 Elsevier Inc.
or more of these mechanisms mediate viral clearance in the

vaccinia challenge model. We observed slightly higher neutral-

izing activity and increased binding affinity of anti-gp350 anti-

body in D123-ferritin-immunized groups than in D123-encapsulin

groups (Figures 4C, S4A, and S4B), but the difference was not

statistically significant, suggesting that other mechanisms may

contribute to protection.

Induction of CR2BS-Specific Antibodies by D123

Nanoparticle Immunization
To define the specificity of the antibodies elicited by gp350-

based immunogens, we used a surface plasmon resonance
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A B Figure 5. Immunogenicity of gp350-Based

Nanoparticles in Cynomolgus Macaques

(A) Neutralization titers in monkeys immunized

with 50 mg of gp350 ectodomain, 25 mg of

gp350 D123-ferritin, or D123-encapsulin in adjuvant

at weeks 0, 4, and 12. Plasma was collected

prior to immunization and periodically after im-

munization.

(B) Plasma gp350 binding antibody titer in immu-

nized monkeys after three immunizations. Each

symbol represents an individual monkey. The

horizontal dotted line represents the detection

limit of the assay. The data are shown as box-and-

whiskers plot with individual data points.
(SPR)-based antibody competition assay (McLellan, 2013) (Fig-

ure S6). Strikingly, more than half of the total anti-gp350

antibodies in the sera elicited by either D123-ferritin or D123-en-

capsulin was competed by CR2BS-directed mAb 72A1 when it

was used as a competitor (52% ± 11% or 60% ± 12%, respec-

tively), whereas only 5% ± 4%of antibodies in immune sera from

gp350 ectodomain-immunized animals was blocked by thismAb

(Figures 7A and 7B). This competition demonstrated that the

CR2BS on both D123 nanoparticles was the predominant target

of recognition; however, the same site on the gp350 ectodomain

was not the major target. In addition, these differences were not

due to total levels of gp350 antibody since the ELISA endpoint

titers differ only �2-fold between the three immunization groups

after the second dose (Figure 4A). Interestingly, only a negligible

fraction of anti-gp350 antibodies in the same immune sera was

competed by non-neutralizing, non-CR2BS-directed mAb 2L10

(6% ± 5%, 5% ± 4%, and 12% ± 16% with gp350 ectodomain,

D123-ferritin, and D123-encapsulin, respectively), although 72A1

and 2L10 epitopes were equally available and accessible for im-

mune recognition (Figures 2B, 2C, 7A, and 7B).

To confirm the functional relevance of the CR2BS-directed

antibodies in immune sera, we designed gp350 ectodomain

mutants to abolish CR2 and 72A1 binding (Figure 7C). One

mutant had an extra N-linked glycosylation site at residue 162

(glyc162), and another mutant had two extra glycans at residues

162 and 208 (glyc162/208), as both 162 and 208 have been re-

ported as critical residues for CR2 and 72A1 binding (Szakonyi

et al., 2006; Young et al., 2008). Expectedly, the glycan mutation

at 162 reduced binding to mAb 72A1, and the 162/208 glycans

completely diminished 72A1 recognition, whereas binding of

mAb 2L10 to gp350 wild-type (WT), glyc162, and glyc162/208

remained constant (Figure 7C). When sera frommice immunized

with D123-ferrtin or D123-encapsulin were pre-incubated with

gp350WT to assess virus neutralization, most of neutralizing ac-

tivity was depleted, as all gp350-specific antibodies in sera were

absorbed by excess amount of gp350 WT. In contrast, the 162/

208 glycan mutant absorbed only a small fraction of the neutral-

ization activity, indicating that themajority of neutralization activ-

ity was targeting the site blocked by this mutant (Figure 7D).

These results document the importance of CR2BS-directed

antibodies in virus neutralization. Further, we found increased

serum antibody binding to the CR2BS relative to full-length
gp350 ectodomain after immunization with D123 nanoparticles

compared to immunization with gp350 ectodomain (Figure 7E),

although the overall antibody binding titers were similar in these

immunization groups (Figures 4A and 5B), thus documenting

preferential elicitation of CR2BS-directed antibodies in both

immunized mice and monkeys.

