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MicroRNA (miRNA)–gene interactions are well-recognized as involved in the progression
of almost all cancer types including prostate cancer, which is one of the most
common cancers in men. This study explored the significantly dysregulated genes
and miRNAs and elucidated the potential miRNA–gene regulatory network in prostate
cancer. Integrative analysis of prostate cancer and normal prostate transcriptomic data
in The Cancer Genome Atlas dataset was conducted using both differential expression
analysis and weighted correlation network analysis (WGCNA). Thirteen genes (RRM2,
ORC6, CDC45, CDKN2A, E2F2, MYBL2, CCNB2, PLK1, FOXM1, CDC25C, PKMYT1,
GTSE1, and CDC20) were potentially correlated with prostate cancer based on
functional enrichment analyses. MiRNAs targeting these genes were predicted and eight
miRNAs were intersections between those miRNAs and the hub miRNAs obtained from
miRNA WGCNA analysis. Three genes (E2F2, RRM2, and PKMYT1) and four miRNAs
(hsa-mir-17-5p, hsa-mir-20a-5p, hsa-mir-92a-3p, and hsa-mir-93-5p) were key factors
according to the interaction network. RRM2 and PKMYT1 were significantly related
to survival. These findings partially elucidated the dysregulation of gene expressions
in prostate cancer. Efficient manipulations of the miRNA–gene interactions in prostate
cancer may be exploited as promising therapeutics.

Keywords: prostate cancer, signature, microRNA, WGCNA, TCGA

INTRODUCTION

Prostate cancer ranks as one of the most common malignancies in men (Attard et al., 2016). High-
risk prostate cancer is aggressive and can lead to poor outcomes at advanced stages and metastasis
(Litwin and Tan, 2017). A tremendous number of investigations have been conducted with the goal
of determining the mechanisms underlying the oncogenesis and development of prostate cancer.
Significant findings including androgen receptor mechanism have been well-established (Culig and
Santer, 2014). However, the detailed underlying mechanism is still far from being clear. To improve
the management of prostate cancer, the identification of novel signatures is of vital importance for
the prediction of prognosis and targeted therapy of prostate cancer patients.
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MicroRNAs (miRNAs) are small, non-protein-coding
RNA (usually 22 nucleotides) molecules, which function in
RNA silencing and post-transcriptional regulation of target
gene expression (Rupaimoole and Slack, 2017). Accumulating
evidence has shown that miRNAs are involved in nearly all cancer
types, acting as tumor oncogenes or suppressors and taking part
in cell proliferation, differentiation, and metastasis (Winbanks
et al., 2014; Vorvis et al., 2016). It is well-established that a large
number of specific miRNAs are involved in the carcinogenesis
and development of tumors by regulating the expressions of
their targeted mRNAs (Inui et al., 2010). With advancements
in biological and clinical research, miRNA–mRNA interactions
have been widely demonstrated to regulate the complicated
molecular mechanisms underlying oncogenesis, development,
invasion, and metastasis of tumors (Duell et al., 2017; Han et al.,
2017). The Cancer Genome Atlas (TCGA) database has stored
numerous genomic and gene expression profiles for various
types of tumors. Many genes and signaling pathways correlated
with cancer have been predicted based on analyses of these data,
which have provided valuable guidance for subsequent molecular
biology validation (The TCGA Legacy, 2018).

This study investigated the differentially expressed genes
(DEGs) and hub miRNAs in prostate cancer and screened
signatures of prostate cancer. Integrative analysis was performed
using gene and miRNA expression data of prostate cancer
downloaded from TCGA database to identify DEGs and miRNAs
in prostate cancer when compared with adjacent normal tissue
samples. Functional enrichment analyses were subsequently
conducted. Then the mRNA–miRNA interaction network was
constructed. Three genes and four miRNAs were found to be
hub factors of prostate cancer and the prognostic significance
was investigated.