DISCUSSION

Natural infection with EBV induces a neutralizing antibody

response in the majority of individuals, although the titers are

generally modest (IC50z101.5) (Sashihara et al., 2009). The qual-

ity of the immune response is often a key determinant of vaccine-

induced immunity independent of its magnitude. It is noteworthy

that the soluble gp350 ectodomain and D123 do not effectively

induce neutralizing antibodies in mice, unlike the D123 nanopar-

ticles, despite the fact that both soluble and nanoparticle forms

of gp350 have similar antigenic profiles. This observation high-

lights the importance of antigen presentation, specifically the

conformational authenticity of functional domains, in deter-

mining the quality of the immune response (McLellan, 2013). Im-

mune focusing through nanoparticle presentation of selective

domains of gp350 enabled elicitation of antibody predominantly

to CR2BS, providing a mechanism of potent neutralization in

sera. The mode of neutralization targeting the receptor-binding

site (RBS) has been described in other viruses. The VRC01-

class of antibodies that bind the CD4-binding site of the enve-

lope of human immunodeficiency virus 1 (HIV-1) potently

neutralize >90% of circulating viral strains regardless of their

sequence variability (Wu et al., 2010; Zhou et al., 2010). MAbs

CH65 (Whittle et al., 2011), C05 (Ekiert et al., 2012), and some

others neutralize influenza A viruses through the conserved sialic

acid-binding site on a viral hemagglutinin. Certain mAbs to hep-

atitis C virus (Krey et al., 2013), poliovirus (Chen et al., 2011,

2013), herpes simplex virus (Lee et al., 2013), and severe acute

respiratory syndrome (SARS) coronavirus (van den Brink et al.,

2005) also use a similar mechanism to neutralize viruses. Since

the RBS must be functionally conserved to engage its host cell

receptor, it is one of the most vulnerable targets of the virus.

However, isolated RBS-containing domains (or RBDs) are often

weakly immunogenic due to steric hindrance from surrounding

glycans, hypervariability near the RBS that impairs targeting by
Cell 162, 1090–1100, August 27, 2015 ª2015 Elsevier Inc. 1095
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Figure 6. Protective Immunity against an

Experimental Infection with Recombinant

Vaccinia Virus Expressing EBV gp350

in Mice

(A and B) Kaplan-Meier survival curve and body

weight change after recombinant gp350-vaccinia

virus challenge. Mice (n = 5) were immunized with

5.0 mg of gp350 ectodomain, gp350 D123-ferritin,

or D123-encapsulin at weeks 0, 3, and 16 and were

challenged at 2 months after the final immuniza-

tion (A) or immunized three times with 0.5 mg of

vaccines and challenged at 10 months after the

final immunization (B). Summary of p values be-

tween groups (generated by log-rank Mantel-Cox

test) is shown in each panel (ns, not significant).

Mock, irrelevant nanoparticle-immunized mice

(n = 5); control, age-matched naive mice (n = 5).

See also Figure S5.
the immune system, or altered conformation (Georgiev et al.,

2013; Joyce et al., 2013; Julien et al., 2012).

Extensive glycosylation of EBV gp350 is thought to regulate

the immune response to the glycoprotein (Machiels et al.,

2011; Serafini-Cessi et al., 1989). One of the principles of recom-

binant vaccine design is to improve immunogenicity of the native

protein by modifying and/or altering its function/configuration,

otherwise impossible to apply to certain other vaccine platforms

(e.g., killed or attenuated virus). Truncation of the COOH-termi-

nal �480 residues of gp350 to make the D123 variant almost

completely removed the ‘‘mucin-like’’ O-linked glycan-rich

domain from the protein; however, this truncation led to protein

mis-folding and/or destabilization in a soluble form. Improve-

ment of immunogenicity was observed only when gp350 D123

was displayed on ferritin or encapsulin nanoparticles, suggesting

that the D123 was conformationally stabilized on the nanopar-

ticles without the remainder of the gp350 domain(s).

The diameter of D123-ferritin and D123-encapsulin particles are

within 20–50 nm, and therefore both are likely to traffic through

lymph nodes similarly, where they would be taken up by den-

dritic cells, B cells, and macrophages (Irvine et al., 2013). One

potential explanation for the difference in immunogenicity is

the orientation of gp350RBS relative to the surface of the particle
1096 Cell 162, 1090–1100, August 27, 2015 ª2015 Elsevier Inc.
and the packing density. These parame-

ters would be quite different between

ferritin and encapsulin and could affect

the accessibility and angle of approach

by immune receptors. On ferritin, the

RBS is presented upright and spaced

within 50–100 Å. This distance would

allow crosslinking of B cell receptors

(BCR) and would enhance signal trans-

duction through downstream molecules

to stimulate B cell activation (Bachmann

and Zinkernagel, 1997). It also remains

possible that the dimerization of D123

seen in ferritin effectively limits the sol-

vent-exposed surface of non-RBS sites

and focuses the immune response to
the RBS more efficiently. Recent advances in nanoparticle tech-

nology further accentuate the benefits of symmetrically arrayed

antigens to activate B cells through low-affinity BCRs (Jardine

et al., 2013; Lingwood et al., 2012) and improve vaccine-induced

immunity (Kanekiyo et al., 2013). These technologies allowed us

to design immunogens that elicit immune response to targets

otherwise difficult to be induced by native protein such as the

CR2BS on gp350.

Self-assembling nanoparticle-based EBV vaccine candidates

displaying the receptor-binding portion of gp350 elicited potent

neutralizing activity in mice and non-human primates by pre-

cisely targeting the site of vulnerability of the virus and stimulated

neutralizing antibody responses that significantly exceeded the

level obtained with soluble gp350 protein. We anticipate that

this synthetic approach to design immunogens offers novel op-

portunities to create and/or redesign vaccines against patho-

gens for which it has been difficult to induce effective immunity.
EXPERIMENTAL PROCEDURES

Gene Synthesis and Vector Construction

The gene encoding Helicobacter pylori-bullfrog hybrid ferritin was constructed

by fusing residues 2–9 of bullfrog (Rana catesbeiana) ferritin lower subunit
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Figure 7. Detection of CR2BS-Directed

Antibodies in Immune Sera

(A) SPR-based cross-competition assay of im-

mune sera with mAbs. Binding of immune sera

(after the second immunization) to the mAb-satu-

rated gp350 was measured by Biacore. Each

curve represents an individual serum. All data

were normalized with C179-saturated curves and

are shown as fraction response. Cross-competi-

tion of immune sera by 72A1 (left) and 2L10 (right)

are shown for different immunization groups.

(B) Specificity of gp350-binding antibodies in im-

mune sera. Percent inhibition of serum antibodies

to bind gp350 by 72A1 or 2L10 was calculated.

(C) Generation of EBV gp350 CR2BS mutants.

The gp350 domains I and II are shown in blue and

sky blue, respectively. Attached glycans are shown

as yellow spheres. Residues 162 and 208 are

shown in red, and inferred CR2BS is indicated

(PDB:2H6O) (left).Bindingofgp350WTandCR2BS

mutants tomAbs 72A1 and 2L10 wasmeasured by

ELISA (right). Each symbol represents mean ± SD.

(D) Serum neutralization titers determined in the

absence (closed circle) or presence of gp350

WT (open circle) and glyc162/208 (open square)

proteins.

(E) Preferential elicitation of antibody response to

CR2BS in mice and monkeys. Serum antibody

response to either gp350 WT or glyc162/208 was

measured after the second immunization with

indicated immunogens. Endpoint ELISA antibody

titers for both gp350 WT and glyc162/208 were

determined, and ratios of those titers were

calculated (WT ⁄ glyc162/208).