MATERIALS AND METHODS

Analysis of Differentially Expressed
Genes Between Prostate Cancer and
Normal Samples in TCGA Prostate
Adenocarcinoma (PRAD) Datasets
Transcriptome raw count data of TCGA PRAD were obtained
from GDC Data Portal using R TCGAbiolinks package
(Colaprico et al., 2016). Clinical data of TCGA PRAD subjects
were obtained from UCSC XENA browser.1 Samples of primary
solid tumor and solid normal tissue were picked out for analysis,
and paraffin embedded samples as well as metastatic samples
were removed. Ensemble identifiers were annotated with gene
names using R Annotables package (genome version GRCh38).
Identifiers with no annotations were removed. For duplicated
identifiers corresponding to one gene name, the average of
all count values was calculated and rounded to be taken as
the count of that gene. Analysis of DEGs between prostate
cancer and normal tissues were performed using R DESeq2
package (Love et al., 2014). The phenotype of tumor or normal

1https://xena.ucsc.edu

sample was used as grouping variable and standard differential
expression analysis was conducted. The normalized expression
matrix was obtained through variance stabilizing transformation
of raw count data. As the DEGs would be taken as input in
the subsequent analysis, a less stringent criterion was used to
identify DEGs: adjusted p-value < 0.05 and absolute value of fold
change ≥ 2. Principal component analysis (PCA) was performed
based on the normalized expression data, using prcomp function
in R. Pheatmap and ggplot2 packages were used to plot gene
expression boxplot, volcano plot and heatmap.

Weighted Correlation Network Analysis
of DEGs and the Identification of
Modules Associated With Prostate
Cancer
The DEGs obtained by DESeq2 were used to perform weighted
correlation network analysis (WGCNA) to get the interesting
gene modules based on the gene expressions and patient
traits using R WGCNA package (Langfelder and Horvath,
2008). Before the one-step network construction and module
detection, a soft thresholding power value was calculated to
produce a scale-free network topology. Then one-step network
construction and detection of consensus modules were executed.
The network type was set as signed. Correlations between
clinical traits (tumoral or normal) and each module were
calculated and preliminary Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were conducted for genes in several
top trait-correlated modules to determine the module that
made the most sense. Black module was speculated to be
a candidate tumor-driving module since preliminary KEGG
analyses revealed some interesting pathways potentially related
with tumor biology.

Functional Enrichment Analyses of
Genes in Significantly Correlated
Modules
To examine the biological functions of the genes in black
modules, we performed functional enrichment analyses using
KEGG, Gene Ontology (GO), and REACTOME Pathway
databases. KEGG pathway enrichment analysis was conducted
using the R package clusterProfiler (Yu et al., 2012). Genes in the
black module were annotated with R package Annotables and
all DEGs obtained by DESeq2 were used as background.
Twelve pathways were significantly enriched (adjusted
p-value < 0.05), and genes in five interesting pathways
among the 12 pathways were picked out for subsequent GO
biological process analysis, which was performed using g:GOST
tool in gProfiler.2 gProfiler is a web server for functional
enrichment analysis and conversions of gene lists. The
tool g:GOSt in gProfiler performs functional enrichment
analysis on input gene list (Raudvere et al., 2019). Among all
significantly enriched biological processes, the top 20 were
selected for investigation, and the associated genes in all 20
interesting terms were used for subsequent REACTOME

2https://biit.cs.ut.ee/gprofiler
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Pathway enrichment analysis using the REACTOME Pathway
analysis tool.3 Among all significantly enriched REACTOME
pathways, we studied the top 20 and identified 13 genes in
nine pathways that were potentially prostate cancer gene
drivers. Enrichplot, ggplot2, and pheatmap packages were
used for plotting.

Weighted Correlation Network Analysis
of miRNAs and Identification of Hub
miRNAs Associated With Prostate
Cancer
Normalized transcriptome data of miRNA [log2(total_RPM+ 1)
transformed] in prostate cancer were obtained from UCSC
XENA1. Likewise, samples of primary solid tumor and solid
normal tissue were selected for the analysis, and paraffin
embedded samples and metastatic samples were removed.
MiRNA identifiers were annotated with detailed names
using the R MiRBaseConverter package (Xu et al., 2018)
(target version V22). Identifiers with no annotations were
removed. For duplicate identifiers corresponding to one
miRNA name, the average of all values was calculated to
represent the expression value for that miRNA. Then the
processed miRNA expression data were used to perform
WGCNA to obtain interesting miRNA modules correlated
with patient traits (tumoral or normal). The pattern for
constructing one-step network and detecting consensus
miRNA modules was similar to that of the aforementioned
genes. Correlations between clinical traits and each module
were calculated and the turquoise module was the most
correlative module with prostate cancer. Then top-ranked
miRNAs that had maximum connectivity with other
miRNAs were determined by the signedKME function in
the turquoise module.

Construction of the Gene–miRNA
Interaction Network and Identification of
Prostate Cancer Signatures
The MiRNet tool,4 which is an integrated platform linking
miRNAs, was used to collect all miRNAs that were predicted or
validated to target the 13 candidate gene drivers. The miRNA–
gene interaction data of miRNet were collected from miRTarBase
v7.0, TarBase v7.0 and miRecords, catalogs that predict and
validate miRNA–gene interactions (Xiao et al., 2009; Vlachos
et al., 2015; Chou et al., 2018). The validated miRNA–gene
interactions are manually curated and experimentally validated,
and the predicted miRNA–gene interactions are produced
by established miRNA target prediction programs. MiRNAs
targeting at least two genes were screened to identify intersections
with the hub miRNAs obtained by WGCNA analysis. Gene–
miRNA interactions were plotted using Cytoscape software
(Shannon et al., 2003).

3https://reactome.org
4https://www.mirnet.ca

Kaplan–Meier Survival Analyses and
Receiver Operating Characteristic
Curves of the Three Gene Signatures
To investigate the clinical significance of the three gene
signatures, we performed Kaplan–Meier survival analyses and
receiver operating characteristic (ROC) curves for survival.
Survival data of TCGA Prostate Adenocarcinoma were obtained
from the UCSC XENA platform, and the gene expression
data used in this section were the aforementioned normalized
expression matrix obtained by DESeq2 package. Kaplan–Meier
survival analyses were conducted utilizing survfit function in the
R Survival package. Survival ROC curve analyses for survival
prediction were performed using roc function in the R proc
package based on the miRNA expression data obtained from
UCSC XENA (Robin et al., 2011). Area under curve (AUC)
was calculated to measure how well the model could distinguish
between survival and non-survival classes.

Validation of Expression of Four miRNA
Signatures in Prostate Cancer Using
Gene Expression Omnibus Datasets
To analyze the expression of four miRNA signatures in current
high-throughput projects on prostate cancer, we used dbDEMC
(version 2.05), which is an integrated database designed to store
and display differentially expressed miRNAs in human cancers
detected by high-throughput methods (Yang et al., 2017). R
limma package was used to screen the differentially expressed
miRNAs from cancer compared with the normal state (Ritchie
et al., 2015). Fold changes and p-values were plotted using
ggplot2 package.

Data Processing and Statistical Analysis
Data sources were mentioned above and R Programming
software was obtained from the R official website (version 3.6.06).
Rstudio software was obtained from the official website.7 p< 0.05
was considered statistically significant.

RESULTS

Analysis of Differentially Expressed
Genes (DEGs) Between Prostate Cancer
and Normal Samples in TCGA Datasets
A total of 481 primary solid tumor samples and 51 solid normal
samples with clinical data were screened after paraffin embedded
samples and metastatic samples were removed. The DESeq2
package estimates variance-mean dependence in count data of
sequencing assays and tests for differential expression based
on a model using the negative binomial distribution. Since
raw count data are not normally distributed, it was necessary
to transform the data to a normalized scale. A normalized

5http://www.picb.ac.cn/dbDEMC
6https://www.r-project.org
7https://rstudio.com
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gene expression matrix was obtained using variance stabilizing
transformation function of the DESeq2 package. Box plot
showed expression distributions for normalized data for each
sample (Figure 1A). Overall, the expression distributions of

raw normalized-intensities were not identical but were similar,
as no sample was that different from others. The PCA plot
provided insights into the similarities among samples and
indicated the quality of the expression data, which can effectively