The data in (B), (D), and (E) are shown as box-and-

whiskers plots with individual data points. *p <

0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. See

also Figure S6.
(UniProt: P07797 with a N8Q mutation to abolish a potential N-glycosylation

site) to H. pylori nonheme ferritin (UniProt: Q9ZLI1, residues 3–167) with an

I7Emutation to preserve the conserved salt bridge found in human and bullfrog

ferritins (6R and 14E in both human light chain and bullfrog lower-subunit fer-

ritins) with 6R of bullfrog ferritin. Mutation N19Q was introduced in H. pylori

ferritin to abolish a potential N-glycosylation site. The secreted encapsulin

was constructed by fusing a human CD5 signal to Termotoga maritima encap-

sulin (UniProt: Q9WZP2, residues 1–264). The gene encoding EBV strain B95-8

gp350 (UniProt: P03200, residues 1–907) was synthesized, and the fragments

corresponding to ectodomain (residues 2–860), analogous to the region used

in the crystal structure (Szakonyi et al., 2006) (D2H6O, residues 2–470), D123

(residues 2–425) and D12 (residues 2–317) were amplified. The fragments

were inserted between a bovine prolactin signal (bPRL) and hybrid ferritin or

were fused to 30 end of encapsulin with a (SG3)2 linker to give rise to gp350-

ferritin and gp350-encapsulin, respectively. Soluble gp350 ectodomain and

D123 were constructed by fusing corresponding fragments with bPRL

and COOH-terminal hexa-histidine tag. The CR2BS mutant gp350s were

made by introducing N-glycosylation sites at 162 (W162N/N164T) and 208
Cell 162, 1090–1100,
(D208N/E210T). All genes were then cloned into

the CMV/R 8kb (VRC 8405) mammalian expres-

sion vector for protein production.

Biosynthesis of Recombinant Proteins and

Purification

The expression vectors were transiently trans-

fected into FreeStyle 293F or Expi293F cells using
293fectin or ExpiFectamine 293 transfection reagents, respectively (Life Tech-

nologies). The gp350-based nanoparticleswere purified by affinity chromatog-

raphy using Galanthus nivalis agglutinin resins (EY Laboratories) followed by

size exclusion chromatography with a HiPrep 16/60 Sephacryl S-500 HR

column (GE Healthcare). The soluble gp350 proteins were purified using Ni

sepharose excel resin (GE Healthcare) followed by size exclusion chromatog-

raphy with a Superdex 200 10/300 GL (GE Healthcare).

Electron microscopy and cryo-EM reconstruction

For negative stain electron microscopy (EM), samples of about 50 mg ml�1

were adsorbed to freshly glow-discharged carbon-coated grids and stained

with 2% ammonium molybdate. Images were recorded on an FEI T20 micro-

scope with an Eagle CCD camera. For cryo-EM, samples (5 mg ml�1, 3 ml)

were applied to holey grids (Quantifoil) and fast-frozen in liquid ethane, as

described previously (Meng et al., 2013). Cryo-EM images of the D123-ferritin

and D123-encapsulin were acquired on an FEI Titan Krios operated at

300 keV and a CM200 FEG microscope operated at 200 keV, respectively.

Image processing and three-dimensional reconstruction were performed
August 27, 2015 ª2015 Elsevier Inc. 1097



using �1,000 particles with the EMAN suite of programs (Baker et al., 2010).

The final reconstruction was computed and was low-pass filtered to 30 Å in

resolution. The fit model was made using the EMFit program (Rossmann

et al., 2001).

Immunization

Animal experiments were carried out in accordance with all federal regulations

and NIH guidelines and were approved by the Institutional Animal Care and

Use Committee. Eight- to 10-week old female BALB/c mice (Charles River

Laboratories) were immunized (n = 5) intramuscularly with 5 or 0.5 mg of puri-

fied proteins in 100 ml of 50% (v/v) mixture of SAS adjuvant (Sigma) in PBS at

weeks 0, 3, and 16. For the non-human primate study, eight cynomolgus

macaques (Macaca fascicularis) were immunized with 50 mg (gp350 ectodo-

main) or 25 mg (D123-ferritin or D123-encapsulin) in SAS adjuvant intramuscu-

larly at weeks 0, 4, and 12.

GFP-Reporter Virus Neutralization Assay

Neutralization of EBV to B cells has been described previously (Sashihara

et al., 2009). Briefly, immune sera were serially diluted and incubated with

B95-8/F reporter virus (GFP-reporter EBV) for 2 hr. For protein competition

neutralization, sera were preincubated with either soluble gp350 WT or

glyc162/208 mutant protein (25 mg ml�1) for 30 min. The mixture was added

to Raji cells and incubated for 3 days. Cells were fixed and analyzed with an

Accuri C6 flow cytometer (BD Biosciences). Neutralization antibody titers

were expressed as the concentration of serum antibody needed to inhibit viral

entry by 50% (IC50).