FIGURE 1 | Analysis of differentially expressed genes (DEGs) between prostate cancer and normal samples in TCGA Prostate Adenocarcinoma (PRAD) datasets.
(A) Box plot showing expression distributions for normalized data for each sample. The boxes are randomly colored with rainbow colors. Normalization method:
Variance Stabilizing Transformation/DESeq2 package. (B) Principal component analysis (PCA) plot of the mRNA expression data based on the top two principal
components that characterizes the trends exhibited by the expression profiles of tumor and normal tissues, respectively. Each dot represents a sample and each
color represents the type of the sample. (C) Volcano plot showing DEGs between tumor and normal tissues. X-axis represents log2 fold change and Y-axis
represents –log10 (adjusted p-value). Red dots represent upregulated DEGs (n = 3157) and blue dots represent downregulated DEGs (n = 3367) in prostate cancer.
DEGs screening cutoff: fold change =2 and adjusted p-value < 0.05. (D) Heat map displaying hierarchical clustering of DEGs (n = 6524). Red denotes increased
gene expression levels and blue denotes decreased levels.
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discriminate low-quality samples. In this study, PCA plot
based on the first two components, as they described the
largest variability, showed tumor and normal samples were
roughly distinguished (Figure 1B). A total of 6524 DEGs
(both upregulated and downregulated genes in cancer samples
compared to normal sample) were identified according to the
criterion of adjusted p-value < 0.05 and absolute fold change≥ 2

(Figure 1C). Heatmap showed the DEG expressions in all
samples (Figure 1D).

WGCNA of DEGs
Differentially expressed genes were used for WGCNA analysis.
WGCNA is an unsupervised analysis method that clusters genes
based on their expression profiles. It is widely used to study

FIGURE 2 | Weighted correlation network analysis (WGCNA) of DEGs. (A) Topological overlap matrix (TOM) plot showing topological overlap in the gene network of
the DEGs obtained by DESeq2. Each row and column denote a gene and the depth of the red color is positively correlated with the strength of the correlation
between the pairs of modules on a linear scale. Blocks of darker colors along the diagonal correspond to the modules. The gene dendrogram and module
assignment are shown along the left and top. (B) Clustering dendrograms for the DEGs with dissimilarity based on the topological overlap together with the assigned
module colors. Eleven co-expression modules were constructed with various colors. The leaves of the tree denote the DEGs, and the height reflects the closeness of
individual genes. (C) Module-trait relationships. Each row corresponds to a co-expression module, each column corresponds to a trait, and each cell contains the
corresponding correlation coefficient and p-value. The table is color-coded according to the color legend on the right. (D) Heatmap plot of the adjacencies of
modules. Red represents high adjacency (positive correlation) and blue represents low adjacency (negative correlation). (E) A scatter plot of correlation between
black module eigengene and tumor phenotype. Correlation coefficient and p-value is indicated in the plot.
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FIGURE 3 | Heatmap and cluster analysis (Euclidean distance) of the genes in black module obtained by WGCNA analysis of DEGs. Rows correspond to genes and
columns correspond to samples. Red and blue colors indicate different extents of high or low expressions.
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the relationships between co-expression modules (clusters) and
the relationships between modules and external sample traits
(Langfelder and Horvath, 2008). In our study, value 4 was
chosen as the soft thresholding power value because it produced
a higher similarity with a scale-free network and contributed
to gene clustering. A one-step network was constructed using
blockwiseModules function with the parameters: of signed
Topological Overlap Matrix type and Pearson’s correlation
coefficient (Figure 2A). Clustering dendrograms for DEGs
with dissimilarity and assigned module colors were plotted
(Figure 2B), and 11 modules with a minimum module size

of 30 genes were obtained. The correlations between each
module and trait (prostate cancer or normal prostate) were
calculated (Figure 2C), and connection strengths (adjacencies)
of the modules and traits are shown (Figure 2D). Red indicates
high adjacency (positive correlation) and blue indicates low
adjacency (negative correlation). Here, we identified some genes
that were strongly positively correlated with prostate cancer.
Among all of the modules, the green and black modules had
the highest correlations with prostate cancer (excluding gray
module), and preliminary KEGG pathway enrichment analyses
were performed to evaluate their biological significance. Several

FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of genes in black module. (A) Advanced bubble chart indicates enrichment of 31
genes in 12 KEGG signaling pathways. Y-axis labels correspond to pathways, and X-axis labels correspond to gene ratio (number of input genes in this
pathway/number of all genes in this pathway). Color and size of the bubble correspond to enrichment significance and amount of input genes enriched in pathway,
respectively. (B) Heatmap of the 31 genes enriched in significant KEGG pathways. Red boxes mean that the corresponding gene (X-axis) is enriched in the
corresponding pathway (Y-axis).
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interesting pathways correlated with cancer were enriched by
black modules, whereas analysis of the green module did not
yield significant results. The black module eigengenes were
highly correlated with prostate cancer (Figure 2E). Thus black
module was speculated to be a potential prostate cancer-
related module and was utilized for subsequent analyses.

Heatmap showed the expressions of all genes in the black
module (Figure 3).

Functional Enrichment Analysis
To reduce data dimensionality, three types of enrichment
analyses were utilized to obtain the most prominent genes in the

FIGURE 5 | Gene Ontology (GO) biological process enrichment analysis of the genes screened by KEGG pathway analysis. (A) Advanced bubble chart shows
enrichment of 19 genes in top 20 (based on adjusted p-value) enriched GO biological processes. Y-axis labels correspond to biological processes, and X-axis labels
correspond to rich ratio (number of input genes in this biological process/number of all genes in this biological process). Color and size of the bubble correspond to
enrichment significance and amount of input genes enriched in biological process, respectively. (B) Heatmap of the 19 genes enriched in significant GO biological
processes. Red boxes mean that the corresponding gene (X-axis) is enriched in the corresponding biological process (Y-axis).
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black module. As mentioned above, KEGG pathway enrichment
analysis showed several pathways that were correlated with
oncogenesis. The KEGG pathway is a collection of manually
drawn pathway maps representing current knowledge on the
molecular interaction and reaction networks and interpreting
the data in the context of biological processes, pathways
and networks. Twelve pathways were significantly enriched
(Figure 4A), and among these pathways, five pathways
including cell cycle, cellular senescence, p53 signaling pathway,
steroid hormone biosynthesis and pentose and glucuronate
interconversions are widely reported to be correlated with the
development and progression of several types of cancers (Kastan
and Bartek, 2004; Lange et al., 2007; Munoz-Fontela et al., 2016;
Calcinotto et al., 2019; Liu et al., 2019). In total, 23 DEGs were
enriched in the five pathways; we selected all 23 genes (Figure 4B)

and performed GO enrichment analysis. Many processes were
significantly enriched and the top 20 significant processes were
extracted for further investigation (Figure 5A). Likewise, 19
DEGs were enriched in all 20 processes and all 19 genes were
selected (Figure 5B) and used for next-step enrichment analysis.
REACTOME is a pathway database that provides intuitive
bioinformatics tools for the visualization, interpretation and
analysis of pathway knowledge (Fabregat et al., 2018). Here,
REACTOME pathway enrichment analysis was also conducted
using the REACTOME pathway analysis tool (Fabregat et al.,
2017), and pathways such as “Cell Cycle Checkpoints” were
reportedly correlated with several cancer types (Figure 6A)
(Kastan and Bartek, 2004; Malumbres and Barbacid, 2009).
Literature review was performed on these pathways, and 13
genes (RRM2, ORC6, CDC45, CDKN2A, E2F2, MYBL2, CCNB2,

FIGURE 6 | Reactome pathway analysis of the genes screened by GO biological process analysis. (A) Visualization of genome-scale Reactome pathway analysis
results of the 19 genes screened by GO biological process analysis, showing an intuitive overview of analysis results in the context of the Reactome hierarchical
pathway structure. Enriched pathways are plotted in yellow. (B) Heatmap of the genes enriched in the top 20 significant Reactome pathways. Red boxes mean that
the corresponding gene (X-axis) is enriched in the corresponding Reactome pathway (Y-axis).
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PLK1, FOXM1, CDC25C, PKMYT1, GTSE1, and CDC20) in nine
correlated pathways (mitotic G1-G1/S phases, oncogene induced
senescence, G2/M transition, mitotic G2-G2/M phases, cell cycle
checkpoints, G2/M checkpoints, G1/S-specific transcription,

G1/S transition, and G2/M DNA replication checkpoint) were
finally identified and speculated to be potentially correlated with
prostate cancer (Figure 6B) (Nakayama and Nakayama, 2006;
Malumbres and Barbacid, 2009).