Recombinant Vaccinia Virus Challenge

Full-length EBV gp350was cloned into pRB21, a plasmid encoding vaccinia vi-

rus (VV) vp37, which is required for plaque formation (Blasco andMoss, 1995).

BSC-1 cells were infected with VV vRB12 (Dvp37) and subsequently trans-

fected with pRB21 containing EBV gp350. Recombinant virus (rVV-gp350)

was rescued and purified by plaque purification. Challenge stock was purified

on a cushion of 36% sucrose by ultracentrifugation (32,900 3 g, 80 min)

and titrated in BSC-1 cells. Immunized mice were challenged intranasally

with13106PFUof virus (10ml per nostril).Miceweremonitoredandeuthanized

when they lost R30% of their pre-challenge weight or suffered symptoms.

Surface Plasmon Resonance-Based Antibody Competition

Soluble gp350 WT protein was immobilized on a CM5 sensor chip (GE Health-

care). Fifty microliters (100 mg ml�1) of mAb (72A1, 2L10, or C179) were flowed

over the chip at 30 ml min�1 before injecting 50 ml of the serum samples (1/50

dilution) at 30 ml ml�1 on a Biacore 3000 instrument (GE Healthcare). The chip

was regenerated using 3M MgCl2 after each run.

Statistical Analysis

p values were generated by one-way ANOVA using the Prism 5 program

(GraphPad Software) unless reported otherwise.

Molecular Representations

All structural renderings of proteins were generated using the UCSF Chimera

package, version 1.8 (http://www.cgl.ucsf.edu/chimera/). The UCSF Chimera

is developed by the Resource for Bio-computing, Visualization, and Infor-

matics at the University of California, San Francisco (supported by NIGMS

P41-GM103311).
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Moutschen, M., Léonard, P., Sokal, E.M., Smets, F., Haumont, M., Mazzu, P.,

Bollen, A., Denamur, F., Peeters, P., Dubin, G., and Denis, M. (2007). Phase I/II

studies to evaluate safety and immunogenicity of a recombinant gp350

Epstein-Barr virus vaccine in healthy adults. Vaccine 25, 4697–4705.

Ogembo, J.G., Kannan, L., Ghiran, I., Nicholson-Weller, A., Finberg, R.W., Tso-

kos, G.C., and Fingeroth, J.D. (2013). Human complement receptor type

1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 3, 371–385.

Okuno, Y., Isegawa, Y., Sasao, F., and Ueda, S. (1993). A common neutralizing

epitope conserved between the hemagglutinins of influenza A virus H1 and H2

strains. J. Virol. 67, 2552–2558.

Rossmann, M.G., Bernal, R., and Pletnev, S.V. (2001). Combining electron

microscopic with x-ray crystallographic structures. J. Struct. Biol. 136,

190–200.

Sashihara, J., Burbelo, P.D., Savoldo, B., Pierson, T.C., and Cohen, J.I. (2009).

Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with

neutralization of infectivity better than antibody titers to EBV gp42 using a rapid

flow cytometry-based EBV neutralization assay. Virology 391, 249–256.

Sashihara, J., Hoshino, Y., Bowman, J.J., Krogmann, T., Burbelo, P.D., Cof-

field, V.M., Kamrud, K., and Cohen, J.I. (2011). Soluble rhesus lymphocrypto-

virus gp350 protects against infection and reduces viral loads in animals that

become infected with virus after challenge. PLoS Pathog. 7, e1002308.

Serafini-Cessi, F., Malagolini, N., Nanni, M., Dall’Olio, F., Campadelli-Fiume,

G., Tanner, J., and Kieff, E. (1989). Characterization of N- and O-linked oligo-

saccharides of glycoprotein 350 from Epstein-Barr virus. Virology 170, 1–10.

Sokal, E.M., Hoppenbrouwers, K., Vandermeulen, C., Moutschen, M., Léo-
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