FIGURE 7 | WGCNA analysis of miRNAs expression data in TCGA PRAD datasets. (A) Topological overlap matrix plot showing topological overlap in the gene
network of miRNAs. (B) Clustering dendrograms for the miRNAs with dissimilarity based on the topological overlap together with the assigned module colors.
(C) Module-trait relationships. Each cell contains the corresponding correlation coefficient and p-value. (D) The eigengene dendrogram and heatmap plot of the
adjacencies of modules. Red represents high adjacency (positive correlation) and blue represents low adjacency (negative correlation). (E) Heatmap and cluster
analysis (Euclidean distance) of the 14 hub miRNAs obtained by WGCNA analysis of miRNAs. Rows correspond to miRNAs and columns correspond to samples.
Red and blue colors indicate different extents of high or low expressions.
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WGCNA of miRNAs
To better understand the roles of miRNAs in prostate cancer, we
further performed WGCNA analysis for miRNAs based on the
expression data obtained from TCGA database. Because the total
count of miRNA was far fewer than that of genes, differential
expression analysis was not conducted before WGCNA. Similar
to the analysis pipeline of WGCNA for genes, a one-step network
was constructed (Figures 7A,B) and correlations between
trait and modules as well as intramodular correlations were
calculated (Figures 7C,D). The turquoise module had the highest
correlation coefficient. The connectivity of each miRNA with
other miRNAs was calculated and 14 hub miRNAs (miRNAs
with the highest module membership) were selected according
to the following criteria: miRNA significance value (calculated
by WGCNA and representing the correlation between miRNA
expression and trait) > 0.3; and absolute value of module
membership (calculated by WGCNA and representing the degree
each miRNA is associated with the module) > 0.8 (Figure 7E).
Based on this analysis, these miRNAs were very likely to
interact with target genes and function in the development of
prostate cancer.

Construction of Gene–miRNA Interaction
Network and Analysis of Hub Genes and
miRNAs
To investigate the interactions between the screened miRNAs
and genes, we used the miRNet tool which contains miRNA–
gene interaction data collected from miRTarBase v7.0, TarBase
v7.0, and miRecords and determined the miRNAs that were
predicted or validated to target the 13 genes obtained after
pathway enrichment analyses. Among all 339 miRNAs, 66
targeted at least two DEGs and were used to find intersections
with the 14 hub miRNAs. Five miRNAs (hsa-mir-17-5p, hsa-
mir-20a-5p, hsa-mir-92a-3p, hsa-mir-93-5p, and hsa-mir-186-
5p) were commonly shared. Then the interactions between the
5 miRNAs and the aforementioned 13 DEGs were extracted
from the miRNA–gene interaction data analyzed using the
miRNet tool. According to miRNet, 7 genes (RRM2, ORC6,
E2F2, FOXM1, PKMYT1, CDC20, and MYBL2) among the 13
DEGs had interactions with the 5 miRNAs. The gene–miRNA
interactions of the five miRNAs and seven genes were plotted
using Cytoscape software (Figure 8). Three genes (E2F2, RRM2,
and PKMYT1) had three or more interactions with miRNAs
and four miRNAs (hsa-mir-17-5p, hsa-mir-20a-5p, hsa-mir-92a-
3p, and hsa-mir-93-5p) had interactions with three genes. Given
the high connectivity of the three genes and four miRNAs, it is
reasonable to presume that they might be a potential signature in
prostate cancer.

Investigation on the Clinical Prognostic
Significance of Signature Genes and
Expression of Signature miRNAs in Gene
Expression Omnibus Datasets
The clinical prognostic significance was studied for RRM2,
PKMYT1, and E2F2. According to Kaplan–Meier survival

FIGURE 8 | Schematic plot of the gene–miRNA interactions based on
miRNet. MiRNet catalogues predicted and validated miRNA–gene
interactions. MiRNAs targeting at least two genes were selected to find
intersections with the hub miRNAs obtained by WGCNA analysis. Red
represents four interactions with other genes or miRNAs in the network, while
blue for 3, purple for 2, and yellow for 1.

analyses and survival ROC curve analyses, higher expression
of RRM2 or PKMYT1 was significantly correlated with worse
survival (p < 0.05, AUC > 0.69) (Figures 9A,B). For E2F2,
higher expression did not indicate worse survival but ROC curve
still showed considerable AUC value (Figure 9C). To conduct
some validation of sorts, we further studied the expression of
four signature miRNAs in several Gene Expression Omnibus
(GEO) datasets. The GEO database is an independent public
repository that archives and freely distributes high-throughput
gene expression and other functional genomics datasets (Barrett
et al., 2013). All four miRNAs were more highly expressed in
prostate cancer than in normal prostate tissues and this was
confirmed by at least three GEO datasets for each miRNA
(Figure 10). Among the four miRNAs, three members (hsa-
mir-17-5p, hsa-mir-20a-5p, and hsa-mir-93-5p) had some of the
strongest p-values for tumor and normal differential expression
in the independent GEO datasets (GSE21036, and GSE36802). All
of these data provide strong evidence that the signatures of three
genes and four miRNAs play crucial roles in the development of
prostate cancer.

DISCUSSION

With the increasing number of studies focusing on prostate
cancer, much progress has been made in the treatment and
understanding of the mechanisms underlying this disease.
However, controversies remain about several issues such as the
screening for prostate cancer and the treatment of localized
disease (Pignot et al., 2018). The optimum management of
prostate cancer is challenging partly due to the heterogeneity
and sometimes indolent nature of the disease. Detailed biology
of oncogenesis and progression of prostate cancer, especially
advanced subtypes, still needs to be elucidated for screening,
stratification and treatment strategies. Thus, a signature with
prognostic and therapeutic implications is of great significance.
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FIGURE 9 | Kaplan–Meier survival curves and receiver operating characteristic (ROC) curves showing correlations of RRM2 (A), PKMYT1 (B), and E2F2 (C) with
clinical survival (TCGA PRAD survival data). In Kaplan–Meier survival curves, red curves refer to high expression group (greater than median) and green curves refer
to low expression group (equal to or smaller than median). Both p-values for Kaplan–Meier survival curves and AUC (Area under the ROC Curve) values for ROC
curves are plotted.

Integrative analysis of accumulated expression data can
be performed to obtain more reliable information and more
feasible measures for determining the potential diagnostic

and prognostic signatures of tumors and to investigate the
molecular mechanisms (Robertson et al., 2017; Li et al., 2018;
Ye et al., 2018). WGCNA builds network modeling that relies
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FIGURE 10 | Bar plot of the expression fold changes of the four hub miRNAs in prostate cancer compared to normal prostate tissues according to several studies in
Gene Expression Omnibus (GEO) datasets. X-axis correspond to miRNA names and GEO study accessions while Y-axis correspond to negative log10-transformed
p-values. The red line indicates 1.3 in Y-axis, which is the negative log10-transformed value for 0.05, meaning the fold changes of the bars higher than this line are
statistically significant.

on statistical methods and improves simple correlation networks
by quantifying not only the correlations between individual
pairs of genes, but also the extent to which these genes share
the same neighbors (Zhang and Horvath, 2005; DiLeo et al.,
2011). WGCNA provides an efficient approach through which
the effects of phenotype can be detected in modeled networks
(Langfelder and Horvath, 2008). Many studies have indicated that
cancer biology is regulated by miRNAs. Research works focusing
on miRNA-based cancer treatments are gaining increasing
attention due to the ability of miRNAs to concurrently target
multiple effectors of pathways involved in cell differentiation,
proliferation, and survival (Garzon et al., 2010). In this study,
using the expression data of genes and miRNAs of prostate cancer
in TCGA database as well as the WGCNA approach, we identified
three genes and four miRNAs that were tightly correlated with
prostate cancer and clinical prognosis.

In our pathway enrichment analyses, we utilized three
databases, namely KEGG, GO, and REACTOME. For each
kind of functional enrichment analysis, there were always
several pathways relevant to the cell cycle that were enriched.
It is universally accepted that dysregulation of the cell
cycle is characteristic of tumors, which further proved that
our functional enrichment analyses were properly conducted
(Malumbres and Barbacid, 2009).

Protein kinase membrane-associated tyrosine/threonine 1
(PKMYT1) inhibits progression of the cell cycle through the
phosphorylation of cyclin-dependent kinase 1 (CDK1) (Choi
et al., 2009). It is well-established that CDK1 is a key molecule

in the progression of mitosis, and thus PKMYT1 is thought
to play important roles in the regulation of the cell cycle and
tumor biology (Parker and Piwnica-Worms, 1992). PKMYT1 is a
crucial promoter in the development of hepatocellular carcinoma
(Aguiar et al., 2017; Liu et al., 2017), and overexpression of
PKMYT1 indicates a poor prognosis and enhances proliferation
and tumorigenesis in non-small cell lung cancer (Sun et al.,
2019). Currently the functional significance of PKMYT1 in
prostate cancer remains unclear, and it makes sense to determine
whether PKYMT1 is indispensable in prostate cancer, which
requires further investigation. The ribonucleotide reductase M2
subunit (RRM2) plays important role in several human cancers,
including colorectal cancer, hepatocellular carcinoma, pancreatic
adenocarcinoma, and breast cancer (Lee et al., 2014; Sierzega
et al., 2017; Nana et al., 2018; Chen et al., 2019). Increased
expression of RRM2 has been demonstrated to be a mechanism
driving poor patient outcomes in prostate cancer, in accordance
with our findings (Mazzu et al., 2019). According to our study,
the high expression of PKMYT1 and RRM2 was correlated with
prostate cancer oncogenesis and poor prognosis, indicating their
potential oncogenic roles in prostate cancer. E2F transcription
factor 2 (E2F2) is one of the activators of the family that
controls the transition between the G1 and S phase through
various upstream signals (Sherr, 1996), and functions as an
oncogene in lung cancer (Feliciano et al., 2017). Li et al.
(2017), reported that E2F2 variants are predictive biomarkers
for recurrence risk in patients with squamous cell carcinoma
of the oropharynx. It is documented that downregulated E2F2
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is correlated with inhibition of cell proliferation in prostate
cancer (Dong et al., 2010). However, more research regarding its
roles in prostate cancer is still needed. Among the four hub
miRNAs found in this study, miRNA-17-5p has been extensively
investigated (Hussein et al., 2009; Dellago et al., 2017). MiRNA-
17-5p is shown by multiple studies to be at the crossroads of
aging and cancer and might be a promising biomarker or even
therapeutic tool and target in tumors (Dellago et al., 2017). The
high expression of miRNA-17-5p is significantly associated with
the progression of various cancers probably through increasing
the expression of p53 (Thompson et al., 2016; Duan et al.,
2018). However, miRNA-17-5p also reportedly acts as a tumor
suppressor in triple-negative breast cancer, which is the breast
cancer subtype with the poorest prognosis (Wang et al., 2019).
Aberrant expression of miRNA-92a has been reported in various
tumors and as such has potential value as a tumor marker or
novel target for cancer treatment (Li et al., 2014). In prostate
cancer, the expression of miR-92a is markedly overexpressed
according to a large-scale miRnome analysis (Volinia et al.,
2006). For each gene or miRNA included in the signature found
in this study, our report provided novel targets, or at least
presented further confirmation of previously published findings
of prostate cancer.

It is worth noting that all exploratory data analysis approaches
such as WGCNA require further validation to confirm the
putative molecular networks. In addition, the expression of a
specific gene or miRNA might vary among different subtypes of
prostate cancer, especially taking into account the heterogeneous
nature of this disease (Boyd et al., 2012).

A signature with prognostic significance makes great
sense for prostate cancer patients. For instance, a signature
identifying prostate cancer patients at risk of dying and

who can be safely observed is of tremendous importance,
as we are aware of overtreatment concerns and more
patients are being placed on active surveillance protocols.
This study preliminarily investigated potential candidate
drivers in prostate cancer as well as the underlying mRNA–
miRNA interactions, providing potential therapeutic targets
for prostate cancer. It will be of great interest to determine
whether this signature will prove useful and gain traction in
further studies.
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